

Lecture Notes in Computer Science 4110
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Josep Díaz Klaus Jansen
José D.P. Rolim Uri Zwick (Eds.)

Approximation,
Randomization
and Combinatorial
Optimization

Algorithms and Techniques

9th InternationalWorkshop onApproximationAlgorithms
for Combinatorial Optimization Problems,APPROX 2006
and 10th International Workshop
on Randomization and Computation, RANDOM 2006
Barcelona, Spain, August 28-30 2006
Proceedings

13

Volume Editors

Josep Díaz
Universitat Politecnica de Catalunya
Departament de Llenguatges i Sistemes Informatics
08034 Barcelona, Spain
E-mail: diaz@lsi.upc.edu

Klaus Jansen
University of Kiel
Institute for Computer Science
24098 Kiel, Germany
E-mail: kj@informatik.uni-kiel.de

José D.P. Rolim
Centre Universitaire d’Informatique
1227 Carouge, Geneva, Switzerland
E-mail: Jose.Rolim@cui.unige.ch

Uri Zwick
Tel-Aviv University
School of Computer Science
Tel-Aviv 69978, Israel
E-mail: zwick@tau.ac.il

Library of Congress Control Number: 2006931401

CR Subject Classification (1998): F.2, G.2, G.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-38044-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-38044-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11830924 06/3142 5 4 3 2 1 0

Preface

This volume contains the papers presented at the 9th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems (AP-
PROX 2006) and the 10th International Workshop on Randomization and Com-
putation (RANDOM 2006), which took place concurrently at the Universitat
Politècnica de Catalunya, on August 28–30, 2006. APPROX focuses on algorith-
mic and complexity issues surrounding the development of efficient approximate
solutions to computationally hard problems, and was the ninth in the series af-
ter Aalborg (1998), Berkeley (1999), Saarbrücken (2000), Berkeley (2001), Rome
(2002), Princeton (2003), Cambridge (2004), and Berkeley (2005). RANDOM is
concerned with applications of randomness to computational and combinatorial
problems, and was the tenth workshop in the series following Bologna (1997),
Barcelona (1998), Berkeley (1999), Geneva (2000), Berkeley (2001), Harvard
(2002), Princeton (2003), Cambridge (2004), and Berkeley (2005).

Topics of interest for APPROX and RANDOM are: design and analysis of
approximation algorithms, hardness of approximation, small space and data
streaming algorithms, sub-linear time algorithms, embeddings and metric space
methods, mathematical programming methods, coloring and partitioning, cuts
and connectivity, geometric problems, game theory and applications, network
design and routing, packing and covering, scheduling, design and analysis of ran-
domized algorithms, randomized complexity theory, pseudorandomness and de-
randomization, random combinatorial structures, random walks/Markov chains,
expander graphs and randomness extractors, probabilistic proof systems, ran-
dom projections and embeddings, error-correcting codes, average-case analysis,
property testing, computational learning theory, and other applications of ap-
proximation and randomness.

The volume contains 2 papers as invited lectures, 22 contributed papers,
selected by the APPROX Program Committee out of 56 submissions, and 22
contributed papers, selected by the RANDOM Program Committee out of 49
submissions.

We would like to thank all of the authors who submitted papers, the members
of the Program Committees:

VI Preface

APPROX 2006

Jittat Fakcharoenphol, Kasetsart University, Bangkok
Uriel Feige, Microsoft Research & Weizmann Institute
Anupam Gupta, Carnegie Mellon University, Pittsburgh
Magnús M. Halldórsson, University of Iceland
Johan H̊astad, KTH, Stockholm
Amit Kumar, IIT, New Delhi
James R. Lee, IAS, Princeton
Mohammad Mahdian, Microsoft Research
Jǐŕı Sgall, Academy of Sciences of the Czech Republic
Vijay Vazirani, Georgia Institute of Technology
Gerhard Woeginger, Eindhoven University of Technology
Uri Zwick, Tel Aviv University (Chair)

RANDOM 2006

Dimitris Achkioptas, University of California Santa Cruz
Andris Ambanis, University of Waterloo
Eli Ben-Sasson, Technion
Amin Coja-Oghlan, Humboldt-Universität zu Berlin
Colin Cooper, Kings College, London
Josep Dı́az, Technological University of Catalunya (Chair)
Ravi Kannan, Yale University
Colin McDiarmid, University of Oxford
Rémi Monasson, CNRS Paris
Alessandro Panconesi, Università degli Studi di Roma La Sapienza
Vijaya Ramachandran, University of Texas at Austin
Vishal Sanwalani, University of Waterloo
Pavlos Spirakis, University of Patras
Madhu Saudan, MIT

We would also like to thank the external subreferees: Mikhail Alekhnovich,
Christoph Ambühl, Albert Atserias, Per Austrin, Amitabha Bagchi,
Maria-Florina Balcan, Markus Bläser, Josh Benaloh, Manuel Bodirsky, Andrej
Bogdanov, Ioannis Caragiannis, Deeparnab Chakrabarty, Hubert Chan, Chan-
dra Chekuri, Marek Chrobak, Artur Czumaj, Atish Das Sarma, Nikhil Devanur,
Martin Dyer, Michael Elkin, Leah Epstein, Henrik Eriksson, Thomas Erlebach,
Eldar Fischer, Martin Furer, Nicola Galesi, Naveen Garg, Ricard Gavalda, Ste-
fanie Gerke, Ernst-Günter Giessmann, Gagan Goel, Andreas Goerdt, Leslie Ann
Goldberg, Mordecai Golin, Daniel Golovin, Vineet Goyal, Sudipto Guha, Sam
Gutmann, MohammadTaghi Hajiaghayi, Bjarni V. Halldórsson, Rafi Hassin,
Nicole Immorlica, Robert W. Irving, Tejas Iyer, Dominik Janzing, Mark Jer-
rum, Raja Jothi, Ragnar Karlsson, Iordanis Kerenidis, Samir Khuller, Lefteris
Kirousis, Johannes Köbler, Jochen Könemann, S. Kontogiannis, Guy Kortsarz,
Michal Koucky, Annamaria Kovacs, Sven Krumke, Oded Lachish, Andre Lanka,

Preface VII

Erik van Leeuwen, Asaf Levin, Azarakhsh Malekian, Daniel Marx, Conrado Mar-
tinez, Frank McSherry, Aranyak Mehta, Michael Mitzenmacher, Cris Moore,
Viswanath Nagarajan, Danupon Nanongkai, Assaf Naor, Tim Nieberg, Krzysztof
Onak, Rasmus Pagh, Martin Pál, Anna Palbom, David Peleg, Kirk Pruhs, Ra-
mamoorthi Ravi, Oded Regev, Omer Reingold, Tim Roughgarden, Dana Ron,
Ronitt Rubinfeld, Atri Rudra, Jared Saia, Rishi Saket, Mathias Schacht, Elad
Schiller, Hadas Shachnai, Ronen Shaltiel, Rene Sitters, Michiel Smid, Christian
Sohler, Frits Spieksma, Aravind Srinivasan, Rob van Stee, Maxim Sviridenko,
Kunal Talwar, Anusch Taraz, Luca Trevisan, Danny Vilenchik, Emanuele Viola,
Maxwell Young, Neal E. Young, Raphael Yuster, Riccardo Zecchina, Alexander
Zelikovsky, and Yan Zhang

We gratefully acknowledge the support from the Spanish Ministerio Edu-
cación i Ciencia, The Universitat Politécnica de Catalunya, the Department of
LSI at the the UPC, Yahoo! Research Barcelona, the Institute of Computer
Science of the Christian-Albrechts-Universität zu Kiel and the Department of
Computer Science of the University of Geneva.

August 2006 Uri Zwick and Josep Dı́az, Program Chairs
Klaus Jansen and José D. P. Rolim, Workshop Chairs

Table of Contents

Invited Talks

On Nontrivial Approximation of CSPs . 1
Johan H̊astad

Analysis of Algorithms on the Cores of Random Graphs 2
Nick Wormald

Contributed Talks of APPROX

Constant-Factor Approximation for Minimum-Weight (Connected)
Dominating Sets in Unit Disk Graphs . 3

Christoph Ambühl, Thomas Erlebach, Matúš Mihal’ák,
Marc Nunkesser

Approximating Precedence-Constrained Single Machine Scheduling by
Coloring . 15

Christoph Ambühl, Monaldo Mastrolilli, Ola Svensson

Minimizing Setup and Beam-On Times in Radiation Therapy 27
Nikhil Bansal, Don Coppersmith, Baruch Schieber

On the Value of Preemption in Scheduling . 39
Yair Bartal, Stefano Leonardi, Gil Shallom, Rene Sitters

An Improved Analysis for a Greedy Remote-Clique Algorithm Using
Factor-Revealing LPs . 49

Benjamin E. Birnbaum, Kenneth J. Goldman

Tight Results on Minimum Entropy Set Cover . 61
Jean Cardinal, Samuel Fiorini, Gwenaël Joret

A Tight Lower Bound for the Steiner Point Removal Problem on
Trees . 70

T.-H. Hubert Chan, Donglin Xia, Goran Konjevod, Andrea Richa

Single-Source Stochastic Routing . 82
Shuchi Chawla, Tim Roughgarden

X Table of Contents

An O(log n) Approximation Ratio for the Asymmetric Traveling
Salesman Path Problem . 95

Chandra Chekuri, Martin Pál

Online Algorithms to Minimize Resource Reallocations and Network
Communication . 104

Sashka Davis, Jeff Edmonds, Russell Impagliazzo

Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs 116
Leah Epstein, Magnús M. Halldórsson, Asaf Levin, Hadas Shachnai

Combinatorial Algorithms for Data Migration to Minimize Average
Completion Time . 128

Rajiv Gandhi, Julián Mestre

LP Rounding and an Almost Harmonic Algorithm for Scheduling with
Resource Dependent Processing Times . 140

Alexander Grigoriev, Maxim Sviridenko, Marc Uetz

Approximating Buy-at-Bulk and Shallow-Light k-Steiner Trees 152
Mohammad Taghi Hajiaghayi, Guy Kortsarz,
Mohammad R. Salavatipour

Improved Algorithms for Data Migration . 164
Samir Khuller, Yoo-Ah Kim, Azarakhsh Malekian

Approximation Algorithms for Graph Homomorphism Problems 176
Michael Langberg, Yuval Rabani, Chaitanya Swamy

Improved Approximation Algorithm for the One-Warehouse
Multi-Retailer Problem . 188

Retsef Levi, Maxim Sviridenko

Hardness of Preemptive Finite Capacity Dial-a-Ride 200
Inge Li Gørtz

Minimum Vehicle Routing with a Common Deadline 212
Viswanath Nagarajan, R. Ravi

Stochastic Combinatorial Optimization with Controllable Risk Aversion
Level . 224

Anthony Man–Cho So, Jiawei Zhang, Yinyu Ye

Approximating Minimum Power Covers of Intersecting Families and
Directed Connectivity Problems . 236

Zeev Nutov

Table of Contents XI

Better Approximations for the Minimum Common Integer Partition
Problem . 248

David P. Woodruff

Contributed Talks of RANDOM

On Pseudorandom Generators with Linear Stretch in NC0 260
Benny Applebaum, Yuval Ishai, Eyal Kushilevitz

A Fast Random Sampling Algorithm for Sparsifying Matrices 272
Sanjeev Arora, Elad Hazan, Satyen Kale

The Effect of Boundary Conditions on Mixing Rates of Markov
Chains . 280

Nayantara Bhatnagar, Sam Greenberg, Dana Randall

Adaptive Sampling and Fast Low-Rank Matrix Approximation 292
Amit Deshpande, Santosh Vempala

Robust Local Testability of Tensor Products of LDPC Codes 304
Irit Dinur, Madhu Sudan, Avi Wigderson

Subspace Sampling and Relative-Error Matrix Approximation:
Column-Based Methods . 316

Petros Drineas, Michael W. Mahoney, S. Muthukrishnan

Dobrushin Conditions and Systematic Scan . 327
Martin Dyer, Leslie Ann Goldberg, Mark Jerrum

Complete Convergence of Message Passing Algorithms for Some
Satisfiability Problems . 339

Uriel Feige, Elchanan Mossel, Dan Vilenchik

Robust Mixing . 351
Murali K. Ganapathy

Approximating Average Parameters of Graphs . 363
Oded Goldreich, Dana Ron

Local Decoding and Testing for Homomorphisms . 375
Elena Grigorescu, Swastik Kopparty, Madhu Sudan

Worst-Case Vs. Algorithmic Average-Case Complexity in the
Polynomial-Time Hierarchy . 386

Dan Gutfreund

XII Table of Contents

Randomness-Efficient Sampling Within NC1 . 398
Alexander Healy

Monotone Circuits for the Majority Function . 410
Shlomo Hoory, Avner Magen, Toniann Pitassi

Space Complexity vs. Query Complexity . 426
Oded Lachish, Ilan Newman, Asaf Shapira

Consistency of Local Density Matrices Is QMA-Complete 438
Yi-Kai Liu

On Bounded Distance Decoding for General Lattices 450
Yi-Kai Liu, Vadim Lyubashevsky, Daniele Micciancio

Threshold Functions for Asymmetric Ramsey Properties Involving
Cliques . 462

Martin Marciniszyn, Jozef Skokan, Reto Spöhel, Angelika Steger

Distance Approximation in Bounded-Degree and General Sparse
Graphs . 475

Sharon Marko, Dana Ron

Fractional Matching Via Balls-and-Bins . 487
Rajeev Motwani, Rina Panigrahy, Ying Xu

A Randomized Solver for Linear Systems with Exponential
Convergence . 499

Thomas Strohmer, Roman Vershynin

Maintaining External Memory Efficient Hash Tables 508
Philipp Woelfel

Author Index . 521

On Nontrivial Approximation of CSPs

Johan H̊astad

KTH– Royal Institute of Technology, Sweden
johanh@nada.kth.se

Abstract. Constraint satisfaction problems, more simply called CSPs
are central in computer science, the most famous probably being Sat-
isfiability, SAT, the basic NP-complete problem. In this talk we survey
some results about the optimization version of CSPs where we want to
satisfy as many constraints as possible.

One very simple approach to a CSP is to give random values to the
variables. It turns out that for some CSPs, one example being Max-3Sat,
unless P=NP, there is no polynomial time algorithm that can achieve a
an approximation ratio that is superior to what is obtained by this trivial
strategy. Some other CSPs, Max-Cut being a prime example, do allow
very interesting non-trivial approximation algorithms which do give an
approximation ratio that is substantially better than that obtained by a
random assignment.

These results hint at a general classification problem of determining
which CSPs do admit a polynomial time approximation algorithm that
beats the random assignment by a constant factor. Positive results giving
such algorithms tend to be based on semi-definite programming while the
PCP theorem is the central tool for proving negative result.

We describe many of the known results in the area and also discuss
some of the open problems.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analysis of Algorithms on the Cores of Random
Graphs

Nick Wormald

Dept. Combinatorics and Optimization, University of Waterloo
nwormald@uwaterloo.ca

Abstract. The k-core of a graph is the largest subgraph of minimum
degree at least k. It can be found by successively deleting all vertices of
degree less than k.

The threshold of appearance of the k-core in a random graph was origi-
nallydeterminedbyPittel,Spencerandthespeaker.Theoriginalderivation
used approximation of the vertex deletion process by differential equations.
Many other papers have recently given alternative derivations.

A pseudograph model of random graphs introduced by Bollobás and
Frieze, and also Chvátal, is useful for simplifying the original derivation.
This model is especially useful for analysing algorothms on the k-core of
a sparse random graphs, when the average degree is roughly constant. It
was used recently to rederive the threshold of appearance of the k-core
(with J. Cain). In addition, the following have recently been obtained
concerning either of the random graphs G = G(n, c/n), c > 1, or G =
G(n, m), m = cn/2.

(i) Analysis of a fast algorithm for off-line load balancing when each
item has a choice of two servers. This enabled us to determine the thresh-
old of appearance of a subgraph with average degree at least 2k in the
random graph (with P. Sanders and J. Cain),

(ii) Bounds on the mixing time for the giant component of a random
graph. We show that with high probability the random graph has a sub-
graph H with “good” expansion properties and such that G−H has only
“small” components with “not many” such components attached to any
vertex of H . Amongst other things, this implies that the mixing time of
the random walk on G is Θ(log2 n) (obtained recently and independently
by Fountoulakis and Reed). This work is joint with I. Benjamini and G.
Kozma. The subgraph is found by successively deleting the undesired
vertices from the 2-core of the random graph.

(iii)Lower bounds on longest cycle lengths in the random graph. These
depend on the expected average degree c and improve the existing results
that apply to small c > 1 (by Ajtai, Komlós and Szemerédi, Fernandez de
la Vega, and Suen). The new bounds arise from analysis of random greedy
algorithms. Suen’s bounds for induced cycles are also improved using sim-
ilar random greedy algorithms. This is joint work with J.H. Kim.

In all cases the analysis is by use of differential equations approxi-
mating relevant random variables during the course of the algorithm.
Typically, this determines the performance of the algorithms accurately,
even if the best bounds are not necessarily achieved by these algorithms.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, p. 2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Constant-Factor Approximation for
Minimum-Weight (Connected) Dominating Sets

in Unit Disk Graphs

Christoph Ambühl1, Thomas Erlebach2, Matúš Mihal’ák2,
and Marc Nunkesser3

1 Department of Computer Science, University of Liverpool
christoph@csc.liv.ac.uk

2 Department of Computer Science, University of Leicester
{te17, mm215}@mcs.le.ac.uk

3 Institute of Theoretical Computer Science, ETH Zürich
mnunkess@inf.ethz.ch

Abstract. For a given graph with weighted vertices, the goal of the
minimum-weight dominating set problem is to compute a vertex subset
of smallest weight such that each vertex of the graph is contained in the
subset or has a neighbor in the subset. A unit disk graph is a graph
in which each vertex corresponds to a unit disk in the plane and two
vertices are adjacent if and only if their disks have a non-empty intersec-
tion. We present the first constant-factor approximation algorithm for the
minimum-weight dominating set problem in unit disk graphs, a problem
motivated by applications in wireless ad-hoc networks. The algorithm is
obtained in two steps: First, the problem is reduced to the problem of
covering a set of points located in a small square using a minimum-weight
set of unit disks. Then, a constant-factor approximation algorithm for the
latter problem is obtained using enumeration and dynamic programming
techniques exploiting the geometry of unit disks. Furthermore, we also
show how to obtain a constant-factor approximation algorithm for the
minimum-weight connected dominating set problem in unit disk graphs.

1 Introduction

The dominating set problem is a classical optimization problem on graphs. For
a given undirected graph G = (V, E), a subset D ⊆ V of its vertices is called a
dominating set if every vertex in V is contained in D or has a neighbor in D. A
vertex in D is called a dominator. A dominator dominates itself and all its neigh-
bors. The goal of the minimum dominating set problem (MDS) is to compute
a dominating set of smallest size. In the weighted version, the minimum-weight
dominating set problem (MWDS), each vertex of the input graph is associated
with a weight, and the goal is to compute a dominating set of minimum weight.

A dominating set D ⊆ V is called a connected dominating set in the graph
G = (V, E) if the subgraph induced by D is connected. The minimum connected

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 3–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

4 C. Ambühl et al.

dominating set problem (MCDS) and minimum-weight connected dominating
set problem (MWCDS) are defined in the obvious way.

For general graphs, MDS (and therefore MWDS) isNP-hard [9]. Furthermore,
MDS for general graphs is known to be equivalent to the set cover problem,
implying that it can be approximated within a factor of O(log n) for graphs
with n vertices using a greedy algorithm (see, e.g., [16]), but no better unless
all problems in NP can be solved in nO(log log n) time [8]. Approximation ratio
O(log n) can also be achieved for the weighted set cover problem and thus for
MWDS. The best known approximation ratio for MWCDS in general graphs is
O(log n) as well [10].

In this paper, we are concerned with MWDS and MWCDS in a special class
of graphs: unit disk graphs. A unit disk graph is a graph in which each vertex is
associated with a (topologically closed) unit disk in the plane and two vertices are
adjacent if and only if the corresponding disks have a non-empty intersection. We
are interested in efficient approximation algorithms. An algorithm for MDS (or
MWDS) is called a ρ-approximation algorithm, and has approximation ratio ρ,
if it runs in polynomial time and always outputs a dominating set whose size
(or total weight) is at most a factor of ρ larger than the size (or total weight)
of the optimal solution. The definitions for MCDS and MWCDS are analogous.
A polynomial-time approximation scheme (PTAS) is a family of approximation
algorithms with ratio 1 + ε for every constant ε > 0.

A major motivation for studying (connected) dominating sets in unit disk
graphs arises from routing in wireless ad-hoc networks, where dominating sets
have been proposed for the construction of routing backbones (see, e.g., [1]).
Each node of the graph models a wireless device, and two nodes are connected
by an edge if they are close enough to receive each other’s transmissions. A
message that is broadcast by all nodes of a dominating set will be received by all
nodes of the network. Therefore, a small connected dominating set is an energy-
efficient routing backbone. Recent work has emphasized that ad-hoc networks
are often heterogeneous as different nodes have different capabilities. Thus, it is
meaningful to assign weights to the nodes (giving small weight to nodes that have
a large remaining battery life, for example) and aim to determine a (connected)
dominating set of small weight [17]. Therefore, one arrives at the MWDS and
MWCDS problems in unit disk graphs.

Clark et al. [7] have proved that MDS is NP-hard for unit disk graphs. Licht-
enstein [13] has shown that MCDS is NP-hard for unit disk graphs. Constant-
factor approximation algorithms for MDS and MCDS in unit disk graphs were
given by Marathe et al. [14]. For MDS in unit disk graphs, a PTAS was presented
by Hunt et al. [12], based on the shifting strategy [3, 11]. These algorithms, how-
ever, do not extend to the weighted version. In particular, the PTAS is heavily
based on the fact that the optimal dominating set for unit disks in a k×k square
has size at most O(k2) and can thus be found in polynomial time using complete
enumeration if k is a constant. In the weighted case, there is no such bound on
the size of an optimal (or near-optimal) solution, as an optimal solution may
consist of a large number of disks with tiny weight. For MCDS in unit disk

Constant-Factor Approximation for MWCDS in Unit Disk Graphs 5

graphs, a PTAS was presented in [6]. For the special case of unit disk graphs
with bounded density, asymptotic fully polynomial-time approximation schemes
(with running time polynomial in 1

ε and in the size of the input, but achieving
ratio 1 + ε only for large enough inputs) were presented for MDS and MCDS
in [15].

Wang and Li [17] give distributed algorithms for MWDS and MWCDS in unit
disk graphs that achieve approximation ratio O(min{logΔ, σ}), where Δ is the
maximum degree of the graph and σ is the ratio of the maximum weight to the
minimum weight of a disk. Note that these approximation ratios are not better
than the known ratios for general graphs in the worst case.

Our Results. In this paper, we present the first constant-factor approxima-
tion algorithms for MWDS and MWCDS in unit disk graphs. Our algorithm
for MWDS solves the problem in two steps. First, we reduce MWDS in unit
disk graphs to the problem of covering a set of points that are located in a
small square using a minimum-weight set of unit disks. In the reduction we lose
only a constant factor in the approximation ratio. Then, we present a constant-
factor approximation algorithm for the latter problem using enumeration and
dynamic programming techniques exploiting the geometry of unit disks. To solve
the MWCDS problem, we first compute an O(1)-approximation for the MWDS
problem and then use an approach based on a minimum spanning tree calcula-
tion to add disks to the solution in order to make the dominating set connected.
It remains an interesting open problem whether MDS and MWDS admit ap-
proximation algorithms with constant ratio also for arbitrary disk graphs.

The remainder of the paper is structured as follows. Our top-level approach
to solving MWDS, which consists of breaking the problem into subproblems in
small squares, is presented in Section 2. In Section 3, we show how the subprob-
lem can be reduced to a special disk cover problem and give a constant-factor
approximation algorithm for the latter problem. Section 4 shows how we can
make a dominating set connected while incurring a cost that is bounded by a
constant factor times the cost of the optimal connected dominating set. Proofs
omitted due to space restrictions can be found in [2].

2 Algorithm for Minimum-Weight Dominating Sets

Let an instance of MWDS in unit disk graphs be given by a set D of weighted
unit disks in the plane. The weight of disk d ∈ D is denoted by wd ≥ 0. Each
disk has radius 1 and is specified by the coordinates of its center. For U ⊆ D,
we write w(U) for

∑
d∈U wd.

Our algorithm uses a parameter μ < 1; we can set μ = 0.999. We partition
the plane into squares of side length μ. The square Sij , for i, j ∈ ZZ, contains all
points (x, y) with iμ ≤ x < (i + 1)μ and jμ ≤ y < (j + 1)μ.

For a square Sij that contains at least one disk center, let Dij be the set
of disks in D whose center is in Sij . Let N(Dij) denote the set of all disks in
D \ Dij that intersect a disk in Dij . We consider a subproblem to be solved

6 C. Ambühl et al.

for each square Sij that can be stated as follows: Find a minimum-weight set
of disks in Dij ∪ N(Dij) that dominates all disks in Dij . Let OPTij denote
an optimal solution to the subproblem for square Sij . In Section 3, we will
present an algorithm that outputs a solution Uij for the subproblem satisfying
w(Uij) ≤ 2 · w(OPTij). In the end, we output the union of all sets Uij that we
have computed. It is clear that this yields a dominating set.

Theorem 1. There is a constant-factor approximation algorithm for the mini-
mum-weight dominating set problem in unit disk graphs.

Proof. The algorithm described above outputs a dominating set U of weight at
most

∑
w(Uij). Here and in the following, the summation is over all squares Sij

that contain at least one disk center. As we will present a 2-approximation algo-
rithm to solve each subproblem in Section 3, we have w(Uij) ≤ 2 ·w(OPTij). Let
OPT denote an optimal dominating set for the whole instance. Let OPT[Sij] =
OPT∩ (Dij ∪N(Dij)). Note that OPT[Sij] is a feasible solution to the subprob-
lem for square Sij and therefore we have w(OPTij) ≤ w(OPT[Sij]).

We get w(U) ≤
∑

w(Uij) ≤ 2
∑

w(OPTij) ≤ 2
∑

w(OPT[Sij]). The sum∑
w(OPT[Sij]) adds the costs of solutions OPT[Sij] for all squares Sij that

contain at least one disk center. Note that a disk d in OPT can be in OPT[Sij]
only if its center is in Sij or it intersects a disk with center in Sij . Therefore,
the distance between the center of d and the square Sij is at most 2. Conse-
quently, there are only O(1/μ2) squares Sij such that d can be in OPT[Sij].
More precisely, all such squares must be fully contained in a disk of radius
2+
√

2μ around the center of d, and for μ = 0.999 that disk can contain at most
	(2+

√
2μ)2π/μ2
 = 36 such squares. This means that the number of times each

disk in OPT contributes its weight to
∑

w(OPT[Sij]) is bounded by 36. We get∑
w(OPT[Sij]) ≤ 36 · w(OPT) and, thus, w(U) ≤ 72 · w(OPT). ��

3 Solving the Subproblem for a Small Square

In this section we present a 2-approximation algorithm for the following problem:
Given a μ×μ square Sij , where μ < 1, and the set of disks Dij∪N(Dij), compute
a minimum-weight set of disks that dominates all disks in Dij .

Let OPTij denote the set of disks in an optimal solution for the problem. In
the following, we will often write that the algorithm “guesses” certain properties
of OPTij . Such guesses are to be interpreted as follows: The algorithm tries all
possible choices for the guess (there will be a polynomial number of such choices)
and computes a solution for each choice. In the end, the algorithm outputs the
solution of minimum weight among all solutions found in this way. Some guesses
may not lead to feasible solutions; such guesses are discarded. In the analysis,
we concentrate on the solution in which the algorithm makes the right guess
about OPTij . It then suffices to show that the solution the algorithm finds
for that guess is a constant-factor approximation of the optimum, because the
solution output by the algorithm in the end will be at least as good as the one it

Constant-Factor Approximation for MWCDS in Unit Disk Graphs 7

finds for that guess. Unfortunately, the running-time of the algorithm, although
polynomial, is quite large, since the algorithm must try all possibilities for the
many guesses it makes about the optimal solution.

First, the algorithm guesses the largest weight w of a disk in OPTij . Note
that there are at most n possible values for this guess (where n is the number of
disks in the instance). If there is a disk of weight at most w in Dij , the algorithm
simply outputs that disk as the solution (note that the disk has its center in Sij

and therefore dominates all other disks in Dij), and this solution is optimal.
If there is no disk of weight at most w in Dij , we know that OPTij consists
entirely of disks in N(Dij) of weight at most w. In this case, we first discard all
disks from N(Dij) that have weight larger than w and arrive at the following
problem: Find a set of disks of minimum weight from N(Dij) that dominates
all disks in Dij . A disk d1 from N(Dij) dominates a disk d2 from Dij if and
only if the distance of the centers of d1 and d2 is at most 2. Therefore, we can
increase the radius of the disks in N(Dij) from 1 to 2 and reduce the radius of
the disks in Dij from 1 to 0 and obtain an equivalent problem: If D′ denotes the
set containing the enlarged version of the disks in N(Dij) and P denotes the
set of centers of the disks in Dij , we need to find a minimum-weight subset of
the disks in D′ that covers all points in P . Furthermore, we can renormalize the
setting so that the disks in D′ have radius 1. The renormalized square S is now
a δ × δ square, with δ = μ/2 < 1/2. Therefore, the problem to be solved can be
stated as follows:

Disk cover in a small square: Given a set P of points in a δ × δ
square S, where δ < 1/2, and a set D′ of weighted unit disks, find a
minimum-weight subset of D′ that covers all points in P .

In the following subsection, we will present a 2-approximation algorithm for
this problem. In view of the discussion above, this implies that we have a 2-
approximation algorithm for the problem of computing a minimum-weight set
of disks that dominates all disks in Dij for a given μ×μ square Sij , and this is the
ingredient that we needed in the previous section to obtain the constant-factor
approximation algorithm for MWDS in unit disk graphs.

3.1 Algorithm for Disk Cover in a Small Square

We are given a set P of points in a δ × δ square S and a set D′ of n weighted
unit disks, and we want to find a minimum-weight subset of D′ that covers all
points in P . Let OPT′ denote a set of disks constituting an optimal solution to
this problem.

Let C be the area covered by the union of the disks in OPT′. A hole of OPT′

is defined to be a topological component of S \ C. Intuitively, if S was a glass
window and the disks in OPT′ were to cover parts of this window, the holes
would be the connected regions where one can still see through the window.

8 C. Ambühl et al.

UL

CL

LL LM LR

CR

URUM

Fig. 1. One-hole solution (left), many-hole solution (middle), naming of regions (right)

Definition 1. OPT′ is a one-hole solution if it has exactly one hole and each
disk in OPT′ forms part of the boundary of that hole (and that part consists of
more than 1 point). OPT′ is a many-hole solution if it has at least two holes.

Definition 1 is illustrated in Fig. 1. If OPT′ is neither a one-hole solution nor a
many-hole solution, it must be of one of the following types: Either OPT′ has no
hole at all, or it has one hole but not all disks in OPT′ form part of the boundary
of the hole. If OPT′ does not have a hole, we can delete one disk d from OPT′

(and remove all points in d from P) to obtain a solution with at least one hole.
If OPT′ has one hole but not all disks are on the boundary of the hole, let d′

be a disk that is not on the boundary of the hole. If we delete d′ from OPT′

(and the corresponding points from P), we have at least two holes and arrive at
a many-hole solution. Therefore, OPT′ can always be converted into a one-hole
or many-hole solution by deleting at most two disks.

The algorithm guesses whether OPT′ is a one-hole solution or a many-hole
solution. If OPT′ is neither of these, the algorithm also guesses this and addi-
tionally guesses the one or two disks that need to be removed from OPT′ (and
added to the solution computed by the algorithm) in order to obtain a one-hole
or many-hole solution. Hence, we can assume that OPT′ is a one-hole or many-
hole solution and that the algorithm has guessed correctly which of the two is
the case. In each of the two cases, we will encounter subproblems that can be
solved efficiently by dynamic programming, as stated in the following lemma.

Lemma 1. Let P be a set of points located in a strip between the horizontal
lines y = y1 and y = y2 for some y1 < y2. Let D be a set of weighted unit disks
with centers above the line y = y2 (upper disks) or below the line y = y1 (lower
disks). Furthermore, assume that the union of the disks in D contains all points
in P. Then a minimum-weight subset of D that covers all points in P can be
computed in polynomial time.

In the following, we show how to deal with the one-hole case and the many-hole
case.

One-Hole Solutions. Assume that OPT′ is a one-hole solution. The boundary
of the hole is formed by disks from OPT′ and, potentially, some parts from sides

Constant-Factor Approximation for MWCDS in Unit Disk Graphs 9

of the square S (we view the latter as special kinds of disks with weight 0 and
infinite radius, i.e., halfplanes, and do not treat them explicitly in the following).
All disks in OPT′ have their centers outside S. Using the lines that are the
extensions of the sides of S, we can partition the plane outside S into 8 regions
in the natural way (see also Fig. 1): upper left region (UL), upper middle region
(UM), upper right region (UR), central right region (CR), lower right region
(LR), lower middle region (LM), lower left region (LL), and central left region
(CL). The upper region (U) is the union of UL, UM and UR, and similarly for
the lower region (L).

If we follow the boundary of the hole in counterclockwise direction, we will
encounter disks with center in CL, then disks with center in L, then disks with
center in CR, then disks with center in U . The points on the boundary that are
in the intersection of two consecutive disks on the boundary are called corners.
Each corner is determined by two disks (the disks on whose boundaries it lies).

Among all corners that are determined by at least one disk whose center is
in CL, let p� denote the one with the smallest y-coordinate and let pu denote
the one with the largest y-coordinate. Let p′� and p′u be defined analogously with
respect to CR. (The case where no part of the boundary of the hole is created
by disks with center in CL or CR is easier and is not treated in detail here.) The
algorithm guesses the corners p�, pu, p′� and p′u and the pairs of disks determining
them. As there are only O(n2) pairs of disks, the number of potential guesses is
polynomial.

Let dL be the unit disk that has p� and pu on the boundary and has its center
to the left of the line p�pu. Note that in general dL is not a disk that is part
of the input of the problem. Let d� and du be the disks from OPT′ that have
their center in CL and contain p� and pu, respectively, on the boundary. Let x
be the intersection point of the boundaries of d� and du that is closer to S. Let
L be the connected region that is delineated by the boundary of dL between pu

and p�, and by the boundary of d� between x and p�, and by the boundary of
du between pu and x. See Fig. 2 (left) for an illustration.

Lemma 2. The only disks in OPT′ that intersect L have their center in CL or
in the union of UR, CR and LR. Furthermore, no disk from OPT′ with center
in CL can cover a point outside L that is not already covered by du or d�.

Proof. As pu and p� are on the boundary of the hole, no disk in OPT′ can
contain pu or p� in its interior. Hence, any disk d from OPT′ that intersects L
must either have its center to the left of the line p�pu and intersect the parts of
the boundaries of d� and du that define L, or it must have its center to the right
of the line p�pu and intersect the boundary of L twice on the part that is also a
boundary of dL. In the former case, the y-coordinate of the center of d must lie
between the y-coordinates of the centers of d� and du, and hence d must have its
center in CL. (To see this, consider the disk d′ that is obtained from d by shifting
it horizontally to the right until it first contains pu or p� on its boundary; observe
that the disk du can be rotated around pu until it becomes identical to d′, with
its center continuously moving downward; the same argument can be applied

10 C. Ambühl et al.

d�

dL

du

pu

x

p�

L

p�

du

d�

pu

x

dL

d

cL

c

Fig. 2. The region L is defined by parts of the boundaries of disk dL, drawn dashed,
and disks du and d� (left). A disk d with center not in CL from OPT′ intersecting L
must have its center in the cone of two halflines starting at the center cL of dL and
passing through pu and p�, respectively (right).

to the disk d� and shows that the center of d′ must have larger y-coordinate
than the center of d�. By the same argument, we also have that cL must lie in
CL.) In the latter case, the center c of d must lie in the cone of points between
the halflines starting at the center cL of dL and passing through p� and pu,
respectively, see Fig. 2 (right). We want to show that c cannot be in UM or LM.
Assume for a contradiction that c is in UM (the case for LM is similar). The
slope of the line connecting cL and pu is at most δ/

√
1− δ2. Therefore, the largest

y-coordinate of a point in the intersection of the cone and UM is bounded by
ypu + δ2/

√
1− δ2, so the distance between pu and any point in that intersection

is at most δ/
√

1− δ2. Hence, for δ <
√

2/2 (and we even have δ < 1/2), a unit
disk with center in that intersection must contain pu. Thus, c cannot be in UM,
as d would then contain pu in its interior. Similarly, we get that c cannot be in
LM. Furthermore, c clearly cannot be in UL or LL, as it must be to the right of
pu. Hence, we have shown that c must be in the union of UR, CR and LR.

We have shown that the only disks in OPT′ that intersect L have their center
in CL or in the union of UR, CR and LR. It remains to show that no disk from
OPT′ with center in CL can cover a point outside L that is not already covered
by du or d�. Let d′ be a disk from OPT′ with center in CL. All disks from OPT′

are on the boundary of the hole, and pu and p� are the topmost and lowest
corners, respectively, that are determined by at least one disk with center in CL.
Therefore, d′ must appear on the boundary of the hole between pu and p�. This
implies that d′ \ (du ∪ d�) consists of one region that is contained in L and a
second region that is outside the square S (and thus cannot contain any points
from P). This establishes the claim. ��

Similar to L, we can define a region R with respect to CR, p′� and p′u, and the
analogue of Lemma 2 holds for R.

Constant-Factor Approximation for MWCDS in Unit Disk Graphs 11

Let P ′ be the set of points that is obtained from P by removing the points
that are contained in one of the disks defining the four corner points guessed
by the algorithm. For the points in P ′ ∩ (L ∪ R), we can compute an optimal
disk cover using Lemma 1 (rotated by 90◦), since the points are contained in
the vertical strip containing S and the only disks that need to be considered
for covering them have their center to the left or to the right of the strip. The
remaining points in P ′ can only be covered by disks with center in U or in L
by OPT′, hence we can again compute an optimal disk cover for them using
Lemma 1. If we output the union of the two disk covers, we have computed a
2-approximation to the overall disk cover problem in this square.

Many-Hole Solutions. Now we consider the case that OPT′ is a many-hole
solution. There must be two disks d1, d2 ∈ OPT′ such that S \ (d1 ∪ d2) consists
of two disjoint regions and each of these two regions contains a hole of OPT′.
(As a special case, we could also have a single disk from OPT′ that intersects the
square in such a way that two holes are created.) We use a new coordinate system
in which the y-axis contains the centers c1 and c2 of d1 and d2, respectively, and
the intersection points of the boundaries of d1 and d2 are on the x-axis. Let b
be the smallest axis-parallel square containing the (rotated) square S. Let δ′ be
the side length of b. Note that δ′ ≤ δ

√
2 <

√
2/2. As for the one-hole case, we

partition the plane outside b into regions UL, UM, UR, CR, LR, LM, LL, CL,
and we define regions U and L as before.

The disks d1 and d2 create two holes in S; we refer to the left hole as LH,
and to the right hole as RH. Because OPT′ is a superset of {d1, d2}, OPT′ may
contain more than two holes, but all the holes in OPT′ are contained in either
LH or RH. We can show the following lemma.

Lemma 3. In OPT′, no disk with center in the union of UR, CR and LR (in
the union of UL, CL and LL) can intersect LH (RH).

Due to space restrictions, we give only an outline of our solution for the weighted
disk cover problem in the many-hole case: We can show that LH contains a region
L such that points in L can be covered only by disks with center in CL by OPT′.
Let P ′ ⊆ P be the points in LH that are not in L and are not already covered
by the disks the algorithm guesses to define L. We can then show that points
in P ′ can only be covered by disks with center in U or L. The same approach
is applied to RH. This breaks the problem into two independent subproblems:
covering points in L and in the corresponding region of RH using disks with
center in CL or CR, and covering the remaining points using disks with center
in U or L. Each of the two subproblems can be solved optimally by dynamic
programming (Lemma 1). Since the subproblems are independent, the union of
their optimal solutions gives an optimal solution to the disk cover problem in
the many-hole case.

In summary, we have shown that in both the one-hole case and the many-hole
case we can obtain a 2-approximation (in the many-hole case, even an optimal so-
lution) of the minimum-weight disk cover for the given δ × δ square S. Further-
more, all other cases (no holes, or one hole with not all disks on the boundary of the

12 C. Ambühl et al.

hole) can be reduced to one of these cases by guessing one or two disks in the op-
timal solution. Therefore, we obtain a 2-approximation algorithm for the problem
of computing a minimum-weight disk cover in a small square.

We remark that this result on disk cover in a small square also implies a
constant-factor approximation algorithm for the general weighted disk cover
problem with unit disks (i.e., given a set of points and a set of weighted unit
disks, find a minimum-weight set of disks that covers all the points): We can
simply partition the plane into δ × δ squares and compute an approximate disk
cover for each square. Then we output the union of all computed disk covers as
the solution. As a disk from the optimal solution can be used to cover points
in at most O(1/δ2) different δ × δ squares, we lose only a factor of O(1/δ2)
in the approximation ratio by solving the problem for each square separately.
Previously, constant-factor approximation algorithms were known only for the
unweighted case of the disk cover problem [4, 5].

4 Connecting the Dominating Set

In this section we consider the problem of adding disks to a given dominating
set in order to produce a connected dominating set. We present an algorithm
that solves this problem by adding disks of total weight at most O(w∗), where
w∗ denotes the optimal weight of a connected dominating set for the given set
of weighted disks. Note that the problem of connecting up a dominating set is a
special case of the node-weighted Steiner tree problem; for general graphs, the
best known approximation ratio for the latter problem is logarithmic in the size
of the graph [10].

Let D be a set of weighted unit disks, and let U ⊆ D be a dominating set. Let
G denote the unit disk graph corresponding to the disks in D, and assume that G
is connected (otherwise, G cannot have a connected dominating set). The vertex
set of a connected component of G[U] (the subgraph of G induced by U) is called
a cluster of U . We create an auxiliary graph H . The vertices of H correspond to
the clusters of U . For every path of length at most 3 in G that connects a vertex
in one cluster c1 of U to a vertex in another cluster c2 of U and whose one or
two internal vertices are not in U , we add an edge between c1 and c2 to H . The
weight of the edge is the sum of the weights of the disks corresponding to the
one or two internal vertices of the path. Note that H can have parallel edges.
Next, we compute a minimum spanning tree T in H . (The proof of the theorem
below shows that H is a connected graph.) Finally, we connect the dominating
set U by adding all disks that correspond to internal vertices of the paths in G
that correspond to the edges of T .

Theorem 2. Let D be a set of weighted disks and U be a dominating set. Let
w∗ be the weight of a minimum-weight connected dominating set for D. There
is an efficient algorithm that computes a set U ′ of disks such that U ∪ U ′ is a
connected dominating set and w(U ′) ≤ 17w∗.

Constant-Factor Approximation for MWCDS in Unit Disk Graphs 13

Proof. We show that the auxiliary graph H contains a spanning tree T ′ of weight
at most 17w∗. This implies that H is connected. Furthermore, the weight of the
set U ′ of disks that the algorithm adds to U is at most the weight of the minimum
spanning tree, and the weight of the minimum spanning tree is upper bounded
by the weight of T ′. Therefore, we get w(U ′) ≤ 17w∗.

It remains to show how to construct a spanning tree T ′ of H with weight at
most 17w∗. Let U∗ be an optimal connected dominating set, w(U∗) = w∗. Let
C be an arbitrary non-empty set of clusters of U , but not the set of all clusters
of U . Let C̄ be the set of the remaining clusters of U . We claim that G must
contain a path π from a vertex in some cluster in C to a vertex in some cluster
in C̄ such that π contains at most two internal vertices and has the property
that all its internal vertices are in U∗ \U . (Note that such a path π corresponds
to an edge in H .) To prove the claim, we argue as follows. Let x be an arbitrary
vertex in a cluster in C, and y an arbitrary vertex in a cluster in C̄. As U∗ is a
connected dominating set, there must be a path p in G from x to y all of whose
internal vertices are in U∗. Let x′ be the last vertex on p that is not in U and
that is dominated by a vertex x′′ in a cluster in C. Note that such a vertex x′

must exist. Furthermore, x′ or the vertex y′ after x′ on p must be dominated by
a vertex y′′ in a cluster in C̄. Therefore, we obtain the desired path as x′′, x′, y′′

or x′′, x′, y′, y′′.
Now we can create a spanning tree of H as follows. We start with a tree

consisting of a single vertex of H (corresponding to some cluster of U) and grow
the tree by repeatedly finding a path π in G that connects a vertex from a
cluster in the tree to a vertex in a cluster not in the tree and has the properties
discussed above. The claim above shows that such a path must exist. We can
thus grow the tree by adding the edge in H that corresponds to the path π. This
is repeated until we have a spanning tree T ′.

The weight of each edge in the spanning tree T ′ corresponds to the weight of
the internal vertices (which are in U∗) of a path of length at most 3 that connects
different clusters of U . Furthermore, a vertex (disk) d of U∗ can contribute to
at most 17 edges of H : Whenever d contributes to the weight of an edge, it is
an internal vertex of a path that connects two clusters of U whose closest disks
have (graph-theoretic) distance at most 2 from it. However, the set of disks at
distance at most 2 from d can contain at most 18 disjoint disks (see e.g. [17])
and therefore at most 18 disks from different clusters of U . As the spanning
tree can contain at most 17 edges between these 18 clusters, we obtain that d
contributes its weight to at most 17 edges of the spanning tree T ′. Consequently,
w(T ′) ≤ 17w∗. ��

Together with Theorem 1, we obtain the following corollary.

Corollary 1. There is a constant-factor approximation algorithm for the mini-
mum-weight connected dominating set problem in unit disk graphs.

The approximation ratio in Corollary 1 is at most 72 + 17 = 89.

14 C. Ambühl et al.

References

1. K. Alzoubi, P.-J. Wan, and O. Frieder. Message-optimal connected dominating
sets in mobile ad hoc networks. In Proceedings of the 3rd ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2002), pages
157–164, 2002.

2. C. Ambühl, T. Erlebach, M. Mihal’ák, and M. Nunkesser. Constant-factor ap-
proximation for minimum-weight (connected) dominating sets in unit disk graphs.
Research Report CS-06-008, Department of Computer Science, University of Le-
icester, June 2006.

3. B. S. Baker. Approximation algorithms for NP-complete problems on planar
graphs. Journal of the ACM, 41(1):153–180, 1994. Extended abstract published in
the proceedings of FOCS’83, pp. 265–273, 1983.

4. H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite VC-
dimension. Discrete & Computational Geometry, 14(4):463–479, 1995.

5. G. Calinescu, I. Mandoiu, P.-J. Wan, and A. Zelikovsky. Selecting forwarding
neighbors in wireless ad hoc networks. Mobile Networks and Applications, 9(2):101–
111, 2004.

6. X. Cheng, X. Huang, D. Li, W. Wu, and D.-Z. Du. A polynomial-time approxima-
tion scheme for the minimum-connected dominating set in ad hoc wireless networks.
Networks, 42(4):202–208, 2003.

7. B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete
Mathematics, 86:165–177, 1990.

8. U. Feige. A threshold of ln n for approximating set cover. In Proceedings of the
28th Annual ACM Symposium on Theory of Computing (STOC’96), pages 314–
318, 1996.

9. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the The-
ory of NP-Completeness. W. H. Freeman and Company, New York-San Francisco,
1979.

10. S. Guha and S. Khuller. Improved methods for approximating node weighted
Steiner trees and connected dominating sets. Information and Computation,
150(1):57–74, 1999.

11. D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM, 32(1):130–136, 1985.

12. H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz,
and R. E. Stearns. NC-Approximation schemes for NP- and PSPACE-hard prob-
lems for geometric graphs. Journal of Algorithms, 26(2):238–274, 1998.

13. D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing,
11(2):329–343, 1982.

14. M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple
heuristics for unit disk graphs. Networks, 25:59–68, 1995.

15. E. J. van Leeuwen. Approximation algorithms for unit disk graphs. In Proceedings
of the 31st International Workshop on Graph-Theoretic Concepts in Computer
Science (WG’05), LNCS 3787, pages 351–361, 2005.

16. V. V. Vazirani. Approximation Algorithms. Springer, 2001.
17. Y. Wang and X.-Y. Li. Distributed low-cost backbone formation for wireless ad

hoc networks. In Proceedings of the 6th ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc 2005), pages 2–13, 2005.

Approximating Precedence-Constrained Single
Machine Scheduling by Coloring

Christoph Ambühl1, Monaldo Mastrolilli2, and Ola Svensson2

1 University of Liverpool - Great Britain
christoph@csc.liv.ac.uk

2 IDSIA- Switzerland
{monaldo, ola}@idsia.ch

Abstract. This paper investigates the relationship between the dimen-
sion theory of partial orders and the problem of scheduling precedence-
constrained jobs on a single machine to minimize the weighted
completion time. Surprisingly, we show that the vertex cover graph as-
sociated to the scheduling problem is exactly the graph of incomparable
pairs defined in dimension theory. This equivalence gives new insights on
the structure of the problem and allows us to benefit from known results
in dimension theory. In particular, the vertex cover graph associated to
the scheduling problem can be colored efficiently with at most k col-
ors whenever the associated poset admits a polynomial time computable
k-realizer. Based on this approach, we derive new and better approxi-
mation algorithms for special classes of precedence constraints, including
convex bipartite and semi-orders, for which we give (1+ 1

3)-approximation
algorithms. Our technique also generalizes to a richer class of posets ob-
tained by lexicographic sum.

1 Introduction

We consider the problem of scheduling a set N = {1, . . . , n} of n jobs on a single
machine, which can process at most one job at a time. Each job j has a processing
timepj andaweightwj ,wherepj andwj arenonnegative integers.Weonly consider
non-preemptive schedules, in which all pj units of job j must be scheduled consec-
utively. A partially ordered set (or poset) is a structure P = (X, P) consisting of
a ground set X and a partial order, i.e. a reflexive, antisymmetric, and transitive
binary relation P on X . Jobs have precedence constraints between them that are
specified in the form of a poset P = (N, P), where (i, j) ∈ P (i = j) implies that
job i must be completed before job j can be started. The goal is to find a schedule
whichminimizes the sum

∑n
j=1 wjCj , whereCj is the time atwhich job j completes

in the given schedule. In standard scheduling notation (see e.g. Graham et al. [9]),
this problem is known as 1|prec|

∑
j wjCj .

The general version of 1|prec|
∑

j wjCj was shown to be strongly NP-hard
by Lawler [13] and Lenstra & Rinnooy Kan [14]. While currently no inap-
proximability result is known (other than that the problem does not admit
a fully polynomial time approximation scheme), there are several polynomial

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 15–26, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

16 C. Ambühl, M. Mastrolilli, and O. Svensson

time 2-approximation algorithms [17, 20, 10, 3, 2, 15, 1]. For the general version
of 1|prec|

∑
j wjCj , closing the approximability gap is considered a longstanding

open problem in scheduling theory (see e.g. [21]).
Due to this difficulty, more attention has recently been given to special classes

[24, 12, 4, 1]. With this aim, it is worth mentioning that Woeginger [24] proved
that the general case of 1|prec|

∑
j wjCj is not harder to approximate than

many fairly restricted special cases, among them the case where all job weights
are one. However, for a few relevant special posets with “nice” structural prop-
erties, one can obtain better approximation ratios than 2. For the special cases
of interval order and convex bipartite precedence constraints, Woeginger [24] de-
veloped polynomial time approximation algorithms with worst case performance
guarantee arbitrarily close to the golden ration 1

2 (1 +
√

5) ≈ 1.61803. Recently,
Ambühl & Mastrolilli [1] settled an open problem first raised by Chudak &
Hochbaum [3] and whose answer was conjectured by Correa & Schulz [4]. The
results in [1, 4] imply the existence of an exact polynomial time algorithm for the
special case of two-dimensional partial orders, improving on previously known
approximation algorithms [12, 4], and generalizing Lawler’s exact algorithm [13]
for series-parallel orders.

Moreover, the most significant implication in [1] is that problem
1|prec|

∑
j wjCj is a special case of the weighted vertex cover problem in an

undirected graph GCS(P) (see [1, 4] and Section 2) that has a node for each or-
dered pair (i, j) of jobs i, j ∈ N with (i, j) ∈ P and (j, i) ∈ P (we say i and j are
incomparable and write i ‖ j in P). By using this relationship several previous
results for the scheduling problem can be explained, and in some cases improved,
by means of the vertex cover theory.

Dimension is one of the most heavily studied parameters of partial orders, and
many beautiful results have been obtained (see e.g. [22]). Dushnik & Miller [5]
introduced dimension as a parameter of partial orders in 1941. Since that time,
many theorems have been developed. The dimension of a partial order P is the
minimum number of linear extensions which yield P as their intersection. More
precisely, if P and Q are two partial orders on the same ground set, we say Q is
an extension of P if P ⊆ Q, and we call Q a linear extension of P if Q is a linear
order and an extension of P . A realizer R of P is a family of linear extensions
of P such that P = ∩R, i.e., for all x, y ∈ X , (x, y) ∈ P if and only if (x, y) ∈ L
for every L ∈ R. The dimension of P, denoted by dim(P) or dim(X, P), is
the smallest k such that there exists a realizer R of P with cardinality k, i.e.,
|R| = k (R is said to be a k-realizer). Obviously, dim(X, P) = 1 if and only if
P is a linear order. With any finite poset P, we can associate a hypergraph HP
so that the dimension of P is equal to the chromatic number of HP [7, 22]. The
vertices of HP are the incomparable pairs in P , and this hypergraph is called
the hypergraph of incomparable pairs. The edges of size 2 in HP determine an
ordinary graph GP, which is called the graph of incomparable pairs. Trotter [22]
is a good source for further results involving dimension.

In this paper we continue to investigate the structure of problem
1|prec|

∑
j wjCj . We point out an interesting relationship between the dimension

Approximating Precedence-Constrained Single Machine Scheduling 17

theory of partial orders and problem 1|prec|
∑

j wjCj . More specifically, in Sec-
tion 3 we show that the vertex cover graph GCS(P) associated to
1|prec|

∑
j wjCj is exactly the graph of incomparable pairs GP in dimension the-

ory [7, 22]. This equivalence allows us to benefit from dimension theory. In partic-
ular, the chromatic number of GCS(P) is at most k, whenever the dimension of
the poset at hand is (at most) k. Hochbaum [11] showed that if a given graph for
the vertex cover problem can be colored by using k colors in polynomial time, then
there exists a (2− 2/k)-approximation algorithm for the corresponding weighted
vertex cover problem. It follows that there exists a (2 − 2/k)-approximation al-
gorithm for 1|prec|

∑
j wjCj for all those special classes of precedence constraints

that admit a polynomial time computable k-realizer.
By following this general approach, we obtain approximation algorithms for

relevant special classes of precedence constraints, such as1 convex bipartite prece-
dence constraints (Sections 4) and semi-orders (Section 5), for which we ex-
hibit (1 + 1

3)-approximation algorithms that improve previous results by Woeg-
inger [24]. However, the technique in [24] also extends to the case of interval
order precedence constraints, for which we prove that our approach cannot yield
a better approximation ratio (Section 5).

Our technique also generalizes to a richer class of posets obtained by lexico-
graphic sum. Indeed we show, in Section 6, that the number of colors needed to
color the graph of incomparable pairs does not increase under the lexicographic
sum. In Section 7 we end up by discussing further posets and pointing out some
related interesting open problems.

2 Preliminaries

Problem 1|prec|
∑

j wjCj was recently proved [1] to be a special case of minimum
weighted vertex cover: Given a graph G = (V, E) with weights wi on the
vertices, find a subset V ′ ⊆ V , minimizing the objective function

∑
i∈V ′ wi, such

that for each edge (u, v) ∈ E, at least one of u and v belongs to V ′.
This result was achieved by investigating the relationship between several dif-

ferent linear programming formulations and relaxations [18, 3, 4] of
1|prec|

∑
j wjCj , using linear ordering variables δij . The variable δij has value 1

if job i precedes job j in the corresponding schedule, and 0 otherwise. Correa &
Schulz [4] proposed the following relaxation of 1|prec|

∑
j wjCj :

[CS-IP] min
∑
i‖j

δijpiwj+
∑
j∈N

pjwj +
∑

(i,j)∈P

piwj

s.t. δij + δji ≥ 1 i ‖ j, (1)
δik + δkj ≥ 1 (i, j) ∈ P, i ‖ k and k ‖ j, (2)
δi� + δkj ≥ 1 (i, j), (k, �) ∈ P, i ‖ � and j ‖ k, (3)
δij ∈ {0, 1} i ‖ j.

1 Further special classes of posets can be found in [16, 22].

18 C. Ambühl, M. Mastrolilli, and O. Svensson

Note that [CS-IP] can be interpreted as the minimum weighted vertex cover
in an undirected graph GCS(P), that has a node for each incomparable pair
(i, j) of jobs. Two nodes (i, j) and (k, �) are adjacent if either j = k and i = �,
or j = k and (i, �) ∈ P , or (i, �), (k, j) ∈ P .

Correa & Schulz [4] conjectured that an optimal solution to 1|prec|
∑

j wjCj

gives an optimal solution to [CS-IP] as well. The conjecture in [4] was re-
cently solved by Ambühl & Mastrolilli [1], who proved that any feasible so-
lution to [CS-IP] can be turned in polynomial time into a feasible solution to
1|prec|

∑
j wjCj without deteriorating the objective value. It follows that prob-

lem 1|prec|
∑

j wjCj is a special case of the weighted vertex cover problem in the
graph GCS(P). We refer the interested reader to [1, 4] for a more comprehensive
discussion.

We already mentioned that Hochbaum [11] gave a (2 − 2/k)-approximation
algorithm for the weighted vertex cover problem, whenever the vertex cover
graph is k-colorable in polynomial time. Putting everything together we come
up with the following result.

Theorem 1. [1, 4, 11] Problem 1|prec|
∑

j wjCj, for which the graph GCS(P)
is k-colorable in polynomial time, has a polynomial time (2−2/k)-approximation
algorithm.

3 Posets: Dimension and Coloring

The aim of this section is to point out the connection between 1|prec|
∑

j wjCj

and the dimension theory of partial orders. For this purpose, we need some
preliminary definitions.

Let P = (N, P) be a poset. We say that the partial order P d = {(x, y) :
(y, x) ∈ P} is the dual of P . An alternating cycle in (N, P) is a collection
of incomparable pairs {(x1, y1), (x2, y2), . . . , (xk, yk)} such that (yi, xi+1) ∈ P
for all i (modulo k). We associate with P a hypergraph HP = (V, E) defined
as follows. The vertex set V of HP is the set of incomparable pairs inc(P) =
{(x, y) ∈ X × X : x||y in P}, and the edge set E consists of those subsets
of V whose duals form alternating cycles. Let GP denote the ordinary graph
determined by all edges of size 2 in HP. In the literature [22, 7], HP and GP are
referred to as the hypergraph and the graph of incomparable pairs, respectively,
and they play an important role in the understanding of dimension. We recall
that the chromatic number of a hypergraph H = (V, E), denoted χ(H), is the
least positive integer t for which there is a function f : V → [t] so that there is
no α ∈ [t] for which there is an edge E ∈ E with f(x) = α for every x ∈ E. The
following result associates a poset P to HP so that the dimension of P is the
chromatic number of HP.

Proposition 1 ([22, 7]). Let P = (N, P) be a poset, that is not a linear order.
Then dim(P) = χ(HP) ≥ χ(GP).

Given a k-realizer R = {L1, L2, . . . , Lk} of P, we can easily color HP (and GP)
with k colors: color vertex (i, j) with some color c whenever (j, i) ∈ Lc. Observe

Approximating Precedence-Constrained Single Machine Scheduling 19

that if all nodes of a hyperedge are colored by the same color c then the linear
extension Lc contains an alternating cycle, which is impossible.

The following proposition is immediate and it can be easily checked. It estab-
lishes a strong relationship between the dimension theory and 1|prec|

∑
j wjCj .

Proposition 2. The vertex cover graph GCS(P)associated to 1|prec|
∑

j wjCj

and the graph of incomparable pairs GP coincide.

A large amount of combinatorial theory exists for posets. Tapping this source
can help in designing approximation algorithms.

Theorem 2 ([22, 7]). Let P = (N, P) be a poset, that is not a linear order.
Then the graph GP is bipartite if and only if dim(P) = 2.

Theorem 2 is a well-known result in dimension theory. Correa & Schulz [4] redis-
covered it for the vertex cover graph GCS(P), unaware of the connection pointed
out by Proposition 2. What is more, the following theorem follows easily from
Theorem 1 and Propositions 2 and 1.

Theorem 3. Problem 1|prec|
∑

j wjCj, whenever precedence constraints are
given by a k-realizer, has a polynomial time (2− 2

k)-approximation algorithm.

A natural question is for which posets one can construct a k-realizer in polyno-
mial time. In the general case, Yannakakis [25] proved that determining whether
the dimension of a poset is at most k is NP-complete for every k ≥ 3. How-
ever, for several special cases, including convex bipartite orders (Section 4) and
semi-orders (Section 5), a minimal realizer can be computed in polynomial time.

Finally, by Proposition 1, we remark that dim(P) and χ(GP) are, in general,
not the same (see [7] for an example where dim(P) is exponentially larger than
χ(GP)). However, it is an immediate consequence of Theorem 2 that dim(P) =
χ(GP) when dim(P) = 3. Therefore, a 3-realizer for a 3-dimensional partial
order P (as in Sections 4 and 5) immediately gives an optimal coloring for GP.

4 Convex Bipartite Precedence Constraints

In this section we consider 1|prec|
∑

j wjCj for which the precedence constraints
form a so called convex bipartite order. For this class of partial orders, we show
how to construct a realizer of size 3 in polynomial time. By Theorem 3, this
gives a (1 + 1

3)-approximation algorithm.
A convex bipartite order P = (N = J− ∪ J+, P) is defined as follows.

1. The set of jobs are divided into two disjoint sets J− = {j1, . . . ja} and J+ =
{ja+1, . . . , jn}, the minus-jobs and plus-jobs, respectively.

2. For every k = a+1, . . . , n there are two indices l(k) and r(k) with 1 ≤ l(k) ≤
r(k) ≤ a such that (ji, jk) ∈ P if and only if l(k) ≤ i ≤ r(k) (bipartiteness
and convexity).

20 C. Ambühl, M. Mastrolilli, and O. Svensson

It is not hard to check that convex bipartite orders can be recognized in
polynomial time. Moreover, the class of convex bipartite orders forms a proper
subset of the class of general bipartite orders, and a proper superset of the class
of strong bipartite orders [16]. Lemma 3 states that the class of convex bipartite
orders has dimension ≤ 3. This is indeed a tight bound, since a bipartite order P
is 2-dimensional if and only if it is a strong bipartite order [16]. Finally, we ob-
serve that 1|prec|

∑
j wjCj with strong bipartite orders is solvable in polynomial

time [1, 4, 16].
In the subsequent, we sometimes stress that a job ji is a plus- or minus-job by

writing j+
i and j−i , respectively. We also assume, without loss of generality, that

the plus-jobs are numbered such that i < j if and only if l(i) ≤ l(j) (breaking
ties arbitrarily), where ji, jj ∈ J+.

Given a convex bipartite poset P = (N, P), we partition its incomparable
pairs into three sets E1, E2, and E3 (also depicted in Fig. 1). A pair of incom-
parable jobs (ji, jj) ∈ inc(P) is a member of

E1 if i > j and ji, jj ∈ J−; else if i < j and ji, jj ∈ J+; else if ji ∈ J− and
jj ∈ J+.

E2 if i < j and ji, jj ∈ J−; else if ji ∈ J+, jj ∈ J− and there exists a k > i
such that (jj , jk) ∈ P .

E3 if i > j and ji, jj ∈ J+; else if ji ∈ J+, jj ∈ J− and (jj , jk) ∈ P for all
k > i.

J− J− J− J+J+J+
E1 E2 E3

ja

jb

jc

jd
ja ja

jb

jd
jd

jc jc

jeje
je

Fig. 1. The round and square nodes correspond to minus-jobs and plus-jobs, respec-
tively. Bold edges correspond to precedence constrains, whereas the other edges are
between incomparable jobs. In this example we assume that a < b and c < d < e.

The following lemma is a direct consequence of the definition of E1, E2, and E3.

Lemma 1. Let P be a convex bipartite order then

1. The sets E1, E2, and E3 form a partition of inc(P);
2. For every (i, j) ∈ inc(P), if (i, j) ∈ Ek then (j, i) ∈ Ek, where k ∈ {1, 2, 3}.

Lemma 2. Let Ē1 = E1 ∪ P , Ē2 = E2 ∪ P , and Ē3 = E3 ∪ P . Then Ē1, Ē2,
and Ē3 are extensions of P .

Approximating Precedence-Constrained Single Machine Scheduling 21

Proof. By the definition of Ēi, it follows that if (ji, jj) ∈ P then (ji, jj) ∈ Ēi,
where i = 1, 2, 3. Moreover, it is easy to see (Fig. 1) that the sets Ē1 and Ē3 do
not contain cycles, i.e., are extensions of P .

Now suppose Ē2 contains an alternating cycle C, i.e., it is a non valid exten-
sion. By the definition of E2 we have C ∩ P = ∅ and thus C ∩ (J+ × J−) = ∅.
Let j−i ∈ J− be the minus-job with largest index in the cycle, i.e., there does
not exist a k > i such that jk ∈ J− is part of the cycle. Then (j−i , j+

j) ∈ P ∩ C

and (j+
j , j−m) ∈ C for some jobs jj ∈ J+ and jm ∈ J−, where m < i. However,

this implies that there exists an n > j such that (j−m, j+
n) ∈ P (recall the defini-

tion of E2). Together with convexity and the numbering of plus-jobs this implies
(j−m, j+

j) ∈ P , which contradicts the existence of (j+
j , j−m) ∈ C. ��

Let L1, L2, and L3 be any linear extensions of Ē1, Ē2, and Ē3, respectively.
That R = {L1, L2, L3} is a realizer follows from the facts that all incomparable
pairs are reversed (Lemma 1), and that Ē1, Ē2, and Ē3 are valid extensions
of P (Lemma 2). Furthermore, all steps involved in creating R can clearly be
accomplished in polynomial time.

Lemma 3. Given a convex bipartite order P = (N,P), a realizer of size three
can be computed in polynomial time.

Theorem 3 and Lemma 3 give us the following result.

Theorem 4. Problem 1|prec|
∑

j wjCj for which the precedence constraints
form a convex bipartite order has a polynomial time (1+ 1/3)-approximation
algorithm.

5 Interval Orders

A poset P = (N,P) is an interval order [16, 22, 23] if there is a function I
assigning to each point x ∈ N a closed interval I(x) = Ix = [ax, bx] of the
real line R so that (x, y) ∈ P, x = y if and only if bx < ay in R. The function
I is called an interval representation of the poset P. Interval orders can be
recognized in polynomial time and an interval representation can be computed
in O(n2) time [16].

The best known approximation algorithm for 1|prec|
∑

j wjCj with interval
order precedence constraints is due to Woeginger [24], who gave an (≈ 1.61803)-
approximation algorithm. We observe that this ratio can be improved to (1+ 1

3)
in the special case of semi-order precedence constraints. Unfortunately, we show
that our techniques do not generalize to interval orders.

5.1 Approximating Semi-orders

A semi-order, also called unit interval order, has a similar definition as interval
orders, but the function I is restricted to only assign unit intervals, i.e., I(x) =
[ax, ax +1]. Semi-orders can be recognized in O(n2) time [16, 22]. Moreover, Rabi-
nowitz proved, by constructing a realizer, that the dimension of semi-orders is at

22 C. Ambühl, M. Mastrolilli, and O. Svensson

most three [19, 22]. The constructive proof can easily be turned into a polynomial
algorithm and together with Theorem 3, we have the following theorem.

Theorem 5. Problem 1|prec|
∑

j wjCj for which the precedence constraints
form a semi-order has a polynomial time (1+ 1/3)-approximation algorithm.

5.2 Coloring Interval Orders

For 1|prec|
∑

j wjCj with interval precedence constraints, one cannot obtain a
better than 2-approximation by using our techniques. Indeed we exhibit interval
orders where the associated graphs of incomparable pairs have arbitrarily large
chromatic number. To prove this, we introduce the canonical interval orders. For
an integer n ≥ 2, let In denote the interval order determined by the set of all
closed intervals with distinct integer end points from [n]. We will find it conve-
nient to view the elements of In as 2-element subsets of [n] with ({i1, i2}, {i3, i4})
in In if and only if i2 < i3 in R or {i1, i2} = {i3, i4}. The family {In : n ≥ 2} is
called the canonical interval orders [23].

Theorem 6. For any integer k, there exists an integer n0 so that if n ≥ n0,
then the chromatic number χ(GIn) is larger than k.

Proof. The chromatic number χ(GIn) is clearly a non-decreasing function of n.
We assume that χ(GIn) ≤ k for all n ≥ 2 and obtain a contradiction when n is
sufficiently large.

Let the map ϕ :
(

[n]
3

)
→ {1, 2, . . . , k} denote a coloring of the 3-element

subsets of [n]. Note that any coloring of GIn , defines the map ϕ, by letting
ϕ({i, j, k}) equal the coloring of the vertex ({i, j},{j, k}) 2 in GIn .

Let n0 equal the Ramsey number R(3 : h1, h2, h3 . . . , hk), where h1 =
h2 = · · · = hk = 4. Now pick n to be greater or equal to n0 and hence |[n]| ≥ n0.
Consider any coloring of GIn and the corresponding map ϕ. By Ramsey’s The-
orem [22], there exists a subset H of [n] with |H | ≥ 4 so that ϕ(A) = c for
every 3-element subset A of H . Consider {i, j, k, l} ⊆ H , where i < j < k < l.
We know that ϕ({i, j, k}) = c and ϕ({j, k, l}) = c. However, this implies that
the adjacent vertices ({i, j},{j, k}) and ({j, k},{k, l}) are colored with the same
color. The vertices are adjacent because {({j, k}, {i, j}), ({k, l}, {j, k})} forms an
alternating cycle.

Thus, for any k-coloring, we have two adjacent nodes in GIn , which are colored
by the same color. This contradicts the existence of a valid k-coloring for GIn

when n ≥ n0. ��

6 Coloring Lexicographic Sums

So far, we have dealt with some classes of ordered sets and obtained approxima-
tion algorithms by coloring. In this section we will ask ourselves how we can use
2 Note that we can assume without loss of generality that i < j < k.

Approximating Precedence-Constrained Single Machine Scheduling 23

existing posets to build new ordered sets for which the graph of incomparable
pairs is still easily colorable. The construction we use here, lexicographic sums,
comes from a very simple pictorial idea (see [22] for a more comprehensive dis-
cussion). Take a poset P = (X,P) and replace each of its points x ∈ X with an
ordered set Qx, the module, such that the points in the module have the same
relation to points outside it. A more formal definition follows.

Let P = (X,P) be a poset, and let F = {Qx = (Yx, Qx) : x ∈ X} be a family
of posets indexed by the elements of X. Define the lexicographic sum of F
over P, denoted

∑
x∈P F , as the poset S = (Z, S) where Z = {zxy : x ∈ X, y ∈

Yx} and (zx1y1 , zx2y2) ∈ S if and only if both x1 = x2 and (y1, y2) ∈ Qx1 , or
(x1, x2) ∈ P (where x1 = x2).

We observe that the resulting class of posets will be a new, larger class than
its modules. For example, even if P and all posets in F are semi-orders, the
lexicographic sum

∑
x∈P F need not be an interval order: the two-element chain

and the two-element antichain both carry semi-orders; Yet the lexicographic sum
of two two-element chains over a two-element antichain is the forbidden poset
for interval orders [22]. As another example, the lexicographic sum of any 3-
irreducible convex bipartite poset and any non-bipartite semiorder poset over a
two-element antichain is a poset that is none of the poset previously considered.

A natural question to ask is of course how approximation behaves under
lexicographic constructions. With this aim, we prove that the number of col-
ors needed to color the graph of incomparable pairs does not increase under
the lexicographic sum. We remark that Hiraguchi (see e.g. [22]) proved that
the dimension is “preserved” during lexicographic sum, i.e. dim

(∑
x∈P F

)
=

max{dim(P),max{dim(Qx) : x ∈ X}}. However, by Proposition 1 we know
that dim(P) and χ(GP) are, in general, not the same. This motivates the fol-
lowing result.

Theorem 7. Let P = (X,P) be a poset and let F = {Qx = (Yx, Qx) : x ∈ X}
be a family of posets. Assume that for each i ∈ P, where P = {P} ∪ F , the
graph of incomparable pairs Gi can be colored with ki colors. Then the graph of
incomparable pairs GS of the lexicographic sum S =

∑
x∈P F can be colored with

maxi∈P{ki} colors.

Proof. For every i ∈ P , let Ci be a valid vertex coloring of graph Gi = (Vi, Ei)
that uses ki colors, i.e. a map Ci : Vi → {1, . . . , ki} such that Ci(u) = Ci(w)
whenever u and w are adjacent. Let (zai, zbj) be any incomparable pair of GS

and consider the following vertex coloring of GS:

C(zai, zbj) :=
{

CP(a, b) if a = b;
CQa(i, j) otherwise; for all (zai, zbj) ∈ inc(S). (4)

The claim follows by showing that (4) is a valid coloring of GS. With this aim it is
sufficient to show that for any two adjacent incomparable pairs, namely (zai, zbj)
and (zck, zd�), we always have C(zai, zbj) = C(zck, zd�). Note that (zai, zd�) ∈ P
and (zck, zbj) ∈ P , since (zai, zbj) and (zck, zd�) are assumed to be adjacent. We
will consider two alternative cases: either we have a = d and b = c, or at least

24 C. Ambühl, M. Mastrolilli, and O. Svensson

one of the previous two conditions is not satisfied, say a = d, without loss of
generality.

(i) (a = d and b = c) If a = b then (i, j) and (k, �) are adjacent in GQa , and
C(zai, zbj) = CQa(i, j) and C(zck, zd�) = CQa(k, �). Otherwise a = b, and
C(zai, zbj) = CP(a, b) and C(zck, zd�) = CP(b, a). The claim follows since
CQa and CP are a valid vertex coloring of GQa and GP, respectively.

(ii) (a = d) We start observing that b ∈ {a, d} by the lexicographic construc-
tion. Indeed, by contradiction, if a = b then (zbj , zd�) ∈ P and this, to-
gether with (zck, zbj) ∈ P , implies (zck, zd�) ∈ P ; a contradiction since
(zck, zd�) ∈ inc(S). Moreover, if b = d then (zai, zbj) ∈ P , again a con-
tradiction since (zai, zbj) ∈ inc(S). Similarly, we can prove that c ∈ {a, d}.
It follows that C(zai, zbj) = CP(a, b) and C(zck, zd�) = CP(c, d). Moreover,
since a = d we have (a, d) ∈ P . Finally, observe that either b = c or (c, b) ∈ P
and in both cases CP(a, b) = CP(c, d), and the claim follows. ��

A lexicographic sum
∑

x∈P F is trivial if either P has only one point, or every
poset in F is a one point poset; otherwise the sum is non-trivial. A poset is
decomposable if it is isomorphic to a non trivial lexicographic sum; otherwise it
is indecomposable. A poset can be decomposed into indecomposable posets in
O(n2) time [16] and by Theorem 7, when coloring, we can restrict our attention
on indecomposable posets.

7 Discussion and Open Problems

Semi-Order Dimension. The semi-order dimension of a poset P = (X,P),
denoted dimS(P), is the smallest k such that there exists k semi-order extensions
of P which realize P [6]. Since a linear extension is a semi-order and every semi-
order has at most dimension 3 it follows that dimS(P) ≤ dim(P) ≤ 3 ·dimS(P).

Proposition 3. Problem 1|prec|
∑

j wjCj , where precedence constraints are
given as a semi-order realizer of size k, has a polynomial time (2 − 2

3k)-
approximation algorithm.

Recognizing posets with interval dimension 2 can be computed in time complex-
ity O(n2) [22]. The complexity of recognizing posets with semi-order dimension
2 is not known. A polynomial constructive algorithm (constructs the semi-order
realizer) would imply a (1 + 2

3)-approximation algorithm for 1|prec|
∑

j wjCj

when precedence constraints form a poset with semi-order dimension at most 2.
The class of semi-order dimension 2 posets is a proper superclass of the class of
semi-orders and it is not contained in the class of interval orders.

Planar Posets. A poset is planar if its Hasse diagram [22] can be drawn without
edge crossings. Our interest in planar posets stems from the fact that a planar
poset P = (X,P) with a greatest or least element has at most dimension 3 [22].
Even though it is NP-complete to recognize if a given partial order is planar [8],
we can construct a realizer of size 3 of P in polynomial time if the planar Hasse
diagram is given as input [22].

Approximating Precedence-Constrained Single Machine Scheduling 25

Proposition 4. Problem 1|prec|
∑

j wjCj , where precedence constraints are
given as a planar Hasse diagram with a greatest or least element, has a polyno-
mial time (1+1/3)-approximation algorithm.

We also note that planar posets with a greatest and least element have at most
dimension two. As a consequence they can be recognized in polynomial time
and 1|prec|

∑
j wjCj with precedence constraints of this type can be solved in

polynomial time [1, 4]. The situation for planar posets without greatest or least
element is more complex, because they can possess arbitrary high dimension [22].

Dimension Approximation. Finally, we remark that the complexity of com-
puting a realizer of a poset is crucial for our approach. At the time being it is an
open problem if there is a constant c such that for any partial order of dimension
k ≥ 3, it is possible to construct a realizer of size at most c ·k in polynomial time.
Any results on this problem would be interesting for the scheduling problem as
well as for the dimension theory.

Acknowledgements

The authors thank Nikos Mutsanas for useful comments. This research is sup-
ported by Swiss National Science Foundation project 200021-104017/1, “Power
Aware Computing”, and by the Swiss National Science Foundation project
200020-109854, “Approximation Algorithms for Machine scheduling Through
Theory and Experiments II”.

References

1. C. Ambühl and M. Mastrolilli. Single machine precedence constrained scheduling
is a vertex cover problem. In Proceedings of the 14th Annual European Symposium
on Algorithms (ESA), to appear, 2006.

2. C. Chekuri and R. Motwani. Precedence constrained scheduling to minimize sum
of weighted completion times on a single machine. Discrete Applied Mathematics,
98(1-2):29–38, 1999.

3. F. A. Chudak and D. S. Hochbaum. A half-integral linear programming relax-
ation for scheduling precedence-constrained jobs on a single machine. Operations
Research Letters, 25:199–204, 1999.

4. J. R. Correa and A. S. Schulz. Single machine scheduling with precedence con-
straints. Mathematics of Operations Research, 30(4):1005–1021, 2005. Extended
abstract in Proceedings of the 10th Conference on Integer Programming and Com-
binatorial Optimization (IPCO 2004), pages 283–297.

5. B. Dushnik and E. Miller. Partially ordered sets. American Journal of Mathemat-
ics, 63:600–610, 1941.

6. S. Felsner and R. Möhring. Semi order dimension two is a comparability invariant.
Order, (15):385–390, 1998.

7. S. Felsner and W. T. Trotter. Dimension, graph and hypergraph coloring. Order,
17(2):167–177, 2000.

26 C. Ambühl, M. Mastrolilli, and O. Svensson

8. A. Garg and R. Tamassia. On the computational complexity of upward and recti-
linear planarity testing. SIAM Journal on Computing, 31(2):601–625, 2002.

9. R. Graham, E. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: A survey. In Annals
of Discrete Mathematics, volume 5, pages 287–326. North–Holland, 1979.

10. L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize av-
erage completion time: off-line and on-line algorithms. Mathematics of Operations
Research, 22:513–544, 1997.

11. D. S. Hochbaum. Efficient bounds for the stable set, vertex cover and set packing
problems. Discrete Applied Mathematics, 6:243–254, 1983.

12. S. G. Kolliopoulos and G. Steiner. Partially-ordered knapsack and applications to
scheduling. In Proceedings of the 10th Annual European Symposium on Algorithms
(ESA), pages 612–624, 2002.

13. E. L. Lawler. Sequencing jobs to minimize total weighted completion time subject
to precedence constraints. Annals of Discrete Mathematics, 2:75–90, 1978.

14. J. K. Lenstra and A. H. G. Rinnooy Kan. The complexity of scheduling under
precedence constraints. Operations Research, 26:22–35, 1978.

15. F. Margot, M. Queyranne, and Y. Wang. Decompositions, network flows and a
precedence constrained single machine scheduling problem. Operations Research,
51(6):981–992, 2003.

16. R. H. Möhring. Computationally tractable classes of ordered sets. In I. Rival,
editor, Algorithms and Order, pages 105–193. Kluwer Academic, 1989.

17. N. N. Pisaruk. A fully combinatorial 2-approximation algorithm for precedence-
constrained scheduling a single machine to minimize average weighted completion
time. Discrete Applied Mathematics, 131(3):655–663, 2003.

18. C. N. Potts. An algorithm for the single machine sequencing problem with prece-
dence constraints. Mathematical Programming Study, 13:78–87, 1980.

19. I. Rabinovitch. The dimension of semiorders. Journal of Combinatorial Theory,
Series A(25):50–61, 1978.

20. A. S. Schulz. Scheduling to minimize total weighted completion time: Performance
guarantees of LP-based heuristics and lower bounds. In Proceedings of the 5th Con-
ference on Integer Programming and Combinatorial Optimization (IPCO), pages
301–315, 1996.

21. P. Schuurman and G. J. Woeginger. Polynomial time approximation algorithms
for machine scheduling: ten open problems. Journal of Scheduling, 2(5):203–213,
1999.

22. W. T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory.
Johns Hopkins Series in the Mathematical Sciences. The Johns Hopkins University
Press, 1992.

23. W. T. Trotter. New perspectives on interval orders and interval graphs. In R. A.
Bailey, editor, Surveys in Combinatorics, number 241 in Mathematical Society
Lecture Note Series, pages 237–286, London, 1997.

24. G. J. Woeginger. On the approximability of average completion time scheduling
under precedence constraints. Discrete Applied Mathematics, 131(1):237–252, 2003.

25. M. Yannakakis. On the complexity of partial order dimension problem. SIAM
Journal on Algebraic and Discrete Methods, 22(3):351–358, 1982.

Minimizing Setup and Beam-On Times in
Radiation Therapy

Nikhil Bansal1, Don Coppersmith2,�, and Baruch Schieber1

1 IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
{nikhil, sbar}@us.ibm.com

2 IDA Center for Communications Research, 805 Bunn Drive, Princeton, NJ 08540
don.coppersmith@idaccr.org

Abstract. Radiation therapy is one of the commonly used cancer ther-
apies. The radiation treatment poses a tuning problem: it needs to be
effective enough to destroy the tumor, but it should maintain the func-
tionality of the organs close to the tumor. Towards this goal the design
of a radiation treatment has to be customized for each patient. Part
of this design are intensity matrices that define the radiation dosage in
a discretization of the beam head. To minimize the treatment time of
a patient the beam-on time and the setup time need to be minimized.
For a given row of the intensity matrix, the minimum beam-on time is
equivalent to the minimum number of binary vectors with the consecu-
tive “1”s property that sum to this row, and the minimum setup time is
equivalent to the minimum number of distinct vectors in a set of binary
vectors with the consecutive “1”s property that sum to this row. We give
a simple linear time algorithm to compute the minimum beam-on time.
We prove that the minimum setup time problem is APX-hard and give
approximation algorithms for it using a duality property. For the general
case, we give a 24

13 approximation algorithm. For unimodal rows, we give
a 9

7 approximation algorithm. We also consider other variants for which
better approximation ratios exist.

1 Introduction

Radiation therapy is one of the commonly used cancer therapies. It has been
shown to be effective, especially in cases where the tumor is localized and metas-
tases have not yet started to form. The radiation treatment poses a tuning prob-
lem: the radiation needs to be effective enough to destroy the tumor, but it
should maintain the functionality of the organs close to the tumor (organs at
risk). Towards this goal the design of a radiation treatment has to be customized
for each patient. This design is done using computer tomography that detects
the exact location of the tumor and the organs at risk.

The radiation is done using a linear accelerator positioned in a beam head
that is positioned in a gantry that can be rotated around the patient. (See

� This work was done while at IBM T.J. Watson Research Center.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 27–38, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

28 N. Bansal, D. Coppersmith, and B. Schieber

Fig. 1(a).) The treatment design specifies the angles of the radiation and its
intensity. The angles are specified by a set of positions at which the gantry stops
to release radiation. (In most models these are a subset of 36 possible positions.)
The desired intensity of the beam head at each gantry position is defined using
an m × n intensity matrix, denoted I, which corresponds to a discretization of
the beam head into an m× n rectangular grid, with each of its entries called a
bixel. The intensity matrix contains positive integral entries that determine the
desired radiation dosage in each bixel.

The radiation generated by the accelerator is uniform. Thus, in order to
achieve the varying intensity this radiation needs to be modulated. An emerging
device for modulation is the multileaf collimator (MLC). (See Fig. 1(b).) This
device consists of a pair of leafs, a left leaf and a right leaf, for each row of the
intensity matrix (often referred to as a channel). Consider a time t. If the left
leaf of channel i is positioned at �, for 1 ≤ � ≤ n, and the right leaf is positioned
at r, for 2 ≤ r ≤ n + 1, where � < r, then the radiation is blocked in bixels
(i, 1), . . . , (i, � − 1) and (i, r), . . . , (i, n), and a uniform amount of radiation is
delivered by bixels (i, �), . . . , (i, r − 1). To achieve the desired intensity I(i, j),
radiation needs to be delivered by bixel (i, j) for I(i, j) time units.

Fig. 1. (a) a linear accelerator in a gantry (b) multileaf collimator both made by Varian

The positions of the multileaf collimator in the m channels at time t define
a 0-1 m× n shape matrix St. A “0” entry in St indicates a blocked bixel and a
“1” entry indicates an active bixel. Note that the multileaf collimator function
implies that each row in St satisfies the consecutive 1’s property, that is, all the
1’s in a row are consecutive.

To achieve the desired radiation intensity in T time units we need to find T
shape matrices S1, . . . , ST such that

∑T
i=1 Si = I where the summation is done

entry-wise. The beam-on time of a treatment is determined by T , the number
of shape matrices used. The setup time is determined by the time it takes to
calibrate the multileaf collimator. The setup time varies according to the tech-
nology used. In some models the leafs can be calibrated simultaneously and thus
the setup time is determined by the number of distinct shape matrices (once
the shape matrix is set up, it can be used any number of times without any

Minimizing Setup and Beam-On Times in Radiation Therapy 29

overhead). We call this setup time the multileaf setup time. In other models each
pair of leafs needs to be calibrated separately, and thus the setup time depends
on the number of movements of each pair. We call this setup time the leaf setup
time. Observe that the leaf setup time is determined by the number of distinct
rows in the shape matrices. To minimize the treatment time for a patient a linear
combination of the beam-on time and setup time needs to be minimized. (We
note that in some models the setup time is not constant but depends on the
specific “from” and “to” shape matrices, in which case a more complex term is
needed to estimate the setup time accurately.)

In this paper we consider the minimization of beam-on and setup times sep-
arately. In many cases one of these terms is dominant and thus minimizing each
one separately leads in practice to treatment times that are close to optimal.
Our results assume unconstrained multileaf collimator whose position in each
channel is independent. Note that in the unconstrained case each channel can
be considered separately.

From a combinatorial point of view, our problem is that of decomposing a
matrix or a vector into a small set of matrices or vectors of a special kind. In
the beam-on problem the intensity matrix needs to be decomposed into a small
set of 0-1 shape matrices, while in the leaf setup problem, each channel in the
intensity matrix needs to be decomposed into a small set of interval vectors. An
interval vector is a 0-a vector that, for some a > 0, satisfies the consecutive a’s
property.

Results. First, we note that the beam-on time minimization problem can be
solved in linear time using a simple algorithm. Most of the paper deals with
the leaf setup time minimization problem. We note that setup time seems to
dominate the treatment time in many cases [9]. First, we prove a “duality” rela-
tion between the setup time minimization problem and maximum partitioning
of certain type of vectors. We use this “duality” to prove that the leaf setup
time minimization problem is APX-Hard, and then give several approximation
algorithms for this problem depending on the structure of the channels in the
intensity matrix. As we shall see, there is a trivial greedy algorithm that achieves
an approximation guarantee of 2. Our main contribution is to give algorithms
that achieve a guarantee better than 2. For a “unimodal” channel, i.e., a row
in the intensity matrix whose only local minima are at its two ends, we give a
9
7 approximation algorithm. For the general case we give a 24

13 approximation
algorithm. We also give two variants of our general algorithm which are shown
to have better performance in specific cases depending on the number of local
minima in the channel.

Prior work. Radiation treatment design was considered extensively in the med-
ical physics literature. (See, e.g., [6, 5, 9] and references therein.) Previous al-
gorithmic analysis of the setup and beam-on minimization problems is quite
limited. Boland, Hamacher and Lenzen [7] gave a polynomial time algorithm
for minimizing beam-on time. Their algorithm is based on an integer program-
ming formulation that is shown to be solved using network flow in a graph of
quadratic size. An algorithm with improved running time for the beam-on time

30 N. Bansal, D. Coppersmith, and B. Schieber

minimization problem was given by Ahuja and Hamacher [1]. Their algorithm is
also based on network flow but in a graph of linear size. Our algorithm is much
simpler and more efficient. To the best of our knowledge this paper is the first
to algorithmically analyze the setup time minimization problem. A heuristic for
a constrained variant of the (multileaf) setup time minimization problem was
given in [8].

The rest of the paper is organized as follows. In Section 2 we show the connec-
tion between the leaf setup time minimization problem and maximum partition
of Prefix Positive Zero Sum vectors (to be defined later). In Section 3 we prove
the hardness of the leaf setup time minimization problem. In Section 4 we present
the approximation algorithms for this problem (some proofs are deferred to the
full version due to space constraints). Finally, in Section 5 we conclude with
some open problems. The results for beam-on time minimization are deferred to
the full version due to space constraints.

2 Setup Time and Vector Partition

In this section we consider the setup time minimization problem. To formulate
the problem we first define interval vectors. For an integer b > 0 we call a
0-b vector V = (v1, . . . , vn) an interval vector of height b if all the b’s are in
consecutive positions. We use the triple (�, r, b) to denote such a vector, where
v� = . . . = vr−1 = b and vi = 0 everywhere else. We say that the vector begins at
� and ends at r. Recall that the (leaf) setup time minimization problem can be
formulated as follows. Given a vector of non-negative integers A = (a1, . . . , an)
find a minimum set of interval vectors (�i, ri, bi) that sum to the input vector.

Consider an input vector A = (a1, . . . , an). For notational convenience add
one entry (a0) to the head of A and another entry (an+1) to the tail of A and
let a0 = an+1 = 0. Define the difference vector of A, denoted ΔA, to be the
vector ΔA = (a1 − a0, a2 − a1, . . . , an+1 − an). From the definition of ΔA it
follows that for i ∈ [1..n], the prefix sums

∑i
j=1 ΔA(i) = ai ≥ 0, and the sum∑n+1

j=1 ΔA(i) = an+1 = 0. We call such a vector Prefix Positive Zero Sum (PPZS)
vector. We say that two vectors are “disjoint” if the index sets of their nonzero
entries are disjoint. Consider the following maximum PPZS vector partitioning
problem. Given a PPZS vector Δ find a maximum set of disjoint PPZS vectors
that sum to Δ. In this section we prove the “duality” between the above two
problems as follows.

Theorem 1. The minimum setup time for a vector A is t if and only if the
maximum partition of ΔA is of size z − t, where z is the number of nonzero
entries in ΔA.

To prove the theorem we need first to prove some properties of the setup time
minimization problem. For an input vector A, we say that position i is an uptick
if ΔA(i) > 0 (i.e., ai−ai−1 > 0). Similarly, position i is a downtick if ΔA(i) < 0.

Minimizing Setup and Beam-On Times in Radiation Therapy 31

Lemma 1. There exists an optimal solution to the setup time minimization
problem that consists only of interval vectors that begin at an uptick and end at
a downtick.

Proof. We show that any arbitrary solution can be transformed to one that has
the required property without increasing the number of interval vectors used.
Given a solution S, suppose that S contains interval vectors that do not begin
at an uptick. Consider such an interval vector V = (�, r, b) with the minimum
�. Thus a� ≤ a�−1 and hence there must be at least one other interval vector
V ′ = (�′, r′, b′) in S that ends at r′ = �. As �′ < �, by minimality of �, V ′ must
begin at an uptick. If b = b′ we could obtain a better solution by replacing V
and V ′ by (�′, r, b). If b < b′, we replace V and V ′ by (�′, r′, b′ − b) and (�′, r, b),
both of which begin at an uptick. If b > b′, we replace V and V ′ by (�′, r, b′)
and Ṽ = (�, r, b − b′). Note that the height of Ṽ is strictly less than that of V
and hence applying this transformation repeatedly, we get a solution where all
interval vectors begin at upticks. An identical argument implies that all interval
vectors end at downticks. ��

We call a solution that consists only of interval vectors that begin at upticks and
end at downticks a canonical solution. We now show how to view any canonical
solution to the setup problem as a graph, which will allow us to characterize the
value of an optimum solution exactly. Let Iu denote the index set of the upticks
and Id denote the index set of the downticks.

Consider a canonical solution S = {V1, . . . , Vt}, where Vi = (�i, ri, bi) are
interval vectors. Since all interval vectors begin at upticks and end at downticks
if some position j is an uptick, then the sum of heights of all interval vectors
that begin at position j is exactly equal to ΔA(j). Similarly, if j is a downtick
then the sum of heights of all interval vectors that end at j is exactly equal to
|ΔA(j)| = −ΔA(j).

Associate a weighted bipartite graph G(S) = (Iu, Id, E) with a canonical
solution S as follows. The vertex sets are Iu and Id, a vertex i (corresponding
to position i) has a positive weight equal to |ΔA(i)|. For each interval vector
Vj ∈ S, we have an edge ej = (�j , rj) with weight bj.

We will show that each connected component of G(S) corresponds to a PPZS
vector. Observe that G(S) has t edges and z vertices. As S is canonical, the
total weight of edges incident at a vertex is equal to the weight of the vertex.
Consider a connected component (Cu, Cd, EC) of G(S). Notice that all the edges
that are adjacent to vertices in C = Cu ∪ Cd are in EC . It follows that every
interval vector that begins at any of the upticks in Cu must end at a downtick
in Cd, and vice versa.

Consider the vector Δ defined by the entries of the difference vector ΔA in the
set of positions C; that is, Δ(i) = ΔA(i), for i ∈ C, and Δ(i) = 0 otherwise. We
claim that Δ is a PPZS vector. To see this consider any prefix sum

∑i
j=1 Δ(j).

It is not difficult to see that the value of this sum is exactly the total height of
all interval vectors that begin at an uptick in positions Cu ∩ [1..i] and end at a
downtick in positions Cd ∩ [i + 1..n + 1]. Thus,

∑i
j=1 Δ(j) ≥ 0, for i ∈ [1..n],

32 N. Bansal, D. Coppersmith, and B. Schieber

and
∑n+1

j=1 Δ(j) = 0. It follows that a canonical solution S to the setup problem
for vector A induces a set of size p of disjoint PPZS vectors that sum to ΔA,
where p equals the number of connected components in G(S). Since G(S) has z
vertices and p connected components, the number of interval vectors in S (which
equals the number of edges in G(S)) is at least z − p. We conclude that a setup
time t for vector A implies a partition of ΔA into at least z − t disjoint PPZS
vectors.

To complete the proof of Theorem 1 we show that a partition of ΔA into p
disjoint PPZS vectors implies setup time at most z−p for the vector A. Consider
a PPZS vector Δ in the partition. Let SΔ be the prefix sum vector of Δ; that is
AΔ(0) = 0, and for i ∈ [1..n + 1], SΔ(i) =

∑i
j=1 Δ(j). Note that the sum of all

the prefix sum vectors SΔ, for all PPZS vectors Δ in the partition, is exactly A.
Thus, it is sufficient to prove the following lemma.

Lemma 2. Let Δ be a PPZS vector with z nonzero entries and let SΔ be its
prefix sums vector. There are z − 1 interval vectors that sum to SΔ.

Proof. We prove by induction on z. The base case is z = 2. In this case Δ consists
of two nonzero entries at positions � < r. From the definition of a PPZS vector
it follows that Δ(�) > 0 and Δ(r) = −Δ(�). Hence, the vector SΔ is exactly the
interval vector (�, r,Δ(�)).

For the inductive step consider z > 2 assume that the lemma holds for z′ <
z. We simply show how to generate a single interval vector V such that the
difference vector Δ′ of the vector SΔ−V has no more than z−1 nonzero entries.
Consider a nonzero entry in Δ with the minimum absolute value. Let the index
of this entry be j. If Δ(j) > 0, then generate the interval vector (j = �, r,Δ(j)),
where r > j is the minimum index such that Δ(r) < 0. Similarly, if Δ(j) < 0,
then generate the interval vector (�, j = r,−Δ(j)), where � < j is the maximum
index such that Δ(�) > 0. Note that SΔ(i) ≥ |Δ(j)|, for i ∈ [�, r− 1]. Thus V is
a valid interval vector. Also the difference vector of SΔ− V has zero in position
j and also has zeroes in all positions Δ has zeroes. ��

3 APX Hardness of the Setup Minimization Problem

We sketch the proof of APX-Hardness of setup minimization. The details can
be found in the full version.

Theorem 2. The setup minimization problem is APX-Hard even for vectors
with entries polynomially bounded in n.

Proof. The proof is by showing a gap preserving reduction from the 3-partition
problem. The 3-partition problem is defined as follows. Given a threshold B and
3m integers p1, . . . , p3m such that

∑3m
i=1 pi = mB and B/4 < pi < B/2 for each

i, is there a partition of the 3m integers into m triples each of which sums exactly
to B. Petrank [14] showed that unless P=NP, there exists an ε > 0 such that it
is impossible to distinguish in polynomial time whether there are exactly m or

Minimizing Setup and Beam-On Times in Radiation Therapy 33

whether no more than (1 − ε)m disjoint triples that sum to exactly B. This is
true even for instances where B is polynomially bounded in m.

Given an instance of the 3-partition problem we define an instance of the
setup minimization problem. The input vector A consists of 4m − 1 entries
A = (s1, s2, . . . , s3m, (m − 1)B, (m − 2)B, . . . , B), where si =

∑i
j=1 pj . Note

that this instance is unimodal and each uptick has value pi for some i and
each downtick has value B. The corresponding difference vector with 4m entries
is ΔA = (p1, . . . , p3m,−B, . . . ,−B). The proof idea is to use the duality in
Theorem 1 to show that if a polynomial time algorithm can distinguish whether
the setup time for vector A is exactly 3m or at least 3m(1 + ε) for some ε > 0,
then it is possible to distinguish whether the 3-partition instance has exactly m
or at least m(1− ε′) disjoint partitions, where ε′ = O(ε). ��

4 Approximating the Minimum Setup Time

In this section we describe several approximation algorithms for the minimum
setup time for an input vector A. First, note that Lemma 2 implies a simple
algorithm that finds z− 1 interval vectors that sum to A, where z is the number
of nonzero entries in ΔA. This is since ΔA is a PPZS vector. On the other hand,
the maximum size of any partition of ΔA into disjoint PPZS vectors is at most
	 z

2
, since each such vector must have at least two nonzero entries, implying
that the minimum setup time is at least z − 	 z

2
 = � z
2�. Thus a factor two

approximation is trivial. Below, we show approximation algorithms with better
ratios.

The basic idea for our algorithms will be the following. Note that a PPZS
vector may be in a partition of ΔA if its nonzero entries are a subset of the
nonzero entries of ΔA. We call such a vector a part of ΔA. We compute the
collection of all possible PPZS vectors with at most y nonzero entries that are
parts of ΔA. This can be done in time O(ny) and hence is polynomial for constant
y. We then find a large (close to optimum) cardinality subset S of disjoint PPZS
vectors from the collection such that either S is a partition of ΔA or in case it is
not a partition of ΔA, the vector V consisting of all the nonzero entries of ΔA

that are not entries of vectors in S is a PPZS vector. In this case S ∪ {V } is a
disjoint partition of ΔA. Our algorithms depends on the “shape” of the vector A.
Roughly speaking, if the vector A has too many local minima, this complicates
the task of finding the right set of PPZS vectors S such that the remaining vector
V is also PPZS. We begin by considering the (simplest) unimodal case in which
the only local minima of A are at its two ends. Then, we consider the general
case and some of its variants.

4.1 Unimodal Input Vectors

Consider a unimodal vector A and let ΔA be its corresponding difference vector.
Note that ΔA consists of a block of nonnegative entries followed by a block of
non-positive entries. A useful property of such difference vectors is the following.

34 N. Bansal, D. Coppersmith, and B. Schieber

Lemma 3. Consider a PPZS vector Δ that consists of a block of nonnegative
entries followed by a block of non-positive entries. Let S be any set of disjoint
PPZS vectors, each of which is a part of ΔA. The vector V consisting of all the
nonzero entries of ΔA that are not entries of vectors in S is a PPZS vector.

Proof. Note that the vector V also consists of a block of nonnegative entries
followed by a block of non-positive entries. Also, the sum of all these entries is
zero since the sum of all entries of the vectors in S is zero. Hence, each prefix
sum must be nonnegative and V is a PPZS vector. ��

It follows that in order to find a good approximation we need to find a large
cardinality set of disjoint PPZS vectors, each of which is a part of ΔA. We will
find such a set consisting only of PPZS vectors with at most y nonzero entries.
Identify each such vector with the set of indices of its nonzero entries. Then
the problem is reduced to the following set packing problem: Given a collection
C = {S1, S2, . . .} of sets where each set Si has size at most y, find a maximum
cardinality sub-collection C′ ⊆ C of disjoint sets.

The best known approximation algorithm for this set packing problem is an
elegant local search based algorithm due to Hurkens and Schrijver [11] which
achieves an approximation ratio of y/2.

Our algorithm for unimodal vectors is the following: Compute the set Sy of
all PPZS vectors with at most y nonzero entries that are part of ΔA, for y = 2, 3
and 4. Apply the algorithm of [11] to find a subset Cy ⊆ Sy of disjoint vectors,
for each y = 2, 3 and 4 and choose the subset Cy with the maximum cardinality.

Theorem 3. The algorithm described above is a 9
7 approximation algorithm for

the minimum setup time problem for unimodal input vectors.

Proof. Let Opt denote the optimum setup time for input vector A. By Theo-
rem 1, ΔA can be partitioned into z−Opt PPZS vectors, where z is the number
of nonzero entries in ΔA. Let nk denote the number of PPZS vectors with k
nonzero entries in the partition defined by Opt. By definition ni satisfies∑

i>1

i · ni = z and Opt =
∑
i>1

(i− 1) · ni (1)

For a fixed choice of y, the algorithm of [11] guarantees that we can find at least∑y
i=2

2
yni disjoint vectors in Sy, and hence a solution with setup cost at most∑y

i=2(i−2/y) ·ni+
∑

i>y i ·ni. To show that our algorithm is a 9
7 approximation,

it suffices to show that for any choice of n2, n3, . . . that satisfies condition (1),
the inequality

y∑
i=2

(i− 2
y
) · ni +

∑
i>y

i · ni ≤
9
7

∑
i≥2

(i− 1)ni

holds for at least one of y = 2, y = 3 or y = 4.
Without loss of generality, we can assume that ni = 0 for i ≥ 5, because Opt

incurs a setup time of at least i− 1 for any PPZS vector with i nonzero entries

Minimizing Setup and Beam-On Times in Radiation Therapy 35

while our algorithm incurs a setup time of at most i. As 5
4 ≤

9
7 , an instance where

ni > 0 for i ≥ 5 can only improve the approximation ratio. Thus it suffices to
show that one of the following inequalities holds. (The first corresponds to y = 2,
the second to y = 3 and the third to y = 4.)

n2 + 3n3 + 4n4 ≤
9
7
(n2 + 2n3 + 3n4)

4
3
n2 +

7
3
n3 + 4n4 ≤

9
7
(n2 + 2n3 + 3n4)

3
2
n2 +

5
2
n3 +

7
2
n4 ≤

9
7
(n2 + 2n3 + 3n4)

Multiplying the first inequality by 2, second by 3 and third by 2 and summing
each side of the resulting inequalities gives an identity which implies that one of
these inequalities always holds for any n2, n3 and n4. ��

It is easily seen that the analysis for the above algorithm is tight by considering
an instance where the optimum solution has n2 = 2(n + 1)/11, n3 = (n + 1)/11
and n4 = (n+1)/11. As 2n2+3n2+4n4 = n+1, this is a valid choice of ni and the
optimum setup time is n+1−n2−n3−n4 = 7(n+1)/11. Our algorithm on the
other hand, finds n2 = 2(n+1)/11 vectors for y = 2, 2/3 ·(n2+n3) = 2(n+1)/11
vectors for y = 3, and (n2 +n3 +n4)/2 = 2(n+1)/11 vectors for y = 4. In either
case, our solution has setup time equal to (n + 1)− 2(n + 1)/11 = 9(n + 1)/11.

4.2 Arbitrary Input Vectors

For unimodal input vectors we used the key fact (Lemma 3) that any collection of
disjoint PPZS vectors that are parts of ΔA can be used in the solution. However,
this is not true in general. Consider for example when A = (10, 5, 10) and hence
ΔA = (10,−5, 5,−10). In this case, the PPZS vector S = (10, 0, 0,−10) is a
valid part of ΔA. However we cannot choose this in the solution, because V =
ΔA − S = (0,−5, 5, 0) which is not a valid PPZS vector (the second prefix sum
is negative).

Given an input vector A to the setup minimization problem, let z denote the
number of non-zero entries in ΔA. We say that position i is a local minimum if
ΔA(i) < 0 and ΔA(j) > 0 where j is the smallest index greater than i such that
ΔA(j) is non-zero. Note that the number of local minima can be no more than
z/2. We will show the following three results:

1. We give a 3/(2 − ε) approximation when the number of local minima is no
more than εz.

2. We improve this guarantee slightly when ε is o(1/ log z). In particular, we
give a (11 + 9e−2 − 2e−3)/(8 + 6e−2 − 2e−3) ≈ 1.391 approximation when
the number of local minima is o(z/ log z).

3. Finally, we give a 24/13 ≈ 1.846 approximation in the general case in which
the number of local minima could be arbitrary.

36 N. Bansal, D. Coppersmith, and B. Schieber

Recall that our goal is to find a large cardinality set of PPZS vectors that are
part of ΔA, such that (1) no two vectors share a nonzero position, and (2) the
vector given by subtracting all the prefix sum vectors of these vectors from A does
not have any negative entries. We call property (1) the independence property and
property (2) the packing property. Note that such a set of cardinality p induces
a solution of size z − p− 1, where z is the number of nonzero entries in ΔA.

Our first and the second algorithms above are based on rounding the solution
of a certain linear program (LP) that models the properties above. We also show
certain structural properties of these linear programs which are essential to our
rounding scheme. For lack of space we defer the description of these algorithms
to the full version of the paper.

We describe here the algorithm for the general case, where the number of
local minima could be arbitrary.

The Algorithm for the General Case
Our main idea is the following. We will only be interested in PPZS vectors of size
2. Note that if some fixed optimum solution Opt does not use size 2 vectors, then
the setup time is at least 2z/3 and hence we trivially have a 3/2 approximation.
Thus we will focus on the case when Opt uses at lot of size 2 vectors (in particular
it chooses close to z/2 such vectors). Our goal then will be to obtain a large subset
of such vectors that simultaneously satisfies the independence and the packing
properties.

We do not know how to find such a set of size 2 PPZS vectors directly and
hence adopt an indirect approach. Recall that each such vector Δ with non-zeroes
in positions � and r (for � < r) corresponds to an interval vector (�, r,Δ(�)) in the
solution. Call such interval vectors candidate interval vectors. We show that there
exists a certain “minimal” set of independent interval vectors R2, such that any
feasible collection of candidate interval vectors can be transformed (without any
loss) into one that only uses vectors fromR2. SinceR2 only contains independent
vectors, |R2| ≤ z/2. Now, if Opt uses close to z/2 vectors in its solution, then it
must have discarded very few vectors from R2. This allows us to use the known
results for the generalized caching problem considered by [2, 3], and hence find
a solution where the number of discarded intervals is no more than a constant
times the number of intervals discarded by Opt.

We now describe the details. The following lemma describes the properties of
the set R2. Due to space constraints its proof is deferred to the full version.
Lemma 4. Given a vector A, there exists a set R2 of interval vectors that sat-
isfies the following properties:
1. No two interval vectors in R2 begin or end at the same position (hence they

are independent).
2. For any set S of candidate interval vectors that satisfies the independence

and packing properties, there exists another set S′ ⊆ R2, such that |S′| ≥ |S|
and S′ satisfies the packing property. (Since S′ ⊆ R2 it also satisfies the
independence property.)

The set R2 is of linear size and can be obtained in linear time.

Minimizing Setup and Beam-On Times in Radiation Therapy 37

To find a large subset of Rh
2 that satisfies the independence and packing prop-

erties we use known results for the general caching problem defined below.
In the general caching problem (with unit profit) we are given a vector A =

(a1, . . . , an) where ai denotes the amount of cache available at time i. There is
collection of tasks T = {T1, . . . , Tm}, where each task Ti, specified by (�i, ri, hi),
requires hi units of cache during the interval [�i, ri− 1]. A set of tasks is feasible
if the required cache size for these tasks does not exceed the available cache size
at any time. The goal is to find a feasible collection of tasks such that the total
number of tasks not included in the collection is minimized.

This problem was first considered by [2] who gave a logarithmic approximation
for the problem. Later [3] gave an algorithm with an approximation ratio of 4.
Note that the approximation ratio is for the number of tasks excluded rather
than included in the collection.

Our algorithm is as follows. We construct an instance of the general caching
problem where T = R2. We apply the algorithm of [3] to this instance and
obtain a collection S of interval vectors that satisfy the independence and packing
properties. We use this to construct a solution with setup time at most z−|S|−1,
where z is the number of nonzero entries in ΔA.

Theorem 4. The algorithm stated above is a 24
13 ≈ 1.846 approximation algo-

rithm for the setup minimization problem.

Proof. Consider an optimal canonical solution S for the setup problem. Let S2
be the set of interval vectors in the solution that begin at an uptick and end at
a downtick of the same value. By the definition of ni, we have n2 = |S2|. By
Lemma 4 the set R2 contains a subset of size n2 that satisfies the independence
and packing properties. Thus, the solution returned by the algorithm of [3] for
the general caching problem contains at least max{0, |R2|−4(|R2|−n2)} interval
vectors. Moreover, since

∑
i≥2 i · ni = z, we have that

∑
i≥3 ni ≤ (z − 2n2)/3.

Since Opt =
∑

i≥2(i − 1) · ni, we have opt =
∑

i≥2 i · ni − n2 −
∑

i≥3 ni ≥
z − n2 − (z − 2n2)/3 = (2z − n2)/3.

We consider two cases based on the magnitude of α = 4((|R2| − n2). If α ≥
|R2|, or equivalently, n2 ≤ 3|R2|/4 ≤ 3z/8, the approximation ratio is most

z

Opt
≤ z

(2z − n2)/3
≤ 3z

2z − 3z/8
=

24
13

.

If α < |R2|, let β denote |R2| − α. Then, the approximation ratio is at most

z − β

(2z − n2)/3
=

3(z − β)
2z − (R2 − α/4)

=
3(z − β)

2z − β/4− 3R2/4

As |R2| ≤ z/2 this is at most
24(z − β)
13z − 2β

which is clearly maximized when β = 0 and hence is at most 24
13 . ��

38 N. Bansal, D. Coppersmith, and B. Schieber

5 Conclusions and Open Problems

In this paper we considered the beam-on time and setup time minimization
problems in radiation therapy. We presented an efficient linear time algorithm
for the beam-on time minimization problem. We proved that the setup time
minimization problem is APX Hard, and gave approximation algorithms for the
problems that are better than the naive 2 approximation for the problem.

The area still has a lot of open problems, such as maximizing the combination
of beam-on and setup times, considering multileaf rather than leaf setup time,
considering constrained shape matrices and more.

References

1. R.K. Ahuja and H.W. Hamacher. A network flow algorithm to minimize beam-on
time for unconstrained multileaf collimator problems in cancer radiation therapy.
Networks, 44 (2005), 36–41.

2. S. Albers, S. Arora and S. Khanna. Page replacement for general caching problems.
Proc. 10th ACM-SIAM Symp. on Discrete Algorithms, 31–40, 1999.

3. A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor and B. Schieber. A unified ap-
proach to approximating resource allocation and scheduling. Journal of the ACM,
48 (2001), 1069–1090.

4. S. Bernstein. Theory of Probability. Moscow, 1927.
5. A.L. Boyer. Use of MLC for intensity modulation. Medical Physics, 21 (1994),

1007.
6. T.R. Bortfeld, D.L. Kahler, T.J. Waldron and A.L. Boyer. X-ray field compensation

with multileaf collimators. Int. Journal of radiation Oncology, Biology, Physics,
28 (1994), 723–730.

7. N.H. Boland, H.W. Hamacher and F. Lenzen. Minimizing beam-on time in cancer
radiation therapy using multileaf collimators. Networks, 43 (2004), 226–240.

8. D.Z. Chen, X.S. Hu, S. Luan, C. Wang and X. Wu. Mountain reduction, block
matching, and applications in intensity modulation radiation therapy. Proc. 21st
ACM Symp. on Computational Geometry, 35–44, 2005.

9. J. Dai and Y. Zhu. Minimizing the number of segments in a delivery sequence for
intensity modulated radiation therapy with multileaf collimator. Medical Physics,
28 (2001), 2113–2120.

10. H.N. Gabow, J.L. Bentley and R.E. Tarjan. Scaling and related techniques for
geometry problems. Proc. 16th ACM Symp. on Theory of Computing, 135–143,
1984.

11. C.A.J. Hurkens and A. Schrijver. On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM Journal on Discrete Mathematics, 2 (1989), 68–72.

12. S. Kamath, S. Sahni, J. Palta and S. Ranka. Algorithms for optimal sequencing of
dynamic multileaf collimators. Physics in Medicine and Biology, 49 (2004), 33–54.

13. S. Kamath, S. Sahni, J. Palta, S. Ranka and J. Li. Optimal leaf sequencing with
elimination of tongue-and-groove underdosage. Physics in Medicine and Biology,
49 (2004), N7–N19.

14. E. Petrank. The hardness of approximation: gap location. Computational Com-
plexity, 4 (1994), 133–157.

15. J. Vuillemin. A Unifying Look at Data Structures. Comm ACM, 23 (1980),
229–239.

On the Value of Preemption in Scheduling

Yair Bartal1 , Stefano Leonardi2, Gil Shallom1, and Rene Sitters3

1 Department of Computer Science, Hebrew University, Jerusalem, Israel
2 Dipartimento di Informatica e Sistemistica, Universit di Roma La Sapienza, Rome, Italy

3 Max-Planck-Insitut für Informatik, Saarbrücken, Germany

Abstract. It is well known that on-line preemptive scheduling algorithms can
achieve efficient performance. A classic example is the Shortest Remaining Pro-
cessing Time (SRPT) algorithm which is optimal for flow time scheduling,
assuming preemption is costless. In real systems, however, preemption has sig-
nificant overhead. In this paper we suggest a new model where preemption is
costly. This introduces new considerations for preemptive scheduling algorithms
and inherently calls for new scheduling strategies. We present a simple on-line
algorithm and present lower bounds for on-line as well as efficient off-line algo-
rithms which show that our algorithm performs close to optimal.

1 Introduction

Job scheduling is a common task in many computer systems. As a new job request
arrives it is often necessary to preempt the current job in order to process the new one.
It is evident that this operation involves significant overhead for the system, mostly due
to context switching and extra paging (see e.g [4, 5, 11]) and therefore in some cases
dramatically degrades the system’s performance. In this paper we provide a theoretical
model which incorporates this inherent cost of preemption.

The new model provides a provable explanation for the failure of some basic pre-
emptive algorithms (Shortest Remaining Processing Time) in practice and hopefully
leads to new approaches that may have more practical appeal. We focus on a classic
problem in this context of flow time scheduling; Given a sequence of jobs we must
schedule them for execution on a single or identical parallel machines, with the goal to
minimize total flow time, i.e., the total time jobs spend in the system since arrival until
they are run to completion. This includes the delay of waiting for service as well as the
actual service time.

Formally, we are given a set J of n jobs and a set of m identical machines. Each job
j is assigned with release time r j and processing time p j. The scheduling algorithm de-
cides which of the jobs should be executed at each time. At any moment a machine can
process at most one job and each job is processed on at most one machine. Moreover,
a job cannot be processed before its release time. In the preemptive model a job that is
running can be preempted and continued on an arbitrary moment on any machine. For
a given schedule let C j be the completion time of job j in this schedule. The flow time
of job j in the schedule is F j C j r j. The objective of the classical flow time problem

Supported in part by a grant from the Israeli Science Foundation (195/02).

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 39–48, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

40 Y. Bartal et al.

to minimize the total flow time j J F j. We consider the problem for which the cost to
make one preemption is K and the objective is to minimize j J F j K M, where M
is the number of preemptions performed by the algorithm. This model naturally gener-
alizes the two basic extreme cases – if K 0 we are back in the costless preemption
model, and when K is large enough we are essentially back to the non-preemptive case.
Note that no preemption penalty is encountered if a job starts or terminates.

Preemption plays a crucial role in the context of flow time scheduling as well as
many other scheduling problems. In the classical non-preemptive flow-time problem
it is impossible to achieve any ’reasonable’ approximation. Specifically, even for one
machine there is no efficient O(n

1
2) approximation algorithm, unless P NP [7].

Moreover, no on-line algorithms can achieve better than the trivial (n) bound. In con-
trast to these negative results we know that when preemption is allowed, the Shortest
Remaining Processing Time algorithm achieves the optimal preemptive scheduling for
a single machine [1]. This algorithm schedules at any time those jobs that are closest
to completion. Hence, preemptions happen exactly at these moments that a newly re-
leased job has processing time smaller than the remaining processing time of a job on
execution. The SRPT-algorithm is an on-line algorithm since at any time scheduling
decisions are taken only on the basis of the knowledge of the jobs released so far. It has
also been shown that the algorithm approximates the optimal preemptive flow time on
parallel machines up to a logarithmic factor and that this is also the best competitive
ratio that can be achieved by an on-line algorithm [8].

Whereas these theoretical results indicate that SRPT is a good heuristic, it may per-
form rather poorly in practice. The cause for this is provided by a number of recent
experimental studies of real systems [4, 5, 11] showing that job preemption creates very
significant overhead for the system, thus incurring an additional cost for the scheduler.
We model this by associating a cost K with each preemption. It turns out that the right
quantity to express the performance of on-line algorithms is not in K but in terms of ,
defined as the ratio of K and the length of the smallest job. However, the dependence
of the performance ratio on is not linear as one may first expect. It turns out it is some-
what more delicate and depends on . To be more exact, we denote min ,
where is the ratio of the length Pmax of the largest job and the length of the smallest
job. Our main result is an on-line algorithm with competitive ratio (1) on a single
machine and O(C(1)) for identical parallel machines, where C O(log(min n

m))
is the performance ratio of the SRPT algorithm in the standard (costless) preemptive
model on m machines. These results are complemented with an () lower bound on
the competitive ratio of (randomized) on-line algorithms. Notice that the gap C log
that remains is relatively small compared to the lower bound .

We also provide an inapproximability result implying that the approximation ratio
of any polynomial time algorithms is at least (1 3), for any 0, unless P NP.

Our new model may be compared with previous attempts to incorporate limitations
on preemption in other theoretical studies. Such considerations have been imposed in
the past in [9] and [3] were the algorithm must cope with an overall upper bound on
the total number of preemptions, and in [12] in which the authors give a lower bound
on the number of preemptions needed for competitiveness of any on-line algorithms
aimed to minimize weighted sum of completion times. This paper introduces the cost

On the Value of Preemption in Scheduling 41

of preemption as part of the objective function thus providing a natural motivation for
minimizing the number of preemptions.

1.1 Performance of the Shortest Remaining Processing Time Algorithm

The shortest remaining processing time algorithm preempts the current job whenever a
new job arrives whose processing time is smaller than the remaining processing time of
the currently executing job. It is a well-known that this heuristic achieves the optimal
flow time in the standard costless preemption model. Figure 1(a) shows why the SRPT
algorithm performs poorly in the costly preemption model. The algorithm is given a

(a) The release sequence of small intervealed jobs

(b) SRPT preempts immediately instead of aggregating small
jobs

Fig. 1. SRPT is presented with intervealed small jobs

job sequence in which a long job is released and then small jobs are released in non-
consecutive intervals. The SRPT algorithm chooses to preempt the long job every time
a short job is released. It is evident in this case that aggregating several small jobs before
preempting is essential, if preemption incurs a cost. We note that the competitive ratio
of SRPT can be easily shown to be () (K). In the next section we show that
aggregating a number of small jobs before actually preempting is indeed the preferred
decision.

2 An On-Line Algorithm

We present an on-line algorithm for minimizing flow time with preemption cost for sin-
gle and parallel machines. It is interesting to note that the algorithm considers the use
of preemption every time some fixed amount of work is done, acting in a rather similar

42 Y. Bartal et al.

way to the actions of ”real” operating system schedulers, which consider switching jobs
every fixed interval of time (different fixed times for multi-level feedback schedulers).
It turns out that this intuitive way in which ”real” systems choose to act is competitive
in our on-line model. We now turn to the description of the algorithm. We assume that
the size of the smallest job is known to the algorithm.

Algorithm Wait To Preempt (WTP):

(i) If there is an idle machine and a job is available, then start processing the job with
the shortest remaining processing time among the available jobs.

(ii) Every moment t that an additional m K units (summed over all machines) are
processed do the following: If the maximum processing time over all jobs released
so far is more than K preempt all jobs; Otherwise, do nothing.

Theorem 1. Algorithm WTP is (C(1))-competitive for minimizing flow time on
m-machines, in the costly-preemption model, where min , and C is the com-
petitive ratio of SRPT for standard (costless) preemption model. For the single machine
we have C 1 and for parallel machines we have C O(log(min n

m)).

Proof. Consider an instance I and let OPT(I) and WTP(I) be, respectively, the optimal
cost and the algorithm’s cost. Let be a schedule produced by WTP for instance I.
We partition WTP(I) in the preemption cost WTPP(I) and the total flow time WTPF (I).
Denote the schedule constructed by WTP on I by and denote the number of processes
in the schedule by n.

We begin with analyzing WTP ’s preemption cost.
If Pmax K then no job gets preempted. The preemption cost WTPP(I) is zero

in this case. Otherwise we use the sum of all processing times as a lower bound for the
optimum. The number of preemptions is at most m j p j (m K) OPT(I) (K).
The preemption cost is at most K OPT(I) (K) OPT(I) . Further, the assumption
Pmax K equals which implies . The preemption cost is at most

OPT(I).
To bound WTP’s flow time we define an instance I from I by modifying the release

dates. Let S j be the start time of job j in . We define r j min S j r j . In lemma
1 we prove that the schedule is an SRPT schedule for instance I , implying

WTPF (I) SRPT(I)
j

(r j r j) C OPT(I)
j

(r j r j) (1)

where (r j r j) is a bound on the additional flow time for a job incurred by WTP(I)
beyond its flow time in SRPT(I).

Take any optimal schedule for I and shift it forward in time over time units. The
resulting schedule is feasible for I’ implying

OPT(I) OPT(I)
j

(r j r j) (2)

Combining (1) and (2) and using OPT(I) n for the second inequality, we obtain

On the Value of Preemption in Scheduling 43

WTPF (I) C (OPT(I) n) (C 1)
j

(r j r j)

C(1)OPT(I)

The total cost becomes WTP (C C)OPT(I).

Lemma 1. Schedule satisfies the shortest remaining processing time rule for
instance I’.

Proof. We have to show that at any moment t the SRPT-rule is satisfied for schedule
with respect to instance I . Assume that at time t job j is processed and job k is available
in instance I but is not processed. We have to show the following property: At time t the
remaining processing time of job j is at most the remaining processing time of job k.

We distinguish between the case (i.e.,), and (i.e.,).
If then Pmax K and no job gets preempted. In particular job

k does not get preempted whence it is not processed before time t. Further, we assumed
it is available in I at time t but does not start at time t. Thus rk S k, the start time of
job k. Now, using the definition of I , we must have rk min S k rk rk . On
the other hand, the start time of job j is at least t p j t Pmax t t
rk rk. Since the algorithm started j while k was available we have pk p j

which is obviously at least the remaining processing time of job j at time t. Hence, the
property holds in this case.

Now assume .
If job k was processed before time t then it must have been preempted. Consider the

last time before t that job k was preempted. When a job gets preempted then all jobs
get preempted at that time. Therefore, the segment of job j that is processed at time t
started after job k was preempted. The property now follows directly from the algorithm
(point (ii)).

If job k is not processed before time t then we have rk S k, since it is available in I
at time t but does not start at t. By definition of I we must have rk rk , implying
rk rk t . If the segment of job j (that is processed at time t) started
later than rk then the claim obviously holds since the algorithm started (or resumed) the
processing of j while job k was available. So assume the segment started before time
rk. We show that this gives a contradiction. Clearly, there can be no idle time between
rk and t since the algorithm has the choice to start job k. Since there is no idle time,
at least m(t rk) m m K units are processed in the interval [rk t] and it will
contain at least one preemption point. At this point all jobs get preempted since job j is
processed and p j t rk K .

3 An Almost Tight Lower Bound

We will prove that the algorithm of Section 2 is best possible for the single machine
model and only a factor C off from optimal for parallel machines, where C is the perfor-
mance of SRPT in the standard model. Our proof is rather complicated and to facilitate

44 Y. Bartal et al.

this section we first present a bound for a more restricted model in which no machine
is allowed to remain idle if any job is available for processing.

Lemma 2. In the restricted model in which no idle time is allowed, any on-line algo-
rithm has competitive ratio (), where min , independent of the number of
machines available. Moreover, randomization does not improve upon this bound.

Proof. The basic idea of the proof is to create a gap in the completion times of jobs
being executed at a certain time by the on-line algorithm and the optimal solution. This
is done by releasing two types of jobs: A-jobs and B-jobs of sizes x and 2x respectively.
We set x min K 2 .

At time zero m jobs of type A and m jobs of type B are released. Since idle time is
not allowed the start time of any job is a multiple of x. Moreover, no job can start at time
3x or later since in that case some machine must be idle before time 3x. Let m1 m2 m3

be the expected number of jobs of type B that starts respectively, at time 0 x and 2x. We
must have mk m 3 for some k 1 2 3 . The adversary starts releasing a sequence of
N m small jobs of size each, beginning at time kx, where a batch of m jobs is released
at time kx i , for 0 i N 1 where N x . See illustration in Figure 2.

The adversary does not preempt any job and executes all small jobs at their release
date. If k 1 then the adversary completes all A-jobs at time x and all B-jobs at time
4x. The total flow time is at most 6xm in this case. Similarly, the total flow time is 7xm
for k 2 and 5xm for k 3.

Consider a schedule given by the randomized algorithm A. Let S be the set of
B-jobs that start processing at time (k 1)x. At time kx the remaining processing time
of these jobs is x. Let b be the number of jobs that are preempted. Since at least S b
machines are not available for processing the small jobs, the total flow time of small
jobs is more than (S b)Nx 2. The total cost is at least bK (S b)Nx 2 bK
(S b)x2 (2) bK (S b)K 2 S K 2. Since E S m 3 the expected cost is
at least mK 6. We conclude that the expected competitive ratio is at least mK (42mx).
Substituting K x2 yields the lower bound (x) (min).

� � � � � � ��

�

�

�

�

�

�

�

� �

�

Fig. 2. The algorithm’s schedule if no small jobs would be released. At time 2x there are still three
B jobs with a remaining processing time of x. The adversary releases many small jobs (dotted in
figure) at time 2x.

On the Value of Preemption in Scheduling 45

Theorem 2. An on-line algorithm cannot achieve a competitive ratio better than
(min) in the costly-preemption model with idle-time, independent of the num-

ber of machines available. Moreover, randomization does not improve upon this bound.

Proof. First we prove the deterministic case and then sketch how to extend it for
randomized algorithms. Let A be any deterministic algorithm and define N 1

2 min

) and let x N. We define an instance with mN large jobs of length 2x and a
number of batches of small jobs. A set of m large jobs is released at each time point
0 4x 8x (N 1)4x. We refer to the interval [(i 1)4x i4x[as segment i.

Depending on the algorithm the adversary may decide to release a set of mN2 small
jobs, of length each, shortly after a set of large jobs. Consider the situation at time
point t (i 1)4x, i.e., at the beginning of segment i, for some (i 1 N). Let

be the schedule that A constructs if no more jobs are released after time t. Let S be
the set of large jobs in that start processing in segment i and are scheduled without
preemption. If S m 2 we say that the segment is of type 1. If S m 2 we say
the segment is of type 2. If S m 2 then there is a j 1 2 3 4 such that at least
S 4 m 8 jobs from S start processing in interval [t (j 1)x t jx]. The adversary
will release mN small jobs starting from time t ix. More precisely, m jobs of length
each are released at every time point t ix k for all k 0 N 1 . If S m 2
then no small jobs are released after the large jobs.

We construct a schedule with small cost in order to lower bound the optimal sched-
ule. All small jobs are processed without preemption and start at their release time. The
flow time of one small job is and the number of small jobs is at most mN2 giving a
total flow time of at most mN2 . Next we add the large jobs without preemption to the
schedule. We can do this such that the flow time of any large job is at most 5x. (In any
interval [(i 1)4x x i4x x] there is at most one batch of small jobs which block this
interval for a time x.) The total flow time of this schedule is mN2 mN5x 6mNx.
Denote this value by z . Notice that the contribution of the large jobs is at most 5 times
the contribution of the small jobs.

In order to be better than (N) competitive the algorithm must complete almost all
large jobs before time 4Nx. More precisely, if mN large jobs are completed after time
4Nx (for some 1), then the average flow time for these jobs is at least 4Nx 2.
The total flow time for these jobs will be at least mN times 4Nx 2 is 2 2mN2 x
z N 2 3.

Similarly, in order to be better than (N) competitive the algorithm must sched-
ule almost all large jobs without preemption. More precisely, if mN large jobs are
preempted (1), then the total cost is at least mNK mN mN 4N2

4 mN2x 2
3 z N.

We conclude that in order to be better than (N) competitive the algorithm must
process almost all large jobs without preemption and before time 4xN. Let U be the set
of all large jobs with this property. By definition at most m 2 jobs from U start in any
segment of type 2. In general, at most 4m jobs from U can start in a segment since no
more jobs fit in. Let N1 be the number of segments of type 1. Then (N N1)m 2 N14m
U , implying N1 (2 U m N) 7. For example, if U (17 20)mN then N1 N 10.
Hence, we now assume that at least ten percent of the segments is of type 1.

46 Y. Bartal et al.

Consider a segment of type 1. At the moment that the adversary starts releasing the
small jobs there are at least m 8 large jobs which each have at least x processing time
remaining. Denote this set by T . If the algorithm preempts at least half of them this adds
Km 16 m 16 4x2m 16 2z 3 to the total cost. In the other case we see that
m 16 machines block the processing of small jobs for at least x time units. The total
flow time of the small jobs is at least Nm 16 time x 2 is Nmx 32 3z 16.

Since we assumed that at least N 10 segments are of type 1, the total cost is at least
N 10 times 3z 16 is 3z N 160. We conclude that there is a constant c such that the
cost of any schedule is at least cNz .

The lower bound extends easily to randomized algorithms. We use Yao’s min-max
principle, i.e., again we consider a determinist algorithm but now we randomize the
input. The set of large jobs remains the same but now a batch of small jobs is released
for every segment i at time ti, where ti is uniformly taken from the set (i 1)4x jx j
1 2 3 4 . The optimal schedule remains at most z . Again we can argue that, to be better
than (N)-competitive, the algorithm must process almost all jobs without preemption
and before time 4xN. But in that case the expected flow time of the small jobs will be

(N)z .

4 Inapproximability

In this section we sketch a proof for a lower bound on the approximation ratio achiev-
able in polynomial time, assuming P NP. Surprisingly, the result achieved shows
that the competitive ratio achieved in the on-line scenario of the problem is not far
from that achievable in polynomial time in the offline case. The proof is based on the
inapproximability result for nonpreemptive flow time scheduling by Kellerer et al. [7].

Theorem 3. There is no polynomial time algorithm which achieves an approximation
O(

1
4) (assuming to be part of the input), or an approximation O(

1
3), for any

0, in the single machine costly-preemption model with idle-time, unless P = NP.

Proof. Kellerer et al. [7] showed a lower bound of (n) on the approximation ratio
of polynomial-time approximation algorithms for the problem of minimizing flow time
in a single-machine non-preemptive environment. In our case preemption may be used
but incurs a cost K . Therefore, we would use their proof in order to achieve an inap-
proximability result which is a function of the parameters of our problem, that is,
and .

We now turn to describe some details of the inapproximability proof in [7] so that
we can describe how it can be used to achieve the desired inapproximability result. The
authors reduce from the following strongly NP-complete version of numerical three-
dimensional matching. (See Garey and Johnson [6] for the hardness proof.)

Problem: Numerical three-dimensional matching (N3DM).
Instance: Positive integers ai bi and ci, 1 i , with i 1(ai bi ci) D.
Question: Do there exist permutations such that ai b (i) c (i) D holds for
all i?

On the Value of Preemption in Scheduling 47

Given an arbitrary N3DM instance and some real number 0 1
2 , Kellerer et al.

define the numbers

n (20)
4

D
2

r 2Dn
1

2 g 100r 2

The number of jobs in their instance is n. Further, the smallest job has processing time
1 (rg) and the largest has processing time at most 8r D 9r. They show that the
total flow time is smaller than 200r 2 if there is a solution to the N3DM problem and
at least 100r2 2 if no such solution exists. This results in a lower bound of 1

2 r on the
approximation ratio achievable.

In our model, preemption is allowed but if K 100r2 2, then the optimal solution
is non-preemptive. Thus, the lower bound of 1

2 r on the approximability applies directly
to our problem if we set K 100r2 2.

We would like to express this lower bound in terms of and :

Pmax 9r
1 (rg)

900r3 2

K K
1 (rg)

10000r4 4

We simplify the parameters of the N3DM problem and use r
2

1 in order to get:

O(r3 2
1) r

1

3 2
1

O(r4 4
1) r

1

4 4
1

We now recall that 0 1
2 can be chosen arbitrarily. Given any 0, we choose

a small enough in order to maintain the following relations:

1
2

r
1
3 and

1
2

r
1
4

5 Extensions

This paper introduces a more realistic scheduling model where preemption is costly.
We study the model in the context of flow time scheduling and provide efficient on-line
algorithms for this setting. Our work makes the first step in studying costly preemp-
tion models in the context of various scheduling problems, e.g. minimizing completion
time, weighted flow time, or stretch [10]. It may also be possible to combine the costly
preemption model with semi-clairvoyance [2].

Another important direction for further research is to consider a more sophisticated
modelling of the preemption cost, e.g. the cost of preemption may be dependent on the
processing time of the jobs involved, or more generally on the state of the system.

48 Y. Bartal et al.

References

1. K.R. Baker. Introduction to sequencing and scheduling. Wiley, New York, 1974.
2. L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs. Semi-clairvoyant

scheduling. In Proc. 11th European Symp. on Algorithms (ESA), volume 2832 of Lecture
Notes in Comput. Sci., pages 67–77. Springer, 2003.

3. O Braun and G. Schmidt. Parallel processor scheduling with limited number of preemptions.
SIAM J. Comput., 32:671–680, 2003.

4. R.T. Dimpsey and R.K. Iyer. Performance degradation due to multiprogramming and system
overheads in real workloads: Case study on a shared memory multiprocessor. In Intnl. Conf.
Supercomputing, pages 227–238, 1990.

5. Y. Etsion, D. Tsafrir, and D.G. Feitelson. Effects of clock resolution on the scheduling of
interactive and soft real-time processes. In SIGMETRICS Conf. Measurement & Modeling
of Comput. Syst, pages 172–183, 2003.

6. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the theory of NP-
Completeness. Freeman and Company, San Francisco, 1979.

7. T. Tautenhahn H. Kellerer and G.J. Woeginger. Approximability and nonapproximability
results for minimizing total flow time on a single machine. SIAM J. Comput., 28:1155–1166,
1999.

8. S. Leonardi and D. Raz. Approximating total flow time on parallel machines. In Proc. 29th
Symp. Theory of Computing (STOC), pages 110–119. ACM, 1997.

9. R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. Theoret. Comput. Sci.,
130:17–47, 1994.

10. S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. E. Gehrke. Online scheduling to min-
imize avarage strech. In Proc. 40th Symp. Foundations of Computer Science (FOCS), pages
433–443. IEEE, 1999.

11. C. Natarajan, S. Sharma, and R.K. Iyer. Measurement-based characterization of global mem-
ory and network contention, operating system and parallelization overheads: Case study on
a shared-memory multiprocessor. In Ann. Intl. Symp. Computer Architecture, volume 21,
pages 71–80, 1994.

12. U. Schwiegelshohn. Preemptive weighted completion time scheduling of parallel jobs. In
Proc. 4th European Symp. on Algorithms (ESA), volume 1136 of Lecture Notes in Comput.
Sci., pages 39–51. Springer, 1996.

An Improved Analysis for a
Greedy Remote-Clique Algorithm

Using Factor-Revealing LPs�

Benjamin E. Birnbaum1 and Kenneth J. Goldman2

1Department of Computer Science and Engineering
University of Washington, Seattle

Seattle WA 98195, USA
bbirnb@u.washington.edu

2Department of Computer Science and Engineering
Washington University in St. Louis

St. Louis MO 63130, USA
kjg@cse.wustl.edu

Abstract. Given a positive integer p and a complete graph with non-
negative edge weights that satisfy the triangle inequality, the remote-
clique problem is to find a subset of p vertices having a maximum-weight
induced subgraph. A greedy algorithm for the problem has been shown
to have an approximation ratio of 4, but this analysis was not shown
to be tight. In this paper, we present an algorithm called d-Greedy
Augment that generalizes this greedy algorithm (they are equivalent
when d = 1). We use the technique of factor-revealing linear programs to
prove that d-Greedy Augment, which has a running time of O(pdnd),
achieves an approximation ratio of (2p − 2)/(p + d − 2). Thus, when
d = 1, d-Greedy Augment achieves an approximation ratio of 2 and
runs in time O(pn), making it the fastest known 2-approximation for
the remote-clique problem. The usefulness of factor-revealing LPs in the
analysis of d-Greedy Augment suggests possible applicability of this
technique to the study of other approximation algorithms.

1 Introduction

Let G = (V,E) be a complete graph with the weight for edge {v1, v2} ∈ E given
by w(v1, v2). (Define w(v, v) = 0 for all v ∈ V .) The edge weights are nonnegative
and satisfy the triangle inequality: for all v1, v2, v3 ∈ V , w(v1, v2) + w(v2, v3) ≥
w(v1, v3). For a given integer parameter p, such that 1 ≤ p ≤ |V |, the remote-
clique problem is to find a subset V ′ ⊆ V such that |V ′| = p and the average
edge weight in V ′, 2/(p(p−1))·

∑
{v1,v2}∈E : v1,v2∈V ′ w(v1, v2), is maximized. The

remote-clique problem (also called maxisum dispersion [1] and max-avg facility

� This research was supported in part by the National Science Foundation under grant
0305954. It was performed while the first author was at Washington University in
St. Louis.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 49–60, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

50 B.E. Birnbaum and K.J. Goldman

dispersion [2]) is one the so-called dispersion problems, which involve finding
subsets of vertices that are in some way as distant from each other as possible.
These problems are motivated by a number of applications in computer science
and operations research (see [3], for example). The remote-clique problem can
be shown to be NP-hard by an easy reduction from Clique.

It has been shown that a simple greedy algorithm with running time O(n2)
achieves an approximation ratio of 4 (i.e., the weight of the optimal solution
is never more than four times the weight of the solution found by the greedy
algorithm) [2]. An example is provided in which the optimal solution weighs
twice as much as the algorithm’s solution, but the question of whether a tighter
bound for the algorithm can be proved remained open. In another paper, it is
proved that a more complicated algorithm with running time O(n2 + p2 log p)
achieves an approximation ratio of 2 [4]. However, a tight approximation ratio
for the simple greedy algorithm has never been proved.

In this paper, we provide an algorithm parameterized by an integer d called
d-Greedy Augment. When d = 1, the algorithm is the same as the greedy
algorithm analyzed in [2], and when d = p, the algorithm amounts to examin-
ing all subsets of p vertices and choosing the one with maximum edge weight.
(Clearly, this will return an optimal solution, but it does not run in polynomial
time unless p is a constant.) We will show that d-Greedy Augment has an
approximation ratio of (2p− 2)/(p + d− 2) and has a running time of O(pdnd).
Therefore if d = 1, our algorithm guarantees an approximation ratio of 2 and
has a running time of O(pn). This algorithm, then, is the fastest known (and
easiest to implement) 2-approximation for the remote-clique problem. Our proof
also answers an open question from [2] by showing that the greedy algorithm
does indeed obtain an approximation ratio of 2.

Because the running time of d-Greedy Augment is exponential in d, it only
runs in polynomial time for constant values of d. Furthermore, the remote-clique
problem can be shown to be NP-hard only for non-constant values of p. (If p
is a constant, then the problem is solvable in polynomial time by examining
every subset of p vertices and choosing the maximum weight subset). Therefore,
increasing the value of d does not affect the approximation ratio asymptotically.
However, we include the analysis for all values of d both for completeness and
because it could have some practical benefit for small values of p. For example,
if p = 4, then the naive exact algorithm would take quartic time, whereas if
we were willing to spend quadratic time, we could run d-Greedy Augment for
d = 2 to guarantee finding a solution at least 2

3 the value of the optimal solution.
To prove an approximation ratio of (2p− 2)/(p+ d− 2), we use the technique

of factor-revealing linear programs [5, 6], which is a simple generalization of a
method often used to provide bounds for approximation algorithms. Consider a
maximization (resp., minimization) problem P . A typical analysis of an approx-
imation algorithm ALG for P proceeds by using the behavior of ALG and the
structure of P to generate a number of inequalities. These inequalities are then
combined to provide a bound on the ratio of the value of the solution obtained by
ALG to that of an optimal solution. Often, this can be done by straightforward

An Improved Analysis for a Greedy Remote-Clique Algorithm 51

manipulation, but not always. A more general way of obtaining a bound is to
view the process as an optimization problem Q in its own right, in which an
adversary tries to minimize (resp., maximize) the value of ALG’s solution to P
subject to the constraints given by the generated inequalities. The optimal solu-
tion to Q is then a bound on the performance of ALG. If Q can be formulated as
a linear program, then this is a factor-revealing LP, which can be solved using
duality. The simplicity of this technique makes it applicable to many problems,
but in most cases it does not seem to be the easiest way to provide a bound.
However, there are some algorithms, including the greedy algorithm examined
here, in which it is the only known technique to provide a tight bound.

Before we proceed with the analysis of d-Greedy Augment, we define some
notation that will be used in this paper:

– For any natural number n, let [n] = {1, . . . , n}.
– For any set S and integer k, let

(
S
k

)
= {S′ ⊆ S : |S′| = k}. If k < 0 or k > |S|,

then
(
S
k

)
= ∅.

We will also need the following easy to prove combinatorial identities.

Lemma 1. Let n be a positive integer and let i and j be two nonnegative integers
such that j ≤ i ≤ n. Then if f is some function defined on the domain

([n]
j

)
,

∑
I∈([n]

i)

∑
J∈(I

j)
f(J) =

(
n− j

i− j

) ∑
J∈([n]

j)
f(J) .

Proof. Omitted for brevity.1 ��

Lemma 2. For all integers k, d, and s, such that 0 ≤ k ≤ d ≤ s,(
s

d

)(
d

k

)
=
(
s

k

)(
s− k

d− k

)
.

Proof. Omitted for brevity. ��

2 Analysis of d-Greedy Augment

The algorithm we analyze, called d-Greedy Augment, maintains a set of ver-
tices T that starts empty. At each step in the algorithm, it augments T by the
set of d vertices that will add the most weight to T . When |T | = p, d-Greedy
Augment terminates and returns the set T . (Throughout this paper, we assume
for simplicity that d divides p evenly.) To be more precise, we define the following
notation. For any subset of vertices V ′ ⊆ V that is disjoint from T , let

augT (V ′) =
∑

v′∈V ′

∑
v∈T

w(v′, v) +
∑

{v′
1,v′

2}∈(V ′
2)

w(v′1, v
′
2) .

1 The proofs omitted in this paper can be found in the thesis upon which this paper
is based [7].

52 B.E. Birnbaum and K.J. Goldman

In other words, augT (V ′) is the amount of edge weight that the vertices in V ′

add to T if T is augmented by V ′. At each step in the algorithm, d-Greedy
Augment chooses a set of d vertices V ′ that maximizes augT (V ′) and adds
them to T . For the first step, this means that d-Greedy Augment chooses a
group of d vertices with the heaviest edge weights (breaking ties arbitrarily).2

By storing and incrementally updating the value of augT (V ′) for each set V ′ of
size d, d-Greedy Augment can be be implemented to run in time O(pdnd).

Before we begin with the proof that d-Greedy Augment obtains an approx-
imation ratio of (2p − 2)/(p + d − 2), we observe in the following theorem that
this ratio is a tight bound on the performance of d-Greedy Augment.

Theorem 1. There exist infinitely many remote-clique problem instances in
which the ratio of the average edge weight in an optimal solution to the average
edge weight in the solution returned by d-Greedy Augment is (2p − 2)/(p +
d− 2).

Proof. Consider the following problem instance (G = (V,E), p), in which |V | =
2p and V is partitioned into p/d subsets of d vertices called V1, . . . , Vp/d and one
group of p vertices called O. The edge weights are determined as follows:

w(v1, v2) =
{

2 if v1, v2 ∈ Vi for some i or v1, v2 ∈ O
1 otherwise .

This construction is illustrated in Fig. 1. The edges in this problem instance
satisfy the triangle inequality since every edge either has weight 1 or has weight
2. It is clear that d-Greedy Augment could (if ties were broken badly) return
the solution T =

⋃
i Vi, whereas the optimal solution is O. If this happens, the

total edge weight in T is

p

d

(
d

2

)
· 2 +

((
p

2

)
− p

d

(
d

2

))
· 1 =

1
2
p(p + d− 2) ,

and since the total edge weight in O is 2
(
p
2

)
, the ratio of the performance of an

optimal algorithm to that of d-Greedy Augment is (2p−2)/(p+d−2). To see
that there are infinitely many such problem instances, note that without affecting
the relative performance of d-Greedy Augment, we can add arbitrarily many
vertices to this construction in which every edge incident to these new vertices
has weight 1. ��

We now continue with a proof of our approximation ratio. For an instance of
the remote-clique problem, let OPT be the average edge weight in an optimal

2 Note that if d = 1, then during the first step augT (V ′) = 0 for all V ′ ⊆ V such
that |V ′| = d. Thus for d = 1, d-Greedy Augment just starts with an arbitrary
vertex. This is in fact the only difference between d-Greedy Augment for d = 1
and the algorithm analyzed in [2]; instead of initializing T with an arbitrary vertex,
the algorithm in [2] initializes T with two vertices that are endpoints of a maximum
weight edge.

An Improved Analysis for a Greedy Remote-Clique Algorithm 53

Fig. 1. An example (for p = 12 and d = 4) showing that the approximation ratio
of (2p − 2)/(p + d − 2) is a tight bound on the worst-case performance of d-Greedy
Augment. Edges that are contained within the same circle have weight 2, and all other
edges have weight 1.

solution. To prove that d-Greedy Augment achieves an approximation ratio
of (2p− 2)/(p + d− 2), we will prove that at each augmenting step, there exists
a group of d vertices V ′ for which augT (V ′) is sufficiently high.

Lemma 3. Before each augmenting step in the algorithm, there exists a group
of d vertices V ′ ⊆ V such that V ′ is disjoint from T and augT (V ′) ≥ 1

2d(|T |+
d− 1)OPT .

Proof. We defer the proof of the lemma when |T | > 0 to the remainder of this
section. When |T | = 0, the statement of the lemma is that there exists at least
one group of vertices V ′ ⊆ V of size d and total weight at least

(
d
2

)
OPT . We

omit the details for brevity, but it is easy to show using an averaging argument
that such a group of vertices exists inside an optimal solution. This is because
the average weight of the edges in an optimal solution is the same as the average
weight required of the edges in V ′. ��

With this fact, it is straightforward to prove that d-Greedy Augment achieves
an approximation ratio of (2p− 2)/(p + d− 2).

Theorem 2. The average weight of the edges in the solution returned by d-
Greedy Augment is at least (p + d− 2)/(2p− 2) ·OPT .

Proof. Since d-Greedy Augment adds d vertices to T during each augment-
ing step, we have that |T | = (k − 1)d before the kth augmenting step. Thus
by Lemma 3, there exists a set of d vertices V ′ ⊆ V that can be added to T
such that augT (V ′) = 1

2d(dk − 1)OPT . We know therefore that the weight of
the edges added by d-Greedy Augment on the kth augmenting step is at least

54 B.E. Birnbaum and K.J. Goldman

Fig. 2. An intermediate state of d-Greedy Augment

1
2d(dk−1)OPT , since d-Greedy Augment chooses the set of d vertices V ′ that
maximizes augT (V ′). Thus after k steps, the weight of the edges in T is at least

k∑
j=1

1
2
d(dj − 1)OPT =

1
4
dk(dk + d− 2)OPT .

Since the algorithm terminates after p/d steps, the final total weight of the edges
in T is at least 1

4p(p+ d− 2)OPT . Since there are p(p− 1)/2 edges in this set of
vertices, the average weight of the edges in the solution returned by d-Greedy
Augment is at least (p + d− 2)/(2p− 2) ·OPT . ��

To prove Lemma 3 when |T | > 0, we begin with some notation. Consider an
intermediate state of d-Greedy Augment. The set of vertices chosen so far
is T , and let S be the set of vertices in an optimal solution. Let u = |S ∩ T |,
t = |T − S|, and s = |S − T |. As shown in Fig. 2, arbitrarily label the vertices
in S ∩ T as a1, a2, . . . , au, the vertices in T − S as b1, b2, . . . , bt, and the vertices
in S − T as c1, c2, . . . , cs. Note that one of u or t may be equal to zero, but
since we are in an intermediate state of d-Greedy Augment, we know that
d ≤ |T | ≤ |S| − d, and hence u + t ≥ d and s ≥ t + d.

We break the proof of Lemma 3 when |T | > 0 into five cases based on the
values of u and t and state the proof for each case as its own lemma. For each
of these cases, we show that a group of d vertices satisfying the condition of
Lemma 3 can be found in the set S − T . We start with the case when S and
T are disjoint, i.e., when u = 0 and t ≥ 1. This case permits a direct analysis
without the use of linear programming. It is instructive to analyze this case
first, since it will become more clear why imitating this analysis does not seem
to be possible for the other cases. This should help motivate the use of the more
general technique of factor-revealing linear programs for the other cases.

Lemma 4. Lemma 3 holds when u = 0 and t ≥ 1. Specifically, there exists a
set of indices L ∈

([s]
d

)
such that

An Improved Analysis for a Greedy Remote-Clique Algorithm 55

∑
�∈L

∑
j∈[t]

w(bj , c�) +
∑

{�,m}∈(L
2)

w(c�, cm) ≥ 1
2
d(d + t− 1)OPT .3

Proof. The key observation is that because of the triangle inequality, edges ad-
jacent to the high-weight edges in S must also have high weight on average. By
the triangle inequality,

w(bj , c�) + w(bj , cm) ≥ w(c�, cm) j ∈ [t] , {�,m} ∈
(

[s]
2

)
.

Summing over all j, this becomes∑
j∈[t]

w(bj , c�) +
∑
j∈[t]

w(bj , cm) ≥ tw(c�, cm) {�,m} ∈
(

[s]
2

)
.

Now, summing over all {�,m} yields

∑
{�,m}∈([s]

2)

⎛⎝∑
j∈[t]

w(bj , c�) +
∑
j∈[t]

w(bj , cm)

⎞⎠ ≥ t
∑

{�,m}∈([s]
2)

w(c�, cm) = t

(
s

2

)
OPT ,

(1)

where the equality follows from the optimality of S. By applying Lemma 1 to
the left-hand side of (1), we can rewrite it as

(s− 1)
∑
�∈[s]

∑
j∈[t]

w(bj , c�) ≥ t

(
s

2

)
OPT ,

which can be simplified to∑
�∈[s]

∑
j∈[t]

w(bj , c�) ≥
st

2
OPT .

From this fact, along with the optimality of S, it follows that4(
s− 1
d− 1

)∑
�∈[s]

∑
j∈[t]

w(bj , c�) +
(
s− 2
d− 2

) ∑
{�,m}∈([s]

2)
w(c�, cm)

≥
((

s− 1
d− 1

)
st

2
+
(
s− 2
d− 2

)(
s

2

))
OPT

=
1
2

(
s

d

)
d(d + t− 1)OPT , (2)

3 Note that if d = 1, then the second sum in this inequality is empty. In general, there
will be a number of formulas in this section that simplify significantly if d = 1.

4 Note that if d = 1, then
(

s−2
d−2

)
= 0.

56 B.E. Birnbaum and K.J. Goldman

where the equality is obtained from some simplification using Lemma 2. We can
now apply Lemma 1 to the left-hand side of this inequality to obtain

∑
L∈([s]

d)

⎛⎜⎝∑
�∈L

∑
j∈[t]

w(bj , c�) +
∑

{�,m}∈(L
2)

w(c�, cm)

⎞⎟⎠ ≥ 1
2

(
s

d

)
d(d + t− 1)OPT .

But this implies that there must exist at least one L ∈
([s]

d

)
such that∑

�∈L

∑
j∈[t]

w(bj , c�) +
∑

{�,m}∈(L
2)

w(c�, cm) ≥ 1
2
d(d + t− 1)OPT .

��
Now that we have proved Lemma 3 for the case when T is disjoint from S, we
turn to proving Lemma 3 when some number of vertices in T are also in S.
Intuitively, the algorithm should do no worse when T is not disjoint from S.
If d-Greedy Augment has already found some of the optimal solution, then
that should not hurt its performance. However, we will see that this case actually
seems harder to analyze, and we will need to use factor-revealing linear programs
for this case. We start with the most general non-disjoint case that we examine,
when u ≥ 2 and t ≥ 1. (Our application of the triangle inequality leads to
certain boundary cases that arise for smaller values of u and t, which we handle
separately.)

Lemma 5. Lemma 3 holds when u ≥ 2 and t ≥ 1. Specifically, there exists a
set of indices L ∈

([s]
d

)
such that

∑
�∈L

⎛⎝∑
h∈[u]

w(ah, c�) +
∑
j∈[t]

w(bj , c�)

⎞⎠ +
∑

{�,m}∈(L
2)

w(c�, cm) ≥ 1
2
d(d + t + u − 1)OPT .

Proof. It is sufficient to show that(
s− 1
d− 1

)∑
�∈[s]

⎛⎝∑
h∈[u]

w(ah, c�) +
∑
j∈[t]

w(bj , c�)

⎞⎠+
(
s− 2
d− 2

) ∑
{�,m}∈([s]

2)
w(c�, cm)

≥ 1
2

(
s

d

)
d(d + t + u− 1)OPT (3)

since we can then proceed to prove this lemma as we proved Lemma 4 from (2).
To prove (3), we follow the same strategy that we used in Lemma 4; we use the
triangle inequality and the optimality of S. By the triangle inequality, we have

w(ah, c�) + w(ah, cm)− w(c�, cm) ≥ 0 h ∈ [u] , {�,m} ∈
(

[s]
2

)
(4)

w(bj , c�) + w(bj , cm)− w(c�, cm) ≥ 0 j ∈ [t] , {�,m} ∈
(

[s]
2

)
(5)

w(ah, c�) + w(ai, c�)− w(ah, ai) ≥ 0 {h, i} ∈
(

[u]
2

)
, � ∈ [s] . (6)

An Improved Analysis for a Greedy Remote-Clique Algorithm 57

By the optimality of S, we have

∑
{h,i}∈([u]

2)
w(ah, ai) +

∑
{�,m}∈([s]

2)
w(c�, cm) +

∑
h∈[u]

∑
�∈[s]

w(ah, c�) ≥
(
s + u

2

)
OPT .

(7)
At the corresponding point in the proof of Lemma 4, it was possible to combine
the inequalities expressing the triangle inequality and the optimality of S to
yield (2) and finish the proof. In this lemma, however, the inequalities have a
much more complicated form because of the overlap of S and T , and it does not
seem possible to combine them directly to yield (3). To prove (3), we instead
consider an adversary trying to minimize

(
s− 1
d− 1

)∑
�∈[s]

⎛⎝∑
h∈[u]

w(ah, c�) +
∑
j∈[t]

w(bj , c�)

⎞⎠+
(
s− 2
d− 2

) ∑
{�,m}∈([s]

2)
w(c�, cm)

subject to the constraints given by (4), (5), (6), and (7). If we can show that
the optimal value of this factor-revealing linear program (where the variables
are the weights of the edges) is at least 1

2

(
s
d

)
d(d + t + u − 1)OPT , then we will

have proved (3). Since the value of any feasible dual solution is a lower bound
for the optimal value of the primal, we can prove (3) by finding a feasible dual
solution with value 1

2

(
s
d

)
d(d + t + u− 1)OPT . The dual linear program is

maximize (
s + u

2

)
OPT · z

subject to

−
∑
�∈[s]

y{h,i},� + z ≤ 0 {h, i} ∈
(

[u]
2

)

−
∑
h∈[u]

wh,{�,m} −
∑
j∈[t]

xj,{�,m} + z ≤
(
s− 2
d− 2

)
{�,m} ∈

(
[s]
2

)
(8)

∑
m∈[s]−{�}

wh,{�,m} +
∑

i∈[u]−{h}
y{h,i},� + z ≤

(
s− 1
d− 1

)
h ∈ [u] , � ∈ [s]

∑
m∈[s]−{�}

xj,{�,m} ≤
(
s− 1
d− 1

)
j ∈ [t] , � ∈ [s]

where wh,{�,m} corresponds to (4), xj,{�,m} corresponds to (5), y{h,i},� corre-
sponds to (6), and z corresponds to (7). It can be easily verified that the following
dual solution is feasible.

58 B.E. Birnbaum and K.J. Goldman

w′
h,{�,m} =

s− d− t + 1
(u + s)(s− 1)

(
s− 1
d− 1

)
h ∈ [u] , {�,m} ∈

(
[s]
2

)
x′

j,{�,m} =
1

s− 1

(
s− 1
d− 1

)
j ∈ [t] , {�,m} ∈

(
[s]
2

)
y′{h,i},� =

d + t + u− 1
(u + s)(u + s− 1)

(
s− 1
d− 1

)
{h, i} ∈

(
[u]
2

)
, � ∈ [s]

z′ =
d(d + t + u− 1)

(u + s)(u + s− 1)

(
s

d

)
The only constraint that is not trivial to verify is (8), but some straightforward
manipulation shows that if d = 1, then the left-hand side is equal to

− su(u + t)
(u + s)(u + s− 1)(s− 1)

,

which is no greater than 0 since s ≥ 2 when t ≥ 1. Similarly, if d > 1, then the
left-hand side can be written as(

1− su(d + t + u− 1)
(u + s)(u + s− 1)(d− 1)

)(
s− 2
d− 2

)
,

which is clearly no greater than
(

s−2
d−2

)
. We conclude the proof by noting that the

value of this dual solution is(
s + u

2

)(
s

d

)
d(d + t + u− 1)

(u + s)(u + s− 1)
OPT =

1
2

(
s

d

)
d(d + t + u− 1)OPT ,

which implies that the optimal value of the primal is no less than 1
2

(
s
d

)
d(d + t +

u− 1)OPT and hence implies (3), thus proving the lemma. ��

We have now proved the most general (and hardest) case of Lemma 3. It remains
only to prove three boundary cases. We state the lemmas corresponding to the
next two of these cases without proof. The paradigm for proving them is the same
as was used to prove Lemma 5. First, the primal linear program is constructed
with inequalities based on the triangle inequality and the optimality of S. Then
the dual linear program is found, and a feasible solution is constructed which yields
an appropriate lower bound on the primal. This bound on the primal is then used
to prove the statement of Lemma 3. The next two cases we consider are when u = 1
and t ≥ 1 (Lemma 6) and when u ≥ 2 and t = 0 (Lemma 7). The former needs to
be considered separately because we do not have constraint (6) (or dual variables
of the form y{h,i},�), and the latter needs to be considered separately because we
do not have constraint (5) (or dual variables of the form xj,{�,m}).

Lemma 6. Lemma 3 holds when u = 1 and t ≥ 1. Specifically, there exists a
set of indices L ∈

([s]
d

)
such that

∑
�∈L

⎛⎝w(a1, c�) +
∑
j∈[t]

w(bj , c�)

⎞⎠+
∑

{�,m}∈(L
2)

w(c�, cm) ≥ 1
2
d(d + t)OPT .

An Improved Analysis for a Greedy Remote-Clique Algorithm 59

Proof. Omitted for brevity. ��

Lemma 7. Lemma 3 holds when u ≥ 2 and t = 0. Specifically, there exists a
set of indices L ∈

([s]
d

)
such that∑

�∈L

∑
h∈[u]

w(ah, c�) +
∑

{�,m}∈(L
2)

w(c�, cm) ≥ 1
2
d(d + u− 1)OPT .

Proof. Omitted for brevity. ��

The final case yet to be covered is when u = 1 and t = 0. If this is true, then it
must be the case that d = 1, since u + t ≥ d. The proof of this case follows from
a simple contradiction argument.

Lemma 8. Lemma 3 holds when u = 1 and t = 0 (and hence d = 1). Specifi-
cally, there exists an � ∈ [s] such that w(a1, c�) ≥ 1

2OPT .

Proof. Suppose by way of contradiction that no such � exists. Then by the tri-
angle inequality, w(c�, cm) < OPT for all {�,m} ∈

([s]
2

)
. But this contradicts

the optimality of S, since it implies that every edge in S has weight strictly less
than OPT . Thus we conclude that the set S − T does indeed contain a vertex
c� satisfying the statement of the lemma. ��

Lemmas 4, 5, 6, 7, and 8 together imply Lemma 3, which in turn implies Theo-
rem 2, stating that d-Greedy Augment has approximation ratio (2p−2)/(p+
d− 2).

3 Conclusion

For the remote-clique problem, we have shown that the algorithm d-Greedy
Augment achieves an approximation ratio of (2p− 2)/(p + d− 2) and that this
ratio is a tight bound on the worst-case performance of the algorithm. When
d = 1, the algorithm is equivalent to the greedy algorithm analyzed in [2], in
which it is proved that the algorithm has an approximation ratio of 4. By using
factor-revealing linear programs, we have been able to improve the analysis of
this algorithm to show that it in fact achieves an approximation ratio of 2.
The usefulness of factor-revealing LPs in the analysis of d-Greedy Augment
suggests possible applicability of this technique to the study of other algorithms
whose analysis involves multiple inequalities that interact in subtle ways.

Acknowledgements

The authors thank Jon Turner for many helpful discussions related to this
research.

60 B.E. Birnbaum and K.J. Goldman

References

1. Kuby, M.: Programming models for facility dispersion: the p-dispersion and max-
isum dispersion problems. Geographical Analysis 19 (1987) 315–329

2. Ravi, S.S., Rosencrantz, D.J., Tayi, G.K.: Heuristic and special case algorithms for
dispersion problems. Operations Research 42 (1994) 299–310

3. Chandra, B., Halldorsson, M.M.: Approximation algorithms for dispersion problems.
J. Algorithms 38 (2001) 438–465

4. Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum
dispersion. Operations Research Letters 21 (1997) 133–137

5. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM
50 (2003) 795–824

6. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized on-line
matching. In: FOCS ’05: Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science, Washington, DC, USA, IEEE Computer Society
(2005) 264–273

7. Birnbaum, B.E.: The remote-clique problem revisited: Undergraduate honors the-
sis. Technical Report WUCSE-2006-26, Washington University Department of Com-
puter Science and Engineering, St. Louis, MO, USA (2006)

Tight Results on Minimum Entropy Set Cover

Jean Cardinal1, Samuel Fiorini2, and Gwenaël Joret1,	

1 Computer Science Department
Université Libre de Bruxelles CP 212

B-1050 Brussels, Belgium
{jcardin, gjoret}@ulb.ac.be

2 Department of Mathematics
Université Libre de Bruxelles CP 216

B-1050 Brussels, Belgium
sfiorini@ulb.ac.be

Abstract. In the minimum entropy set cover problem, one is given a collection
of k sets which collectively cover an n-element ground set. A feasible solution
of the problem is a partition of the ground set into parts such that each part is
included in some of the k given sets. The goal is to find a partition minimizing the
(binary) entropy of the corresponding probability distribution, i.e., the one found
by dividing each part size by n. Halperin and Karp have recently proved that the
greedy algorithm always returns a solution whose cost is at most the optimum
plus a constant. We improve their result by showing that the greedy algorithm
approximates the minimum entropy set cover problem within an additive error of
1 nat = log2 e bits � 1.4427 bits. Moreover, inspired by recent work by Feige,
Lovász and Tetali on the minimum sum set cover problem, we prove that no
polynomial-time algorithm can achieve a better constant, unless P = NP. We also
discuss some consequences for the related minimum entropy coloring problem.

1 Introduction

Let V be an n-element ground set and S = {S1, . . . ,Sk} be a collection of subsets of V
whose union is V . A cover is an assignment f : V →S of each point of V to a set of
S such that v ∈ f (v) for all v ∈ V . For each i = 1, . . . ,k, we let qi = qi(f) denote the
fraction of points assigned by f to the i-th set of S , i.e.,

qi :=
| f−1(Si)|

n
. (1)

The minimum entropy set cover problem (MESC) asks to find a cover f minimizing the
entropy of the distribution (q1, . . . ,qk). Letting ENT(f) denote this latter quantity, we
have

ENT(f) :=−
k

∑
i=1

qi logqi. (2)

	 Research Fellow of the Fonds National de la Recherche Scientifique (FNRS).

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 61–69, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

62 J. Cardinal, S. Fiorini, and G. Joret

Note that, throughout, all logarithms are to base 2. Note also that, for definiteness, we
set x logx = 0 when x = 0.

The minimum entropy set cover problem is a NP-hard variant of the classical min-
imum cardinality set cover problem. Its recent introduction by Halperin and Karp [8]
was motivated by various applications in computational biology. The problem is closely
related to the minimum entropy coloring problem, which itself originates from the prob-
lem of source coding with side information in information theory, see Alon and Orlit-
sky [1].

The well-known greedy algorithm readily applies to MESC. It iteratively assigns to
some set of S all unassigned points in that set, until all points are assigned. In each iter-
ation, the algorithm choses a set that contains a maximum number of unassigned points.
Halperin and Karp [8] studied the performance of the greedy algorithm for MESC. They
proved that the entropy of the cover returned by the algorithm is at most the optimum
plus some constant1. Approximations within an additive error are considered because
the entropy is a logarithmic measure. In the case of MESC, the optimum value always
lies between 0 and logn.

In this paper, we revisit the greedy algorithm and give a simple proof that it approx-
imates MESC within 1 nat, that is, loge� 1.4427 bits. We then show that the problem
is NP-hard to approximate to within (1− ε) loge for all positive ε . At the end of the
paper, we discuss some consequences for the minimum entropy coloring problem.

At first sight, it might seem surprising that MESC can be approximated so well
whereas its father problem, the minimum cardinality set cover problem, is notoriously
difficult to approximate, see Feige [3]. We conclude the introduction by offering an
intuitive explanation to this phenomenon. A consequential difference between the two
problems is the penalty incurred for using too many sets. A minimum entropy cover is
allowed to use a lot more sets than a minimum cardinality cover, provided the parts of
these extra sets are small.

The same phenomenon also appears when one compares the minimum cardinality
set cover problem to the minimum sum set cover problem (MSSC), see Feige, Lovász
and Tetali [5]. The approximability status of the latter problem is similar to that of
MESC: the greedy algorithm approximates it within a factor of 4 and achieving a factor
of 4−ε is NP-hard, for all positive ε . Furthermore, the techniques used here for proving
the corresponding results on MESC are comparable to the ones used in [5] for MSSC,
especially for the inapproximability result.

2 Analysis of the Greedy Algorithm

We begin this section by exhibiting a family of instances on which the greedy algo-
rithm perfoms poorly, namely, returns a solution whose cost exceeds the optimum by
roughly loge bits. Below, we use the following bounds on the factorial. These bounds
are implied by the more precise bounds given, e.g., in [6].

1 They claim that the greedy algorithm gives a 3 bits approximation (which is correct). However,
their proof is flawed (e.g., see their Lemma 6). A straightforward fix gives an approximation
guarantee of 3+2log e� 5.8854 bits.

Tight Results on Minimum Entropy Set Cover 63

Lemma 1. For any positive integer �, we have(
�

e

)�

< �! < 2
√

2π�

(
�

e

)�

.

Let � be a positive integer. We let the points of V be the cells of a �× �! array and S be
the union of two collections Scol and Sline each of which partitions V . The sets in Scol

are the �! columns of the array. For each i = 1, . . . , �, collection Sline contains �!/i sets
of size i which partition the i-th line of the array. An illustration is given in Figure 1.
(While in the figure each set of Sline consists of contiguous cells, we do not require this
in general.) Each of the collections Scol and Sline directly yields a feasible solution
for MESC, which we denote respectively by fcol and fline. Clearly, fline is one of the
possible outcomes of the greedy algorithm (sets are produced from bottom to top on
Figure 1).

�

�!

Fig. 1. The sets forming Sline

The respective costs of fcol and fline are as follows:

ENT(fcol) =−
�!

∑
j=1

1
�!

log
1
�!

= log�!,

ENT(fline) =−
�

∑
i=1

�!
i

i
� · �!

log
i

� · �!
= log�+ log�!− 1

�
log�!.

By the second inequality of Lemma 1, we then have

ENT(fline)≥ log�+ log�!− 1
�

log
[
2
√

2π�
(�

e

)�]= ENT(fcol)+ loge−o(1).

This implies that the cost of fline is at least the optimum plus loge−o(1). We now show
that the previous instances are essentially the worst for the greedy algorithm. Because
the two formulations of MESC given above are equivalent to each other, we can regard
a cover f as a partition of the ground set. Accordingly, we refer to the sets f−1(Si) as
the parts of f .

Theorem 1. Let fOPT and fG be a cover of minimum entropy and a cover returned by
the greedy algorithm, respectively. Then we have ENT(fG)≤ ENT(fOPT)+ loge.

64 J. Cardinal, S. Fiorini, and G. Joret

Proof. For i = 1, . . . ,k, we let Xi denote the i-th part of fOPT and xi = |Xi|. For v ∈ V ,
we let av be the size of the part of fG containing v. We claim that the following holds
for all v and all i:

∏
v∈Xi

av ≥ xi!. (3)

Let us consider the points of Xi in the order in which they were assigned to sets of S by
the greedy algorithm, breaking ties arbitrarily. Consider the j-th element of Xi assigned,
say v. In the iteration when v was assigned, the greedy algorithm could have picked set
Si. Because at that time at most j−1 points of Xi were assigned, at least xi− j+1 points
of Si were unassigned, and we have av ≥ xi− j + 1. This implies the claim.

We now rewrite the entropy of fG as follows:

ENT(fG) =−1
n ∑

v∈V
log

av

n
=−1

n

k

∑
i=1

∑
v∈Xi

log
av

n
=−1

n

k

∑
i=1

log ∏
v∈Xi

av

n
.

By Inequality (3) and the first inequality of Lemma 1, we then have:

ENT(fG)≤−1
n

k

∑
i=1

log
xi!
nxi
≤−1

n

k

∑
i=1

log
xxi

i

nxiexi
≤ ENT(fOPT)+ loge.

��

Finally, we mention that MESC has a natural weighted version in which each point
v ∈ V has some associated probability pv. Again, we can associate to each cover f a
probability distribution (q1, . . . ,qk). This time, we let qi denote the probability that a
random point is assigned to Si by f , that is,

qi := ∑
v∈ f−1(Si)

pv.

The goal is then to minimize (2), just as in the unweighted version. The greedy algo-
rithm easily transposes to the weighted case, and so does our analysis. This is easily seen
when the probabilities are rational. Indeed, let K be a positive integer such that K pv is
integral for all points v. Now replicate each point in the ground set K pv−1 times. Thus
we obtain an unweighted instance which is equivalent to the original weighted instance,
in the following sense. The optimum values of the two instances are equal (Lemma 2,
given below, forbids replicated versions of a point to be assigned to different sets) and
the behavior of the greedy algorithm on the new instance is identical to its behavior on
the original instance. The case of real probabilities follows by a continuity argument.

3 Hardness of Approximation

Before turning to the main theorem of this section, we state a lemma which helps de-
riving good lower bounds on the optimum. Let q = (qi) and r = (ri) be two probability
distributions over N+. If ∑�

i=1 ri ≥∑�
i=1 qi holds for all �, we say that q is dominated by

r. The lemma tells us that in such a case, the entropy of q is at least that of r, provided
that q is non-increasing (see, e.g., [9] for a proof).

Tight Results on Minimum Entropy Set Cover 65

Lemma 2. Let q = (qi) and r = (ri) be two probability distributions over N+ with finite
support. Assume that q is non-increasing, that is, qi ≥ qi+1 for i≥ 1. If q is dominated
by r, then we have ENT(q)≥ ENT(r).

We now prove that no polynomial-time algorithm for MESC can achieve a better con-
stant approximation guarantee than the greedy algorithm, unless P = NP. Halperin and
Karp [8] gave a polynomial time approximation scheme (PTAS) for the problem. Our
result does not contradict theirs since the PTAS they designed is multiplicative, i.e.,
returns a solution whose cost is most (1− ε) times the optimum.

Theorem 2. For every ε > 0, it is NP-hard to approximate the minimum entropy set
cover problem within an additive term of (1− ε) loge. This remains true on instances
such that every point is in the same number of sets and every set has the same size.

Proof. A 3SAT-6 formula is a CNF formula in which every clause contains exactly three
literals, every litteral appears in exactly three clauses, and a variable appears at most
once in each clause. Such a formula is said to be δ -satisfiable if at most a δ -fraction
of its clauses are satisfiable. It is known that distinguishing between a satisfiable 3SAT-
6 formula and one which is δ -satisfiable is NP-hard for some δ with 0 < δ < 1, see
Feige et al. [5]. In the latter reference, the authors slightly modified a reduction due to
Feige [3] to design a polynomial-time reduction associating to any 3SAT-6 formula ϕ a
corresponding set system S(ϕ) = (V,S). They used the new reduction to prove that the
minimum sum set cover problem is NP-hard to approximate to within 2− ε on uniform
regular hypergraphs (see Theorem 12 in that paper). For any given constants c > 0
and λ > 0, it is possible to set the values of the parameters of the reduction in such a
way that:

– the sets of S have all the same size n/t, where n denotes the number of points in
V , and every point of V is contained in the same number of sets;

– if ϕ is satisfiable, then V can be covered by t disjoint sets of S ;
– if ϕ is δ -satisfiable, then every i sets chosen from S cover at most a 1− (1−

1/t)i + λ fraction of the points of V , for 1≤ i≤ ct.

Suppose from now on that ϕ is a 3SAT-6 formula which is either satifiable or δ -
satisfiable, and denote by fOPT an optimal solution of MESC with input S(ϕ). For
1 ≤ i ≤ k, let qi = qi(fOPT) be defined as in (1). For i > k, we let qi = 0. Letting q
denote the sequence (qi), we assume without loss of generality that q is non-increasing.

If ϕ is satisfiable, then it follows from Lemma 2 that the optimal solution consists
in covering V with t disjoint sets. Hence, ENT(fOPT) = ENT(q) = logt in this case.
Assume now that ϕ is δ -satisfiable. Let α = ε/2, λ = α2/2−α3/6 and c =− lnλ .

Claim 1. The following lower bound on the optimum holds:

ENT(q)≥ log t +(1− ε/2) loge + o(1),

where o(1) tends to zero when t tends to infinity.

66 J. Cardinal, S. Fiorini, and G. Joret

Claim 1 implies that any algorithm approximating MESC within an additive term of
(1− ε) loge can be used to decide whether ϕ is satisfiable or δ -satisfiable. Indeed, as
noted in [5], t may be assumed to be larger than any fixed constant. The theorem then
follows.

In order to prove the claim, we define a sequence r = (ri) as follows (see Figure 2
for an illustration):

ri =

⎧⎪⎪⎨⎪⎪⎩
1/t for 1≤ i≤ �αt�,
(1−1/t)i−1/t for �αt�+ 1≤ i≤ 	c̃t
,
1−∑	c̃t

i=1 ri for i = 	c̃t
+ 1,
0 otherwise,

where c̃ is a real such that

�αt�
t

+(1−1/t)�αt�− (1−1/t)c̃t = 1. (4)

By our choice of parameters, we can assume �αt�+1≤ 	c̃t
 by lowering ε if necessary.
From the definition of c̃ we have

	c̃t

∑
i=1

ri =
�αt�

t
+(1−1/t)�αt�− (1−1/t)	c̃t
 ≤ 1.

Therefore, the sequence r is a probability distribution over N+.

Fig. 2. The shape of distribution r = (ri) for t = 20 and ε = 1/2

By the properties of S(ϕ) we have

�

∑
i=1

qi ≤ �/t and
�

∑
i=1

qi ≤ 1− (1−1/t)�+ λ (5)

for 1≤ �≤ 	ct
, and it can be checked that c̃≤ c for t large enough.

Claim 2. Sequence q is dominated by sequence r, that is, for all � we have

�

∑
i=1

qi ≤
�

∑
i=1

ri. (6)

Tight Results on Minimum Entropy Set Cover 67

For 1 ≤ � ≤ �αt�, Inequality (6) readily follows from the definition of r and Equation
(5). Notice that we have

1− (1−1/t)�αt�+ λ ≤ 1− (1−α + α2/2−α3/6)+ λ = α ≤ �αt�/t (7)

whenever t is large enough. Hence, for �αt�+1≤ �≤ 	c̃t
, from Equations (5) and (7)
we derive

�

∑
i=1

qi ≤ 1− (1−1/t)�+ λ = 1− (1−1/t)�αt�+ λ +
�

∑
i=�αt�+1

(1−1/t)i−1/t

≤ �αt�/t +
�

∑
i=�αt�+1

(1−1/t)i−1/t =
�

∑
i=1

ri.

Finally, note that (6) is also true for � > 	c̃t
, as the qi’s and ri’s both sum up to 1.
It follows that q is dominated by r. In other words, Claim 2 holds true. By Lemma 2,
we have ENT(q) ≥ ENT(r). In order to show Claim 1, it then suffices to prove the
following claim.

Claim 3. We have ENT(r)≥ logt +(1− ε/2) loge + o(1).

The entropy of r can be expressed as follows:

ENT(r) =−
	c̃t
+1

∑
i=1

ri logri =−
	c̃t

∑
i=1

ri logri + o(1)

=
�αt�

t
log t−

	c̃t

∑
i=�αt�+1

(1−1/t)i−1

t
log

(1−1/t)i−1

t
+ o(1)

= α logt +
1
t

log
t

t−1

	c̃t

∑
i=�αt�+1

(i−1)(1−1/t)i−1

+
1
t

log t
	c̃t

∑
i=�αt�+1

(1−1/t)i−1 + o(1).

Let β := limt→∞ c̃. In the sum above, the second and third terms are asymptotically
equal to respectively loge · ((1 + α)e−α − (1 + β)e−β) and logt · (e−α − e−β) (proofs
are omitted). It follows from Equation (4) that

β =− ln(α + e−α−1).

In virtue of this equation and by what precedes, we can rewrite the entropy of r as

ENT(r) = α logt + loge · ((1 + α)e−α− (1 + β)e−β)+ logt · (e−α − e−β)+ o(1)

= (α + e−α − e−β) logt +((1 + α)e−α− (1 + β)e−β) loge + o(1)

= log t +((1 + α)e−α− (1 + β)e−β) loge + o(1).

68 J. Cardinal, S. Fiorini, and G. Joret

We leave it to the reader to show that αe−α −β e−β is nonnegative provided ε is suffi-
ciently small. Claim 3 follows then by noticing

(1 + α)e−α− (1 + β)e−β = 1−α + αe−α −β e−β ≥ 1−α = 1− ε/2.

Hence, Claim 1 and the theorem follow. ��

4 Graph Colorings with Minimum Entropy

There are situations where the collection of sets S = {S1, . . . ,Sk} input to the minimum
entropy set cover problem is given implicitly. One possibility, which is the focus of this
section, is to define S as the collection of all inclusion-wise maximal stable sets of some
(simple, undirected) graph G = (V,E). The corresponding variant of MESC is known as
the minimum entropy coloring problem (MEC). It stems from information theory, having
applications in zero-error coding with side information [1]. Notice that, by our choice
of S , every cover f can be regarded as a (proper) coloring of the graph G.

The results of Section 2 directly apply to MEC. The greedy algorithm, transposed
to the setting of MEC, constructs a coloring of G by iteratively removing a maximum
size stable set from G. Of course, its running time can no longer be guaranteed to be
polynomial, unless P = NP. Theorem 1 implies the following result, which again holds
in the weighted case.

Corollary 1. Let fOPT and fG be a coloring of G with minimum entropy and a coloring
returned by the greedy algorithm, respectively. Then we have ENT(fG)≤ ENT(fOPT)+
loge.

The bound given in Corollary 1 is asymptotically tight because the bad MESC instances
described in the beginning of Section 2 can be easily turned into MEC instances. Indeed,
for a given �, it suffices to consider the graph G obtained from the complete graph on V
by removing every edge which is entirely included in some set of Scol or Sline.

Clearly, the greedy algorithm runs in polynomial time when restricted to graphs in
which a maximum weight stable set can be found in polynomial time. This includes
perfect graphs [7] and claw-free graphs [10]. So MEC can be approximated within an
additive term of loge on such graphs, in polynomial time. In contrast, for arbitrary
graphs it is known that for any ε > 0 there is no polynomial-time approximation algo-
rithm whose additive error is bounded by (1−ε) log n unless ZPP=NP. This was proved
by the authors in [2] using as a black-box an inapproximability result for the minimum
cardinality coloring problem due to Feige [4].

References

[1] N. Alon and A. Orlitsky. Source coding and graph entropies. IEEE Trans. Inform. Theory,
42(5):1329–1339, September 1996.

[2] J. Cardinal, S. Fiorini, and G. Joret. Minimum entropy coloring. In Proceedings of the 16th
International Symposium on Algorithms and Computation (ISAAC 2005), volume 3827 of
Lecture Notes in Computer Science, pages 819–828, Berlin, 2005. Springer.

Tight Results on Minimum Entropy Set Cover 69

[3] U. Feige. A threshold of lnn for approximating set cover. J. ACM, 45(4):634–652, 1998.
[4] U. Feige and J. Kilian. Zero knowledge and the chromatic number. J. Comput. System

Sci., 57(2):187–199, 1998. Complexity 96—The Eleventh Annual IEEE Conference on
Computational Complexity (Philadelphia, PA).

[5] U. Feige, L. Lovász, and P. Tetali. Approximating min sum set cover. Algorithmica, 40(4):
219–234, 2004.

[6] W. Feller. An introduction to probability theory and its applications. Vol. I. Third edition.
John Wiley & Sons Inc., New York, 1968.

[7] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial op-
timization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin, second
edition, 1993.

[8] E. Halperin and R. M. Karp. The minimum-entropy set cover problem. Theoret. Comput.
Sci., 348(2-3):240–250, 2005.

[9] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge Mathematical Library.
Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition.

[10] D. Nakamura and A. Tamura. A revision of Minty’s algorithm for finding a maximum
weight stable set of a claw-free graph. J. Oper. Res. Soc. Japan, 44(2):194–204, 2001.

A Tight Lower Bound for
the Steiner Point Removal Problem on Trees

T.-H. Hubert Chan1,�, Donglin Xia2,��,
Goran Konjevod2,��, and Andrea Richa3,���

1 Computer Science Department, Carnegie Mellon University
hubert@cs.cmu.edu

2 Department of Computer Science and Engineering, Arizona State University
{dxia, goran}@asu.edu

3 Department of Computer Science and Engineering, Arizona State University
aricha@asu.edu

Abstract. Gupta (SODA’01) considered the Steiner Point Removal
(SPR) problem on trees. Given an edge-weighted tree T and a subset
S of vertices called terminals in the tree, find an edge-weighted tree TS

on the vertex set S such that the distortion of the distances between ver-
tices in S is small. His algorithm guarantees that for any finite tree, the
distortion incurred is at most 8. Moreover, a family of trees, where the
leaves are the terminals, is presented such that the distortion incurred by
any algorithm for SPR is at least 4(1 − o(1)). In this paper, we close the
gap and show that the upper bound 8 is essentially tight. In particular,
for complete binary trees in which all edges have unit weight, we show
that the distortion incurred by any algorithm for the SPR problem must
be at least 8(1 − o(1)).

1 Introduction

The Steiner Point Removal (SPR) problem was first considered by Gupta [1].
An instance of the problem is given by an edge-weighted tree T = (V,E) and a
subset S ⊆ V of vertices called terminals. Informally, we would like to find an
edge-weighted tree TS on the terminal set S such that the new tree approximates
all the distances between terminal pairs in the original tree. Formally, we say
that a weighted tree TS on the set S has distortion at most α if for all u, v ∈ S,
the condition dT (u, v) ≤ dTS (u, v) ≤ α · dT (u, v) holds, where dG(u, v) is the
shortest path distance between two nodes u and v in the graph G. We say an
instance has distortion at most α if such a tree TS exists. The objective is to
find the smallest constant α > 0 such that every instance of the SPR Problem
has distortion at most α.

In Gupta’s original paper [1], it was shown that α ≤ 8, i.e., there exists a tree
TS with distortion at most 8. This shows that any submetric of a tree metric is

� Supported in part by the NSF CAREER award CCF-0448095, by an Alfred P.
Sloan Fellowship, and by a fellowship from the Croucher Foundation.

�� Supported in part by NSF grant CCR-0209138.
��� Supported in part by NSF CAREER grant CCR-9985284.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 70–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Tight Lower Bound for the Steiner Point Removal Problem on Trees 71

“close” to a tree metric. Such a result leads to the first combinatorial proof of
the fact that a graph of girth g embeds into a tree with distortion at least Ω(g),
as opposed to the topological proof given by Rabinovich and Raz [2].

Moreover, such a result has potential applications in end system multicast
[3, 4, 5, 6]. In a multicast routing protocol, a routing tree T = (V,E) is defined
on hosts S, which correspond to the terminals, and routers that connect the
hosts and forward messages. The edges represent connections between hosts
and routers, and their weights correspond to transmission costs. However, most
routers are designed to handle only unicast, and hence a virtual routing tree TS

consisting of only the hosts is suggested for implementing the multicast protocol.
Thus, it is important that the virtual tree TS approximates the original costs
well, which is ensured by the upper bound result.

The result has also been used subsequently for embedding k-outerplanar met-
rics into �1 by Chekuri et al. [7], embedding general metrics into distributions of
tree metrics by Fakcharoenphol et al. [8], and solving the metric labeling problem
via tree-rounding by Archer et al. [9].

A natural question to ask is whether the upper bound of 8 is tight. The
original paper [1] only gives a lower bound of 4(1 − o(1)) for some family of
trees. In this paper, we close this gap and prove the following theorem showing
that the upper bound of 8 is essentially tight.

Theorem 1. For any ε > 0, there exists an instance of the Steiner Point Re-
moval Problem with distortion at least 8− ε.

We anticipate that the techniques presented in this paper may also be applicable
to the several open problems in this area, in particular, to the open problems
listed in Section 5.

1.1 Proof Strategy

Our lower bound examples will be complete binary trees with unit-weight edges,
with the leaves being the terminals. We first show in Section 3 that as far as com-
plete binary trees are concerned, the optimal distortion can always be achieved
by a minor TS of the original tree T = (V,E), i.e., the tree TS can be obtained by
contracting edges of tree T of the following form: (1) an edge between two non-
terminals; (2) an edge between a terminal x and a non-terminal node y, with the
resulting merged node keeping the same name (and terminal status) as x. The
weight assigned to each edge (x, y) in TS will be dT (x, y), the distance between
its two endpoints in the original tree T . Note that each node in V will eventually
be contracted into a terminal in S. Thus the minor tree TS can also be charac-
terized by a mapping f : V → S that maps each vertex in V to the terminal in
S to which it eventually contracts. We call such a mapping f a minor mapping.

In Section 4, we show that there exists a complete binary tree such that its
minors must incur a large distortion, namely 8−o(1). Let us define some notation
before giving the general idea on how one can get such a lower bound:

1. Denote by Tn the complete binary tree of height n, having 2n leaves, with
unit-weight edges, and denote by rn the root of Tn.

72 T.-H.H. Chan et al.

2. Expanding Parameter ρf (r): Suppose the tree T has its root r mapped under
f to leaf l, i.e. l = f(r). Suppose that w is a vertex furthest away from the
root r in the subtree rooted at the child of r that is not an ancestor of l and
f(w) = l. Set w to be r if no such vertex exists. The expanding parameter
ρf (r) at r with respect to f is defined to be the ratio dT (r, w)/dT (r, l). See
Figure 1(a).

3. For each complete binary tree Tn, let ρn be the maximum ρf (rn) for all
the minor mappings f for Tn with distortion no more than α. Then define
ρ := lim supn→∞ ρn.

First we show that 0 < ρ < 1 (See Claims 4 and 4.). Thus there exists an
arbitrarily small constant ε1 > 0 such that 0 < ρ− ε1 < ρ + ε1 < 1. Then by the
definition of ρ, there exists an arbitrarily large integer m such that ρ−ε1 < ρm <
ρ+ε1. Now consider the complete binary tree Tm and the minor mapping f with
distortion no more than α that achieves ρf (rm) = ρm. As shown in Figure 1(a),
let w be the lowest vertex that achieves the expanding parameter ρf (rm), vertices
x and y be the children of vertex w, and T (x) and T (y) be subtrees rooted at x
and y respectively.

The idea is to find leaves p and q in the subtrees T (x) and T (y) respectively
such that the distortion exhibited by the pair (p, q) is large. First observe that
the distance in Tm between any leaf in T (x) and any leaf in T (y) is 2m(1 −
ρm) < 2m(1 − (ρ − ε1)). Next, we want to argue that there is a leaf p in the
subtree T (x) such that the distance between p and f(rm) in the minor tree
f(Tm) is larger than 2m

ρ+ε1
(1 − ε2) for any constant ε2 > 0 if m is large enough.

Symmetrically, we can also find such a leaf q in the subtree T (y), thereby the
distance between p and q in the minor tree f(Tm) is larger than 4m

ρ+ε1
(1 − ε2)

Therefore the distortion according the minor mapping f must be larger than
2

(1−(ρ−ε1))(ρ+ε1)
(1− ε2) ≥ 8(1− ε2). Since the distortion of f is no more than α,

we get the lower bound α > 8− o(1).
We still need to determine how to find such a leaf p in the subtree T (x). We

will use a recursive algorithm on the roots of the subtrees considered, starting
with the subtree T (x). First we limit p to be one of the leaves in T (x), whose
distances to f(rm) in Tm are all 2m. Then, we limit p to be one of the leaves
of T (x) in the subtree of x that does not contain f(x); the distances of those
leaves to f(x) in Tm are all 2m(1 − ρm) − 2 � 2m(1 − (ρ + ε1)). In general,
as shown in Figure 1(b), we limit p to be one of the leaves of the subtree of
T (z) (initially z = x) that does not contain f(z); we then let z be the root of
the corresponding subtree, and recurse. Roughly speaking, the heights of these
trees are no less than m, m(1 − (ρ + ε1)), m(1 − (ρ + ε1))2, m(1 − (ρ + ε1))3,
· · · , respectively, if m is large enough (See Lemma 1 for a formal proof). Thus
the distance between p and f(rm) in the minor tree f(Tm) must be larger than
2m

ρ+ε1
(1− ε2), where ε2 > 0 can be any constant and m is large enough. Therefore

our algorithm finds such a leaf p, and it follows that α > 8− o(1).

A Tight Lower Bound for the Steiner Point Removal Problem on Trees 73

T() T()x y

w

r

p q

x y

(1 − ρ)

l

m

m

(a) Expanding parameter for the root
of Tm

x

p

w

(b) Select p in T (x)

Fig. 1. The Minor Construction for Tree Tm (Shadow areas refer to components con-
tracted to a terminal)

2 Notation

In this section, we will introduce and formalize some additional notation that
will be used in Sections 3 and 4. Suppose T is a tree with edge set E and
a positive distance associated with each edge. We denote the distance of the
unique shortest path between two vertices u and v by dT (u, v). We use L(T) to
denote the set of leaves, i.e. the degree-one vertices in T .

As defined in Section 1.1, we denote by Tn the complete binary tree of height
n, having 2n leaves with unit weight edges. We denote by rn the root of Tn

and the terms child, parent, ancestor and descendant are used with their usual
meanings. From now on, we restrict the SPR Problem to such trees, with the
leaves being the terminals.

Formally, we say f is a transformation from T to T̂ , if T̂ = (L(T), Ê) is a
tree on the vertex set L(T), and each edge (u, v) ∈ Ê has weight dT (u, v). The
distortion of such a transformation is

D(f) := max
x �=y∈L(T)

dT̂ (x, y)
dT (x, y)

.

A transformation f from T to T̂ is minor if T̂ is a minor of T , i.e. T̂ can be
obtained from T by edge contractions. Note that a minor transformation f for
a tree T can be equivalently viewed as a mapping f : V(T) → L(T) that maps
each vertex to the terminal to which it eventually contracts. We call such f a
minor mapping.

3 Restricting to Minor Transformations

In this section, we show that in order to obtain a lower bound on the distor-
tion of transformations for complete binary trees, it suffices to consider minor
transformations.

74 T.-H.H. Chan et al.

The radius of a tree T is given by R(T) = minu∈V(T) maxv∈V(T) dT (u, v). A
center point of T is a vertex u0 ∈ V(T) such that R(T) = maxv∈V(T) dT (u0, v).

Theorem 2. For any n ≥ 0 and for any transformation f of Tn, there exists a
minor transformation f ′ such that

(a) the distortion of f ′ does not increase, D(f ′) ≤ D(f);
(b) the radius does not increase, R(f ′(Tn)) ≤ R(f(Tn));
(c) the terminal f ′(rn) is a center point of f ′(Tn).

Proof: We argue by induction on n. The case n = 0 is trivial. For the case
n = 1, there is only one transformation for T1, which is minor and satisfies the
requirements.

Assume the result holds true for any Tk, where k < n. Consider some trans-
formation f : Tn → T̂n.

We denote by [n] the set of integers {0, 1, . . . , n}.
For any x ∈ L(Tn) and i ∈ [n], denote by Ti(x) the i-level complete binary

subtree of Tn which contains x; denote the root of Ti(x) by ri(x). For any
x ∈ L(Tn) and i ∈ [n], denote by Si(x) the minimal subtree of T̂n that includes
all the vertices in L(Ti(x)). Let k be the maximum integer such that for any
x ∈ L(Tn), V(Sk(x)) ⊆ L(Tn−1(x)). Since k = 0 satisfies the above conditions,
such a k exists. Note that k < n; otherwise, L(Tn(x)) ⊆ V(Sk(x)) ⊆ L(Tn−1(x)),
which is a contradiction.

From the maximality of k, there exists u ∈ L(Tn) such that V(Sk+1(u)) �
L(Tn−1(u)). Also, there exists v ∈ L(Tk+1(u)) such that Tk(v) = Tk(u) and the
u-v path in T̂n uses some vertex not in L(Tn−1(u)). Let vertex w /∈ L(Tn−1(u))
be the first such vertex on the path from u to v, and u′ ∈ L(Tn−1(u)) be the
previous vertex of w on the path. Since Tn−1(u′) = Tn−1(w), it follows that
(u′, w) has weight 2n.

Claim. Edge (u′, w) is an edge of weight 2n that separates Sk(u) and Sk(v) in
T̂n.

Proof of Claim 3: By the definition of k, V(Sk(u)) ⊆ L(Tn−1(u)) and
V(Sk(v)) ⊆ L(Tn−1(v)). Since w /∈ L(Tn−1(u)), edge (u′, w) separates Sk(u)
and v. Since u′ ∈ L(Tn−1(u)) and w /∈ L(Tn−1(u)), then exactly one of them is
not in L(Tn−1(v)). Since V(Sk(v)) ⊆ L(Tn−1(v)), edge (u′, w) separates Sk(v)
and u. Therefore edge (u′, w) separates Sk(u) and Sk(v). ��

Thus in the tree T̂n, there is a unique path connecting Sk(u) and Sk(v) with
all its intermediate vertices not in V(Sk(u)) ∪ V(Sk(v)). Let u0 ∈ V(Sk(u)) and
v0 ∈ V(Sk(v)) be the two endpoints of the path. Then, vertex w is on the u0-v0
path and dT̂n

(u0, w) ≥ 2n.
If k + 1 < n, then v ∈ L(Tk+1(u)) ⊆ L(Tn−1(u)), thereby dT̂n

(v0, w) ≥ 2n; if
k + 1 = n, we have the trivial bound dT̂n

(v0, w) ≥ 0.

A Tight Lower Bound for the Steiner Point Removal Problem on Trees 75

Consider vertices u1 ∈ V(Sk(u)) and v1 ∈ V(Sk(v)), which are furthest
away from u0 and v0 respectively. Hence, we have dT̂n

(u0, u1) ≥ R(Sk(u))
and dT̂n

(v0, v1) ≥ R(Sk(v)). Without loss of generality, assume R(Sk(u)) ≤
R(Sk(v)).

Observing that dT̂n
(u1, v1) = dT̂n

(u1, u0) + dT̂n
(u0, w) + dT̂n

(w, v0) +
dT̂n

(v0, v1), we have

D(f) ≥
dT̂n

(u1, v1)
dTn(u1, v1)

≥
{

4n+2R(Sk(u))
2(k+1) if k + 1 < n;

2n+2R(Sk(u))
2(k+1) if k + 1 = n

(3.1)

Also,
R(f(Tn)) ≥ 2n + R(Sk(u)) (3.2)

Next, we construct a transformation g for the subtree Tk(u). We obtain
the transformed tree T̂k(u) from Sk(u), the minimal subtree in T̂n containing
L(Tk(u)), by contracting all the vertices v /∈ L(Tk(u)) as follows:

1. Contract any edge neither of whose endpoints is in L(Tk(u)).
2. For each remaining vertex x /∈ L(Tk(u)), contract one of the edges incident

to x.
3. For each edge (x, y) in T̂k(u) set its weight as dTk(u)(x, y), i.e. dTn(x, y).

The following claim states the properties of the transformation g. Its proof is
technical and will be deferred to the end of the section.

Claim. Suppose the transformation g from Tk(u) to the tree T̂k(u) =
(L(Tk(u)), Ê) is as described above. Then, the distortion D(g) ≤ D(f) and the
radius
R(g(Tk(u))) ≤ R(Sk(u)).

By the induction hypothesis , there exists a minor transformation g′ for Tk(u)
such that D(g′) ≤ D(g), R(g′(Tk(u))) ≤ R(g(Tk(u))), and rk(u) is contracted
into a center point of g′(Tk(u)). By Claim 3, we also have D(g) ≤ D(f) and
R(g(Tk(u))) ≤ R(Sk(u)). Hence, we have D(g′) ≤ D(f) and R(g′(Tk(u))) ≤
R(Sk(u)).

We next use the transformation g′ to construct a minor transformation f ′

for Tn. Since all the k-level complete binary subtrees Tk of Tn are isomorphic
to Tk(u), the transformation g′ also defines a minor transformation for each of
these subtrees Tk. Then a minor transformation f ′ for Tn can be obtained by
edge contractions as follows:

1. Remove internal nodes in each Tk via edge contraction using minor trans-
formation g′.

2. Since the (n − k − 1)-level complete binary subtree rooted at rn is the re-
maining component for contraction, we just contract the whole subtree into
its adjacent vertex in g′(Tk(u)).

76 T.-H.H. Chan et al.

Therefore, rn and rk(u) are contracted to the same leaf. Hence, rn is con-
tracted into a center point of g′(Tk(u)). In fact, the tree f ′(Tn) consists of com-
ponents g′(Tk) and additional edges connecting the center point of g′(Tk(u)) to
the center points of the other components. Moreover if k + 1 = n, f ′(Tn) only
has two components g′(Tk), thereby its diameter is 2n+ 2 ·R(g′(Tk(u))). And if
k + 1 < n, f ′(Tn) has more than two components g′(Tk), thereby its diameter is
4n + 2 ·R(g′(Tk(u))). Thus

D(f ′) =

{
max(D(g′), 4n+2·R(g′(Tk(u)))

2(k+1)) if k + 1 < n;

max(D(g′), 2n+2·R(g′(Tk(u)))
2(k+1)) if k + 1 = n;

(3.3)

Thus, by Equation (3.1) and the relationship between the transformations g′

and f , we have D(f ′) ≤ D(f), proving part (a) of the theorem. Moreover, by
Equation (3.2), we obtain part(b)

R(f ′(Tn)) = 2n + R(g′(Tk(u))) ≤ R(f(Tn)), (3.4)

and rn is contracted into a center point of g′(Tk(u)), which can be verified to be
a center point of R(f ′(Tn)), hence proving part(c). ��

We next give the proof of Claim 3, as promised earlier.
Proof of Claim 3: We first observe that any maximal connected component C
in the tree Sk(u) that does not contain any vertex in L(Tk(u)) will be contracted
into a vertex of L(Tk(u)).

We will use the following fact about distances between leaves.
Fact 3. Any edge between two leaves in L(Tk(u)) has weight at most 2k; and any
edge between a leaf in L(Tk(u)) and one outside it has weight at least 2(k + 1).

1. To show D(g) ≤ D(f), we prove that dT̂k(u)(x, y) ≤ dT̂n
(x, y) for any x, y ∈

L(Tk(u)).
Fix any x, y ∈ L(Tk(u)). Let P be the x-y path in T̂k(u) and Q be the x-y
path in Sk(u).
Since any maximal connected component C excluding vertices in L(Tk(u)) in
the tree Sk(u) is contracted into one vertex of L(Tk(u)), any maximal subpath
Q′ of Q excluding vertices in L(Tk(u)) is contracted into some vertex c of
L(Tk(u)). By maximality of Q′, there exists a, b ∈ L(Tk(u)) on path Q such
that a-Q′-b is a subpath of Q, which would become a subpath a-c-b in P . By
Fact 3, the length of this subpath decreases.
On the other hand, an edge in Q that joins two vertices in L(Tk(u)) remains
in P and its weight does not change.
Hence, it follows that the length of P is at most that of Q.
Therefore,

dT̂k(u)(x, y) ≤ dT̂n
(x, y) for any x, y ∈ L(Tk(u)) (3.5)

Thus D(g) ≤ D(f).

A Tight Lower Bound for the Steiner Point Removal Problem on Trees 77

2. Next we show that R(g(Tk(u))) ≤ R(Sk(u)).
Let u0 ∈ V(Sk(u)) be the center point of Sk(u). By the minimality of Sk(u),
this radius must be realized by some vertex in L(Tk(u)).

R(Sk(u)) = max
x∈Lk(u)

(dT̂n
(u0, x)) (3.6)

If u0 ∈ L(Tk(u)) = V(T̂k(u)), then by Equations (3.5) and (3.6),

R(T̂k(u)) ≤ max
x∈L(Tk(u))

dT̂k(u)(u0, x) ≤ max
x∈L(Tk(u))

(dT̂n
(u0, x)) = R(Sk(u)).

If u0 /∈ L(Tk(u)) = V(T̂k(u)), then let u′
0 ∈ V(T̂k(u)) be the vertex into which

u0 is contracted. For any x ∈ L(Tk(u)) = V(T̂k(u)), let P be the u′
0-x path

in T̂k(u) and Q be the u0-x path in Sk(u).
Observe that the initial maximal subpath Q′ of Q excluding vertices in
L(Tk(u)) is contracted into u′

0. Let u1 be the first vertex on Q in the di-
rection from u0 to x such that u1 ∈ L(Tk(u)). Hence, the subpath Q′-u1
becomes a subpath u′

0-u1 in P , whose length decreases by Fact 3. By Equa-
tion (3.5), the length of the remaining subpath of P is at most that of the
remaining subpath of Q. Hence, the length of P is at most that of Q.
Therefore,

R(T̂k(u)) ≤ max
x∈V(T̂k(u))

dT̂k(u)(u
′
0, x) ≤ max

x∈V(Sk(u))
dT̂n

(u0, x) = R(Sk(u))

Thus, we also have R(g(Tk(u))) ≤ R(Sk(u)) in this case. ��

4 A Lower Bound for Minor Transformations

In view of Theorem 2 in the previous section, we consider only minor transfor-
mations for complete binary trees.

Definition 4 (Optimal distortion for minor transformation) . We define
α ≥ 1 to be the smallest constant such that for any instance of the SPR Problem,
there exists a minor transformation that achieves distortion at most α.

Observe that the algorithm given by Gupta [1] indeed produces a minor with
distortion at most 8. Hence, the constant α is at most 8. We prove the following
theorem, which implies that the constant α ≥ 8.

Theorem 5. For any ε > 0, the constant α ≥ 8− ε.

Hence, combining Theorems 2 and 5, we obtain the result of Theorem 1, which
states that:

For any ε > 0, there exists an instance of the Steiner Point Removal
Problem with distortion at least 8− ε.

78 T.-H.H. Chan et al.

We first introduce some notation. Without causing ambiguity, we use d(u, v)
to denote the distance between nodes u and v in the original tree T , and
path(u, v) to denote the subset of vertices lying on the unique path between
u and v in T . Let v be a vertex in Tn. We denote the subtree rooted at v by
T (v), which is identical to Tn−d(rn,v). For u, v ∈ L(T), we use df (u, v) to denote
the distance between them after the transformation f is applied to the tree.

Definition 6. Given a minor mapping f : V(T)→ L(T), a vertex v is a normal
vertex (with respect to f) if v is an ancestor of f(v).

Consider a normal vertex v and suppose u = f(v). Then, v is an ancestor of u
and all the vertices along the path from v to u are mapped to u. Recall that
T (v) has two branches rooted at v. We wish to measure how far vertices down
the branch not containing u are mapped to u under f .

Definition 7. For each normal vertex v, its expanding parameter with respect
to some minor mapping f is defined to be

ρf (v) := max{ d(v,w)
d(v,f(v)) : w ∈ T (v), f(w) = f(v),

path(v, f(v)) ∩ path(v, w) = {v}}.

Since our lower bound is obtained from large trees, we consider how the expand-
ing parameter behaves for large values of n.

Definition 8. For each n ∈ N, let

ρn := max{ρf (rn) |minor mapping f : Tn → L(Tn), D(f) ≤ α}.

Define
ρ := lim sup

n→∞
ρn. (4.7)

Observe that since ρn ∈ [0, 1], it follows the limit supremum ρ ∈ [0, 1]. We show
in the next claim that ρ is strictly less than 1.

Claim. The limit supremum ρ < 1.

Proof: Assume on the contrary that ρ = 1. Then, by the definition of limit
supremum ρ, there exists an integer n such that ρn ≥ 7/8. Thus by the definition
of ρn, there exists a minor mapping f on Tn with D(f) ≤ α such that ρf (rn) ≥
7/8.

Let w be a vertex that attains ρf (rn). Since every leaf of Tn is mapped into
itself and w = f(w), w is not a leaf. Then let p and q be two leaves from different
branches of the subtree T (w). Thus d(p, q) = 2(1−ρf(rn))n ≤ n/4. On the other
hand, df (p, q) = df (p, f(w)) + df (f(w), q) ≥ 4n. Thus D(f) ≥ df (p,q)

d(p,q) ≥
4n
n/4 ≥

16, contradicting D(f) ≤ α ≤ 8. Thus ρ < 1. ��

The following lemma shows the relationship between the expanding parameter
ρn and the distorted distance df . Intuitively, if the expanding parameters for
normal vertices of large heights are small, then there exists some vertex whose
distorted distance to the image of the root is large.

A Tight Lower Bound for the Steiner Point Removal Problem on Trees 79

Lemma 1. Suppose 0 < β < 1 and N0 ∈ N such that for any integer n > N0,
the expanding parameter ρn ≤ β. Then, for any real 0 < ε < 1, there exists
integer N > N0 such that for any integer m ≥ N and any minor mapping f
on tree Tm with distortion D(f) ≤ α, there exists a leaf p in Tm such that the
distorted distance

df (p, f(rm)) ≥ 2m
β

(1− ε).

Furthermore, if ρf (rm) > 0, then D(f) ≥ 2(1−ε)
β(1−ρf (rm)) .

Proof: Given any real ε > 0, fix a large enough integer k such that (1−β)k ≤ ε
2 .

Let N be large enough such that k
N ≤

ε
2 and (1− β)k(N + 1

β)− 1
β > N0.

Let m ≥ N and let f be a minor mapping on Tm with D(f) ≤ α. We define
sequences of vertices {vi}ki=0 and {wi}k−1

i=0 in Tm as follows. Let v0 = rm, and w0
be the vertex that attains ρf (v0) under the minor mapping f with D(f) ≤ α.
For 1 ≤ i ≤ k, let vi be a child of vertex wi−1 such that f(wi−1) /∈ T (vi), and
hence vi is normal. Let wi be the vertex that attains ρf (vi), for 1 ≤ i < k. Let
hi be the height of T (vi) for 0 ≤ i ≤ k.

Claim. For 0 ≤ i < k, the height hi ≥ (1− β)i(m + 1
β)− 1

β > N0.

Proof of Claim 4: The claim is trivial for i = 0. Assume that hi−1 ≥ (1 −
β)i−1(m+ 1

β)− 1
β > N0, for some 0 < i < k. Observe that hi+1+ρf(vi−1)hi−1 =

hi−1 and ρf (vi−1) ≤ β, since hi−1 > N0. Then hi = (1 − ρf (vi−1))hi−1 − 1 ≥
(1− β){(1 − β)i−1(m + 1

β)− 1
β} − 1 = (1− β)i(m + 1

β)− 1
β > N0.

��
Thus, we set p := f(vk) and from Claim 4, we have

df (f(rm), p) = 2
k−1∑
i=0

hi ≥ 2
k−1∑
i=0

{(1− β)i(m +
1
β

)− 1
β
}

= 2(m +
1
β

)
1− (1− β)k

β
− 2k

β
≥ 2m

β
· {1− (1 − β)k − k

m
}

≥ 2m
β

(1− ε),

(4.8)

where the last inequality follows from (1− β)k ≤ ε
2 and k

m ≤
k
N ≤

ε
2 .

Furthermore, if ρf (rm) > 0, then m ·ρf (rm) > 0. Thus w0 is a proper descen-
dant of rm. Note that p is a leaf of T (w0) and T (w0) has two branches. Thus
by symmetry, there exists another leaf q such that p and q are in the different
branches of T (w0) and df (q, f(rm)) ≥ 2m

β (1−ε). Observing that f(w0) = f(rm),
the distorted distance df (p, q) = df (p, f(rm)) + df (f(rm), q) ≥ 4m

β (1 − ε),
and the original distance d(p, q) = 2m(1 − ρf (rm)). Therefore, the distortion
D(f) ≥ df (p,q)

d(p,q) ≥
2(1−ε)

β(1−ρf (rm)) . ��

Using Lemma 1, we can show that the limit supremum ρ > 0.

80 T.-H.H. Chan et al.

Claim. The limit supremum ρ > 0.

Proof of Lemma 4: On the contrary, suppose ρ = 0. Let β = 1/32. By
the definition of limit supremum ρ, there exists N0 such that for any n > N0,
ρn < β. Then by Lemma 1, for ε = 1/2, there exists m > N0 such that for any
minor mapping f on Tm with D(f) ≤ α, there exists a leaf p in Tm such that
df (p, f(rm)) ≥ 2m

β (1 − ε) = m
β . Thus D(f) ≥ df (p,f(rm))

d(p,f(rm)) ≥
m

2mβ = 1
2β = 16,

which contradicts D(f) ≤ α ≤ 8. Thus ρ > 0. ��
Now, we are ready to prove the main theorem of this section.

Proof of Theorem 5: Let ε > 0. Without loss of generality, we can assume
ε < 1. Suppose on the contrary, we have α < 8− ε.

Since 0 < ρ < 1, let ε1 < min{ε/48, ρ} be a positive small constant such that
ρ+ ε1 < 1. By the definition of limit supremum ρ, there exists N0 > 0 such that
for all n > N0, ρn < ρ + ε1. Then by Lemma 1, for ε2 = ε/24 there exists N
such that for any m ≥ N and any minor mapping f on tree Tm with distortion
D(f) ≤ α and ρf (rm) > 0 we have D(f) ≥ 2(1−ε2)

(ρ+ε1)(1−ρf (rm)) .
By the definition of limit supremum ρ, there exists arbitrarily large m such

that ρm > ρ − ε1 > 0. Hence, we can choose m such that m > N . By the
definition of ρm, there exists a minor mapping f on tree Tm with distortion
D(f) ≤ α and ρf (rm) = ρm > ρ− ε1 > 0. Thus, the constant α is at least

D(f) ≥ 2(1−ε2)
(ρ+ε1)(1−ρf (rm))

≥ 2(1−ε2)
(ρ+ε1)(1−(ρ−ε1))

≥ 8(1−ε2)
(1+2ε1)2

(The denominator is min when ρ = 1
2 .)

≥ 8(1−ε2)
(1+ε2)2

≥ 8(1− 3ε2) (Note: 2ε1 ≤ ε2; as ε2 ≥ 0, 1−ε2
(1+ε2)2

≥ 1− 3ε2)
= 8− ε,

obtaining the desired contradiction. Hence, for all ε > 0, the constant α ≥ 8− ε.
��

5 Open Problems

We conclude the paper by outlining some directions for future work.

1. Of course one final goal would be to consider the SPR problem on general
graphs. Formally, there are two main questions to be addressed: (1) we would
like to determine what is the smallest α (possibly depending on the size of
input), such that given any edge weighted graph G = (V,E) and a set of
terminals S ⊂ V , there is a way to remove non-terminals by edge contrac-
tions to produce a minor H = (S,E′) where for any pair of terminals (u, v),
dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v); and (2) we would like to devise a con-
structive algorithm that outputs such a minor H = (S,E′) with distortion
at most α. Since this task may prove to be quite hard to accomplish on
general graphs, one could first consider other restricted classes of graphs —
such as outerplanar graphs, planar graphs, series-parallel graphs, etc. — as
an intermediate step. Note that no algorithm with proven nontrivial bounds
on distortion for these classes of graphs is known.

A Tight Lower Bound for the Steiner Point Removal Problem on Trees 81

2. Another interesting question is to be able to determine the approximation
bound on the optimal distortion of a given algorithm for the SPR problem.
For example, it would be interesting to determine, given any instance of the
SPR problem on trees, how far from the optimal distortion for that instance
can the distortion obtained by Gupta’s algorithm [1] be (in that paper, Gupta
only shows an absolute bound on the distortion of his algorithm; this paper
confirms that for some instances of the problem, this is the best distortion
possible).

3. We can also ask a similar question as that in Problem 1 in a probabilis-
tic framework. What is the smallest α such that given any weighted graph
G = (V,E) and a set of terminals T ⊂ V , there exists a distribution H of
minors {H = (T,E′)} such that dG(u, v) ≤ EH[dH(u, v)] ≤ α · dG(u, v)?
This task may be easier to accomplish than that in Problem 1, since some
upper bounds on α under a probabilistic framework exist in the literature.
For example, it follows from [7] that k-outerplanar graph can be embed-
ded into a probability distribution over spanning trees with O(ck) distortion
for some absolute constant c, implying that α = O(ck) for k-outerplanar
graphs; and a recent result by Elkin et. al. [10] shows that for general graphs,
α = O(log2 n log logn), which is later improved to O(log2 n) by Dhamdhere
et. al. [11], shows that for general graphs, α = O(log2 n). Can we do any
better?

References

1. Gupta, A.: Steiner points in tree metrics don’t (really) help. SODA (2001) 220–227
2. Rabinovich, Y., Raz, R.: Lower bounds on the distortion of embedding finite metric

spaces in graphs. Discrete Comput. Geom. 19(1) (1998) 79–94
3. Chu, Y., Rao, S., Zhang, H.: A case for end system multicast. In: Proceedings of

ACM Sigmetrics, Santa Clara, CA. (2000)
4. Xie, J., Talpade, R.R., Mcauley, A., Liu, M.: Amroute: ad hoc multicast routing

protocol. Mob. Netw. Appl. 7(6) (2002)
5. Chawathe, Y.: Scattercast: an adaptable broadcast distribution framework. Mul-

timedia Syst. 9(1) (2003)
6. Francis, P.: Yoid: Extending the internet multicast architecture. (2000)
7. Chekuri, C., Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Embedding

k-outerplanar graphs into �1. In: Proceedings of the 14th Annual ACM-SIAM
Symposium on Discrete Algorithms. (2003) 527–536

8. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. In: Proceedings of the thirty-fifth ACM symposium on
Theory of computing, ACM Press (2003) 448–455

9. Archer, A., Fakcharoenphol, J., Harrelson, C., Krauthgamer, R., Talwar, K., Tar-
dos, E.: Approximate classification via earthmover metrics. In: In 15th Annual
ACM-SIAM Symposium on Discrete Algorithms. (2004) 1072–1080

10. Elkin, M., Emek, Y., Spielman, D.A., Teng, S.H.: Lower-stretch spanning trees.
In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing.
(2005) 494–503

11. Dhamdhere, K., Gupta, A., Räcke, H.: (Improved embeddings of graph metrics
into random trees)

Single-Source Stochastic Routing

Shuchi Chawla1,� and Tim Roughgarden2,��

1 Microsoft Research, Silicon Valley Campus, Mountain View, CA 94043
shuchi@cs.wisc.edu

2 Department of Computer Science, Stanford University, 462 Gates Building, 353
Serra Mall, Stanford, CA 94305

tim@cs.stanford.edu

Abstract. We introduce and study the following model for routing un-
certain demands through a network. We are given a capacitated mul-
ticommodity flow network with a single source and multiple sinks, and
demands that have known values but unknown sizes. We assume that the
sizes of demands are governed by independent distributions, and that we
know only the means of these distributions and an upper bound on the
maximum-possible size. Demands are irrevocably routed one-by-one, and
the size of a demand is unveiled only after it is routed.

A routing policy is a function that selects an unrouted demand and
a path for it, as a function of the residual capacity in the network. Our
objective is to maximize the expected value of the demands successfully
routed by our routing policy. We distinguish between safe routing poli-
cies, which never violate capacity constraints, and unsafe policies, which
can attempt to route a demand on any path with strictly positive residual
capacity.

We design safe routing policies that obtain expected value close to
that of an optimal unsafe policy in planar graphs. Unlike most previous
work on similar stochastic optimization problems, our routing policies
are fundamentally adaptive. Our policies iteratively solve a sequence of
linear programs to guide the selection of both demands and routes.

1 Introduction

We introduce and study the following model for routing uncertain demands
through a network. We are given a multicommodity flow network, defined by a
directed graph G = (V,E) with vertices V and edges E, a nonnegative capacity
ce on each edge e ∈ E, and a collection (s1, t1), . . . , (sk, tk) of source-sink pairs,
also called commodities. Associated with each commodity i is a demand with a
known nonnegative value vi and an unknown size. Our goal is to choose routes
for a subset of the demands to maximize the value of these demands without
violating the edge capacities. In the special case of known demand sizes, this is
the well known and difficult unsplittable flow problem.

� This work was performed while the author was visiting the Department of Computer
Science, Stanford University and supported by DARPA grant W911NF-05-1-0224.

�� Supported in part by ONR grant N00014-04-1-0725, DARPA grant W911NF-05-1-
0224, and an NSF CAREER Award.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 82–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Single-Source Stochastic Routing 83

Inspired by recent work of Dean, Goemans, and Vondrak [4, 5] on stochastic
versions of the Knapsack and Set Packing problems, we adopt the following
model for unknown demand sizes. We assume that the size of the ith demand is
governed by a distribution with known mean μi, and that the sizes of different
demands are independent. We also assume that there is a known upper bound
Dmax on the maximum-possible size of a demand. No other information about
the size distributions is available. We assume that commodities are routed one-
by-one. When a commodity is selected, the size of its demand is unveiled only
after it is routed. Decisions are irrevocable, and a previously routed demand
cannot be removed from the network.

A routing policy is a function that selects an unrouted commodity (si, ti)
and an si-ti path for it, as a function of the residual capacity in the network.
While routing policies can be very complex, we will only be interested in routing
policies defined by polynomial-time algorithms. A routing policy can be adaptive,
in the sense that its decisions depend on the instantiated sizes of the previously
routed commodities, or non-adaptive, in which case it simply specifies a fixed
order in which the demands should be routed and fixed paths for routing them.
There has been significant recent work proving upper and lower bounds on the
adaptivity gap—the ratio between the objective function values of an optimal
adaptive and non-adaptive policy, respectively—for various problems [6, 4, 5, 8].
We show in the full version of this paper [2] that the problems we consider
have a large (polynomial) adaptivity gap, even in networks of parallel links.
In contrast to previous work, which primarily studied non-adaptive policies for
various problems, we focus on the design and analysis of near-optimal adaptive
policies. Our objective is to maximize the expected value of the successfully
routed commodities.

When demand sizes are stochastic, edge capacity constraints can be inter-
preted in several ways. The most stringent definition is to require that a routing
policy respect every edge capacity with probability 1. We call a routing policy
safe if it meets this definition and unsafe otherwise. When an unsafe routing
policy routes a commodity in a way that violates some capacity constraints, we
assume that no value is obtained for this unsuccessfully routed commodity, and
that all violated edges drop out of the network.

Both safe and unsafe policies have their advantages. Unsafe policies are clearly
more general than safe ones, and may obtain a much larger expected value.
Safe policies guarantee successful transport for all admitted commodities; this
property is clearly desirable, and could be essential in certain applications.

In this work, we seek the best of both worlds: we design safe routing policies,
but bound their performance relative to an optimal unsafe routing policy. This
goal is somewhat analogous to previous work [4, 5] that designed non-adaptive
policies with expected value close to that of an optimal adaptive policy.

Pursuing this ambitious goal forces us to adopt an additional assumption. To
motivate it, consider the following example. Fix a value α ∈ (0, 1], let ε > 0 be
much smaller than α, and let δ > 0 be much smaller than ε. Consider a network
with two vertices s, t and one directed edge (s, t) with unit capacity. Suppose

84 S. Chawla and T. Roughgarden

there are a large number of commodities, each with source s, sink t, unit value,
and with size equal to α with probability δ and to ε with probability 1 − δ.
A safe routing policy must cease routing commodities after roughly (1 − α)/ε
commodities have been routed. On the other hand, an unsafe policy will typi-
cally route roughly 1/ε commodities successfully, provided δ is sufficiently small.
Thus safe policies might capture only a 1−α fraction of the expected value of an
optimal unsafe policy, where α is the maximum-possible fraction of an edge that
a demand can occupy. For this reason, we assume throughout this paper that
the maximum-possible size Dmax of a commodity is bounded above by an α < 1
fraction of the minimum edge capacity cmin. Similar but weaker assumptions are
often made in the classical single-sink unsplittable flow problem [7, 13, 14]. When
this gap α is O(1/ logn), even the general multicommodity stochastic routing
problem can be approximated to within a constant factor using a straightfor-
ward randomized rounding algorithm. (See the full version [2] for details.) Our
goal will be to design routing policies that have good (constant or logarithmic)
approximation ratios for every fixed constant α less than 1.

Achieving this goal in general multicommodity networks would give, as a
special case, a fundamental breakthrough for solving the disjoint paths problem
with constant congestion in directed graphs. On the other hand, the single-
source unsplittable flow problem (with known demands) admits constant-factor
approximation algorithms [7, 13, 14]. These facts motivate our second crucial
assumption: we assume that all commodities share a common source vertex s.
We call the problem of designing a routing policy for such an instance the Single-
Source Stochastic Routing (SSSR) problem.

Our Results. We first define a general algorithmic and analytical approach for
designing near-optimal, safe, adaptive routing policies for SSSR instances. Our
algorithm uses a linear program (LP), the optimal value of which is an upper
bound on the expected value of an optimal (unsafe) routing policy, to guide
the commodity and route selection at each stage. The algorithm re-solves this
LP each time a new commodity is routed. Our analysis framework is based on
tracking the successive expected changes in the optimal value of the LP, as our
algorithm routes and instantiates demands.

As noted above, previous work on related stochastic optimization problems
[6, 4, 5, 8] has concentrated primarily on the design and analysis of non-adaptive
policies; few techniques for designing adaptive policies are currently known. We
believe that our iterative LP rounding approach could form the basis of near-
optimal adaptive policies for a range of stochastic optimization problems.

We apply this framework to obtain polynomial-time, safe routing policies with
expected value close to that of an optimal unsafe policy for SSSR problems in
planar graphs. (More generally, we only require that the supporting subgraph of a
natural fractional flow relaxation is planar.) We achieve an approximation factor
of O((log W)/(1−α)), where α < 1 is a constant satisfying Dmax ≤ αcmin, and
W denotes the maximum ratio between the “expected per-unit value” vi/μi of

Single-Source Stochastic Routing 85

two different commodities. Recall from the above example that the dependence
on 1/(1−α) is necessary for this type of guarantee, even in single-link networks.
We also obtain a superior approximation factor of O(1/(1 − α)) in the special
case where all of the sinks lie on a common face. This special case includes all
outerplanar networks and all single-source, single-sink planar networks.

Related Work. Starting with the work of Dantzig [3] in 1955, stochastic op-
timization problems have been studied extensively in Operations Research (see
e.g. [1, 18]). Owing to the complexity of optimally solving1 general stochastic
problems, much of this work has focused on the special cases of stochastic linear
programming and k-stage recourse problems. Several recent works by the the-
oretical CS community have studied the recourse model. Starting with [12, 15],
constant-factor approximation algorithms have been developed for the 2-stage
stochastic versions of problems such as Steiner tree, network design, facility lo-
cation, and vertex cover (see e.g. [9, 10, 11, 17]). Some of this work has been
extended to the k-stage versions of these problems [10, 16], albeit with approxi-
mation factors that depend linearly or even exponentially on k.

The work that is most closely related to ours is that of Dean, Goemans and
Vondrak [4, 5, 8]. Dean et al. study stochastic versions of several packing and
covering problems such as Knapsack, that are similar in flavor to our stochastic
routing problem. For example, the Stochastic Knapsack problem is essentially
SSSR in a single-link network, and SSSR in a general graph is similar to an
instance of the Stochastic Multi-dimensional Knapsack problem, with a unique
dimension corresponding to each edge of the graph.

However, our focus on routing applications leads to several key differences
between their work and ours. First, in the SSSR problem, a routing policy must
select both the next commodity to route, as well as how to route it. There is no
analogue of this combinatorial route selection issue in the packing and covering
problems studied in [4, 5], which primarily involve only binary decision variables.
Second, capacity constraints are enforced differently in the work of Dean et al.
than in the present paper. In [4, 5], unsafe policies are allowed, but such a policy
must terminate as soon as a single constraint is violated. In the SSSR problem,
an unsafe routing policy can continue to route the remaining commodities on
edges that have not yet dropped out of the network. We believe that this less
restrictive notion of an unsafe policy is more suitable for routing applications.
Third, we design safe routing policies, whereas Dean et al. design policies that are
unsafe in the above restricted sense. Thus while our guarantees are in some sense
stronger than those in [4, 5], we prove such guarantees only under an additional
assumption (Dmax ≤ αcmin for some α < 1) that is not needed in the work
of Dean et al. Finally, as noted earlier, Dean et al. focus on obtaining tight
bounds on the adaptivity gap, whereas we seek adaptive solutions that achieve
an approximation factor far smaller than the adaptivity gap.

1 The optimal solution to a stochastic optimization problem such as SSSR can be a
complex, exponential-size decision diagram. The number of possible solutions can
be doubly-exponential in the number of stages.

86 S. Chawla and T. Roughgarden

2 The Stochastic Routing Model

We consider a directed network G = (V,E) with edge capacities c : E → �+. We
are given k commodities indexed by i ∈ I, each with a source-sink pair (si, ti)
and a value vi. In Section 4, we will assume that all commodities share a common
source s. The “size” or demand of a commodity i is given by the random variable
Di, drawn from an independent distribution with mean μi = E[Di]. For every
commodity i, let wi = vi/μi denote its “expected per-unit value”. We assume
that commodities are ordered such that w1 ≥ w2 ≥ · · · ≥ wk.

Let Dmax be the smallest value d such that Pr[Di > d] = 0 for all i ∈ I.
We assume that Dmax is known to the algorithm and that Dmax < cmin, where
cmin = mine ce is the minimum edge capacity in the graph. Let α < 1 denote
the ratio between Dmax and cmin. As shown by the example in the Introduction,
our approximation guarantees necessarily depend on the value of α.

Let Pi denote the si-ti paths of G. A routing policy successively picks a
commodity i and a path Pi ∈ Pi for routing it. After the algorithm picks a
commodity and its corresponding path, the demand Di for that commodity gets
instantiated to some value di. If di is at most the minimum residual capacity of
the edges of Pi, then the commodity is admitted and the algorithm obtains the
value vi. The algorithm continues until no more commodities can be admitted.
The goal of the algorithm is to maximize the expectation of its total accrued
value. As described previously, a routing policy is safe if every commodity picked
by it gets admitted with probability one.

3 Approximation Algorithms Via Iterative Rounding

An LP Relaxation for the Optimal Routing Policy. We now give a general
algorithmic and analytic approach for approximating stochastic routing prob-
lems; we apply these ideas to SSSR problems in planar graphs in the next section.
We begin with a linear program giving an upper bound on the expected value
of an optimal (unsafe) routing policy for a given stochastic routing instance:

LP (I, u) : max
∑

i∈I wi

∑
e∈δ+(si) f

(i)
e s.t.∑

i∈I f
(i)
e ≤ ue ∀e ∈ E∑

e∈δ+(si) f
(i)
e ≤ μi ∀i ∈ I∑

e∈δ−(v) f
(i)
e =

∑
e∈δ+(v) f

(i)
e ∀i ∈ I, v ∈ V \ {si, ti}

f
(i)
e ≥ 0 ∀i ∈ I, e ∈ E.

Recall that wi denotes the ratio vi/μi. Also, δ+(v) and δ−(v) denote the sets
of edges directed out of and into the vertex v, respectively. Note that LP (I, u)
is simply a standard LP formulation of the maximum-value (w.r.t. “values” w)
multicommodity flow subject to edge capacities u and per-commodity flow rate
constraints μ.

Single-Source Stochastic Routing 87

Input: A stochastic routing instance G, c, I .
Output: A commodity i ∈ I and a path P ∈ Pi at every step.

1. Initialize J to I and ĉe = (1 − α)ce for every e ∈ E. Solve LP (J, ĉ), obtaining an
optimal solution f̂ .

2. While f̂
(i)
e > 0 for some commodity i ∈ J and edge e ∈ E:

(a) Pick i ∈ J and P ∈ Pi such that f̂
(i)
e > 0 for every e ∈ P , and route the

commodity i on P .
(b) Set J := J \ {i}.
(c) Set ĉe := max{0, ĉe − di} for every edge e ∈ P , where di is the instantiated

size of commodity i.
(d) Re-solve LP (J, ĉ), obtaining a new optimal solution f̂ .

Fig. 1. High-level description of the algorithm IR

Proposition 1. The expected value obtained by an optimal adaptive routing pol-
icy for a stochastic routing instance with commodities I and edge capacities c is
at most LP (I, (1 + α)c), where α = Dmax/cmin.

Proposition 1 is similar to a result by Dean, Goemans, and Vondrak [5] in the
special case of a single-link network (Knapsack). Scaling, we also obtain the
following corollary.

Corollary 1. For every γ ∈ (0, 1], the expected value obtained by an optimal
routing policy for a stochastic routing instance with commodities I and edge
capacities c is at most 1

γ · LP (I, γ(1 + α)c), where α = Dmax/cmin.

An Iterative Rounding Algorithm. We next develop a safe, adaptive routing
algorithm that iteratively uses linear programs of the form LP (I, u) to guide
both commodity and route selections. The high-level idea of the algorithm is to
scale down the given edge capacities (to ensure safeness), and solve LP (I, u). We
then pick the fractionally routed commodity with largest ratio wi, route it on
one of its (fractional) flow paths, and repeat. This high-level algorithm is given
in Figure 1.

Fact 1. Algorithm IRis a safe routing policy.
To obtain good approximation results, however, we need to choose the commod-
ity i and the path P ∈ Pi in Step 2a carefully. One natural refinement of Algo-
rithm IRis to always choose a commodity i in Step 2a with maximum-possible
ratio wi; we call this variant the GREEDY-IRalgorithm.

We next discuss the much more subtle issue of path selection. To motivate
the next definition, suppose that in the first stage we pick a commodity i and
an si-ti flow path P . The size of commodity i might get instantiated to some
value much larger than μi, which in turn could evict other commodities in the
LP solution from the edges of P . Intuitively, our goal will be to pick a path
to minimize the severity of this eviction. We make this idea precise with the
following notion of r-coverable paths.

88 S. Chawla and T. Roughgarden

Definition 1. Fix a stochastic routing instance. Let {f̂ (i)
e }i,e be a feasible solu-

tion to LP (I, u). Let {f̂ (i)
P }i,P∈S be a flow decomposition of f , where S ⊆ ∪iPi

denotes the set of paths that carry a positive amount of flow.

(a) Let P ∗ ∈ S be a path with f
(i)
P ∗ > 0 and S′ ⊆ S a collection of flow paths for

commodities other than i. Let F ∗ ⊆ P ∗ denote the edges of P ∗ contained in
some path of S′. The set S′ r-covers P ∗ if there are q ≤ r paths P1, . . . , Pq ∈
S′ such that every edge of F ∗ lies in at least one path Pi.

(b) The path decomposition {f̂ (i)
P } r-covers the path P ∗ ∈ S if for every subset

S′ ⊆ S of flow paths for commodities other than i, S′ r-covers P ∗.
(c) An si-ti path P ∗ with f̂

(i)
e > 0 for every e ∈ P ∗ is r-coverable if there exists

a path decomposition with f̂
(i)
P∗ > 0 that r-covers P ∗.

Intuitively, increasing the amount of flow on an r-coverable path only evicts
flow from r other flow paths. For example, in a stochastic routing instance in a
single-link network (i.e., Knapsack), every flow path is 1-coverable.

We next prove the central result of this section: if Algorithm GREEDY-
IRcan be implemented to route commodities only on r-coverable paths, then its
expected value is at least an Ω(1/r) fraction of the expected value of an optimal
(unsafe) routing policy.

Lemma 1. If Algorithm GREEDY-IRroutes commodities only on r-coverable
paths, then its expected value is at least a (1− α)/(r + 1)(1 + α) fraction of that
of an optimal routing policy.
Proof. Fix an execution of Algorithm GREEDY-IRon a stochastic routing in-
stance. Let h denote the number of times that the main while loop executes.
Relabel the commodities I = {1, . . . , k} so that the ith commodity is routed in
iteration i. Set I0 = I and Ij equal to {j +1, . . . , k}, the commodities remaining
after the first j ≤ h iterations. Set c0 = (1 − α)c and let cj denote the residual
capacities ĉ after the first j commodities have been routed. By the stopping
condition, LP (Ih, ch) = 0.

Our key claim is that for every j ∈ {1, 2, . . . , h},
LP (Ij−1, cj−1)− LP (Ij , cj) ≤ r · wj · dj + vj , (1)

where dj is the instantiated size of commodity j. Conceptually, this claim asserts
that each time we route a new commodity, the amount by which the value
of LP (Ij, cj) decreases is not much more than the additional value that we
accrue. Since the initial value LP (I, c0) is comparable to the expected value of
an optimal routing policy (by Corollary 1), this ensures that, in expectation,
Algorithm GREEDY-IRwill capture a significant (roughly 1/r) fraction of the
maximum-possible expected value.

To prove the claim, fix j and let P ∗ denote the path on which Algorithm
GREEDY-IRroutes commodity j. By the definition of r-coverable, there is a
flow decomposition {f̂ (i)

P } of an optimal solution f̂ to LP (Ij−1, cj−1) that r-
covers P ∗. Let S denote the paths that carry a positive amount of flow in this
decomposition. We next massage this path decomposition into a feasible solu-
tion for LP (Ij, cj) in two steps. For an edge e ∈ P ∗, let f̂

(−j)
e denote the flow

Single-Source Stochastic Routing 89

∑
i�=j f̂

(i)
e on edge e belonging to commodities other than j. We first decrease

flow on paths of S for commodities other than j until the flow of every edge
e ∈ P ∗ has decreased by at least min{f̂ (−j)

e , dj}. We then remove all flow paths
corresponding to commodity j. Since cj

e = max{0, cj−1
e − dj} for e ∈ P ∗ and

cj
e = cj−1

e for e /∈ P ∗, these two steps define a flow g feasible for LP (Ij , cj).
We now elaborate on the first step. Initialize g

(i)
P to f̂

(i)
P for all paths P ∈ S.

Let F ∗ ⊆ P ∗ denote the edges of P ∗ from which flow still needs to be removed,
in the sense that f̂

(−j)
e −g

(−j)
e < min{f̂ (−j)

e , dj}. While F ∗ = ∅, we decrease flow
on paths of S as follows. Consider the paths P of S with g

(i)
P > 0, i = j, and

P ∩ F ∗ = ∅. Each edge of F ∗ lies in at least one such path. Since the original
flow decomposition of f̂ r-covers P ∗, there are q ≤ r such paths P1, . . . , Pq that
collectively contain all of the edges of F ∗. We decrease the corresponding value
of g

(i)
P for each of these paths at a uniform rate, until either f̂

(−j)
e − g

(−j)
e =

min{f̂ (−j)
e , dj} for some edge e ∈ F ∗, or until g(i)

P is decreased to 0 for one of the
paths P1, . . . , Pq. We denote by Δ� the amount by which the flow on P1, . . . , Pq

is decreased during the �th iteration of this procedure.
As long as F ∗ = ∅, we can perform the above operation to decrease flow.

Every iteration strictly decreases the sum of |F ∗| and the number of paths of S
that carry flow in g. The above procedure must therefore terminate with a final
flow g. After deleting all of the flow paths corresponding to the commodity j,
the flow g is feasible for LP (Ij , cj).

We complete the proof of the key claim by comparing the objective function
values of f̂ and g. First, we have

wj

∑
P∈Pj

f̂
(j)
P ≤ wj · μj = vj . (2)

Second, consider the flow decrease operations used to obtain the final flow g from
f̂ . Every such operation decreases flow on at most r paths. Also, since every such
operation decreases the amount of flow on every edge of F ∗, the total flow de-
crease

∑
�≥1 Δ� over all such operations is at most dj . Thus

∑
i∈Ij

∑
P∈Pi

(f̂ (i)
P −

g
(i)
P) ≤ r · dj . By the definition of Algorithm GREEDY-IR, wj ≥ wi for every

commodity i ∈ Ij with f̂
(i)
e > 0 for some e ∈ E. Hence∑

i∈Ij

wi

∑
P∈Pi

f̂
(i)
P −

∑
i∈Ij

wi

∑
P∈Pi

g
(i)
P ≤ r · dj · wj . (3)

Since f̂ and g are optimal and feasible solutions to LP (Ij−1, cj−1) and
LP (Ij, cj), respectively, adding the inequalities (2) and (3) proves the claim (1).

With the key claim in hand, we now complete the proof of the lemma. First,
for a fixed execution of Algorithm GREEDY-IR, we can sum (1) over all j ∈
{1, 2, . . . , h} to obtain

1− α

1 + α
·OPT ≤ LP (I, (1− α)c) ≤

∑
i∈Ih

vi

(
r

di

μi
+ 1

)
, (4)

where the first inequality follows from Corollary 1 with γ = (1−α)/(1+α), and in
the second inequality we are using the equalities wi = vi/μi and LP (Ih, ch) = 0.

90 S. Chawla and T. Roughgarden

Finally, consider a random execution of the algorithm GREEDY-IR. Label
the commodities 1, 2, . . . , k in an arbitrary way. Let Xi denote the indicator vari-
able for the event that Algorithm GREEDY-IRattempts to route commodity i,
and Di the random variable equal to the size of commodity i. By the Principle of
Deferred Decisions, the random variables Xi and Di are independent for each i.
Taking expectations in (4), we have

1− α

1 + α
·OPT ≤ E

[
k∑

i=1

Xi · vi

(
r
Di

μi
+ 1

)]
= r

k∑
i=1

vi

μi
E[Xi ·Di] +

k∑
i=1

vi E[Xi]

= r

k∑
i=1

vi

μi
E[Xi] · E[Di] +

k∑
i=1

vi E[Xi] (5)

= (r + 1)
k∑

i=1

vi E[Xi], (6)

where (5) follows from the independence of Xi and Di. Since Algorithm
GREEDY-IRis a safe routing policy (Fact 1), the sum on the right-hand side
of (6) is precisely the expected value obtained by Algorithm GREEDY-IR. ��

To usefully apply Lemma 1, there must be a commodity i that meets two or-
thogonal criteria: a large ratio wi and a flow path that is r-coverable for small r.
When the maximum variation w1/wk in expected per-unit values is small, the
choice of commodity can be dictated by the second criterion alone. Precisely, we
have the following variation on Lemma 1, which will be useful in Section 4.

Lemma 2. If Algorithm IRroutes commodities only on r-coverable paths, then
its expected value is at least a (1 − α)/(rW + 1)(1 + α) fraction of that of an
optimal routing policy, where W = w1/wk.

4 Iterative Rounding in Planar Graphs

We now consider the SSSR problem in planar graphs and show the existence
of r-coverable paths in them. In particular, we show that there always exists
a 2-coverable commodity in a planar flow and give an algorithm for finding
it (Section 4.1). Unfortunately, this is not necessarily the commodity with the
maximum per-unit value wi. (See the full version [2] for a planar SSSR instance
where the maximum per-unit value commodity is only Θ(log k)-coverable.) How-
ever, limiting our solution to a subset of commodities that have comparable wi

values, we obtain an O(log W) approximation for general planar graphs, where
W = w1/wk (Section 4.3).

We obtain a constant-factor approximation in the special case where all of the
sinks lie on a common face in some embedding of the planar network. Here, we
show that every commodity has a 2-coverable path (Section 4.2). Lemma 1 then
implies that the GREEDY-IRalgorithm achieves a constant-factor approxima-
tion for such instances.

Single-Source Stochastic Routing 91

4.1 Preliminaries

Let G = (V,E) be a planar multicommodity flow network with a single source s,
and f a feasible flow. Let g : V → �2 be a straight-line planar embedding of G.
Such an embedding always exists [19].

A Non-crossing Path-Decomposition. Recall that {f (i)
P }P∈S denotes a

path-decomposition of f with S being the set of flow-carrying paths. We are
interested in path decompositions of planar flows that are non-crossing, as de-
fined below.

Definition 2. A path P crosses another path P ′ if there exists a bounded con-
nected region X in �2 with the following properties: P and P ′ each cross the
boundary of X exactly twice and these crossings are interleaved. Precisely, if we
scan the boundary of X in clockwise direction starting from the point where P
enters it, we encounter P ′ exactly once before we see P again (Figure 2(a)). The
set X is called a witness to this crossing of P and P ′.

Definition 3. A set of paths is said to be non-crossing if every pair of paths is
distinct and non-crossing.
Given two crossing paths, we can “uncross” them (Figure 2(b)). We therefore
get the following lemma (proof omitted for brevity).

Lemma 3. Every single-source planar multicommodity flow f has a non-crossing
path decomposition that can be found in polynomial time.

Given a non-crossing path-decomposition {fP }P∈S , we can pick a small cover
for a path as follows. We order all the paths in anticlockwise order. (This is well
defined because no two paths cross.) Then for any path, roughly speaking, the
two paths immediately neighboring the path should cover all its intersections
with other paths.

More formally, we define a linear order ≺ on paths as follows. We order all
the edges incident on s in anticlockwise order, starting from an arbitrary edge.
This divides the paths P ∈ S into groups Se based on the first edge in each
path. If the edge e1 precedes edge e2 in anticlockwise order, then for all P1 ∈ Se1

and P2 ∈ Se2 , we have P1 ≺ P2. We then refine the ordering in each group.
For group Se with e = u → v, consider all edges outgoing from v, and order
them in anticlockwise order starting from e. This subdivides the group Se into
subgroups Se′ based on the next edge e′ in each path. As before, if the edge e′1
precedes edge e′2 in anticlockwise order, then for all P1 ∈ Se′

1
and P2 ∈ Se′

2
, we

have P1 ≺ P2. We continue in this manner until we obtain a total order. We
rename the paths according to this order so that P1 ≺ · · · ≺ Pq with q = |S|.

Undominated Commodities. Fix a non-crossing flow decomposition of a pla-
nar single-source multicommodity flow and a flow path P . Above, we suggested
covering a path P using the two immediately neighboring paths. This is not
sufficient to cover all of the intersections between P and other flow paths if,
informally, the neighboring paths are “shorter” than P . To dodge this issue, we

92 S. Chawla and T. Roughgarden

(a) (b)

Fig. 2. (a) Crossing and non-crossing paths; (b) Converting a crossing path-
decomposition to a non-crossing one

define a partial order on the commodities, roughly in order of the source-sink
distance, and pick the commodity that is the “closest” to the source in this order.

For a commodity i, let Ei denote the set of edges from which ti is reachable
along flow-carrying edges. Let Ai denote the subset of �2 enclosed by this set of
edges (not including g(ti)). We call this set the region enclosed by i.

Definition 4. A commodity i dominates a commodity j if g(ti) ∈ Aj.

It is easy to verify that the dominance relation defines a partial order on com-
modities.

Lemma 4. If i dominates j, then Ai ⊂ Aj.

Corollary 2. The dominance relation is transitive and antisymmetric; hence,
there exists an undominated commodity.

4.2 Undominated Commodities Are 2-Coverable

We now show that for every planar single-source multicommodity flow, there is
at least one 2-coverable flow path.
Lemma 5. Let {f (i)

P }P∈S be a non-crossing path decomposition of the planar,
single-source multicommodity flow f . Let i be an undominated commodity. Then
every commodity i flow path in S is 2-covered by {f (i)

P }P∈S.

Proof. (Sketch) Let P1 ≺ · · · ≺ Pq be a linear order on S defined as in the
previous subsection. Consider a commodity i flow path P = Pl ∈ S and let
S′ ⊆ S. Let x1 = argmaxx<l{Px mod q ∈ S′} and x2 = argminx>l{Px mod q ∈ S′}.
Let Q1 = Px1 mod q and Q2 = Px2 mod q. A reasonably straightforward argument
then shows that {Q1, Q2} covers P with respect to S′. ��

Lemmas 2 and 5 easily imply a constant-factor approximation ratio for the
GREEDY-IRalgorithm when all sinks like on a common face in some planar
embedding. In particular, if we consider a planar embedding of the graph with all
sinks on the outer face, then by definition, all the commodities are undominated.

Single-Source Stochastic Routing 93

Theorem 2. In a planar instance of SSSR in which all sinks lie on a single
face, algorithm GREEDY-IRachieves a

(
3 (1+α)

(1−α)

)
-approximation.

Of course, Theorem 2 includes the special cases of outerplanar networks and of
single-source, single-sink planar instances of SSSR.

4.3 An O(log W)-Approximation for General Planar Graphs

In the previous subsection we showed that there always exists a 2-coverable
commodity in a planar flow. Unfortunately, we show in the full version that the
commodity with the highest value of wi may not be o(log k)-coverable. However,
as we show below, having at least one 2-coverable commodity in every planar
graph instance is sufficient to obtain an O(log W)-approximation, where W =
w1/wk is the ratio between the maximum and minimum per-unit values.

We can assume via scaling that the minimum per-unit value wk is 1. We
divide the commodities into logW groups: Ix = {i : wi ∈ [2x, 2x+1)} for each
x ∈ {0, · · · , logW}.

Algorithm PLANAR-IRproceeds as follows. We consider the optimal values
Vx of logW linear programs LP (Ix, (1 − α)c), one for each group Ix. These
values give us an estimate of the total value that an optimal adaptive solution
can derive from each group of commodities. Let x∗ be the index of the group for
which the maximum value Vx is achieved. We run the algorithm IRon the graph
using only commodities in the group Ix∗ . (In other words, we round the flow
obtained by solving the LP (Ix∗ , (1− α)c).) In step 2a of the algorithm, we pick
any undominated commodity and route it along a flow path in a non-crossing
path decomposition of the flow.

Theorem 3. Algorithm PLANAR-IRis a (5 1+α
1−α logW)-approximation.

Proof. Since we pick the best over logW groups of commodities, Vx∗ is at least a
1/ logW fraction of the value of LP (I, (1−α)c). Now Lemma 5 implies that we
always route a commodity along a 2-coverable path in step 2a of the algorithm
PLANAR-IR. Furthermore, the per-unit value of the commodity routed in each
step is at least half the per-unit value of any other commodity in the set Ix∗ .
Lemma 2 then implies that the expected value obtained by the PLANAR-
IRalgorithm is at least a 1/5 fraction of Vx∗ , and is thus at least a 1−α

5(1+α)
1

log W

fraction of the expected value obtained by an optimal routing policy for all of
the demands. ��

References

1. John R. Birge and Francois Louveaux. Introduction to stochastic programming.
Springer Series in Operations Research. Springer-Verlag, New York, 1997.

2. Shuchi Chawla and Tim Roughgarden. Single-source stochastic routing.
http://www.cs.cmu.edu/∼shuchi/papers/stoch-routing.ps.

3. George B. Dantzig. Linear programming under uncertainty. Management Science,
1:197–206, 1955.

94 S. Chawla and T. Roughgarden

4. B. Dean, M. Goemans, and J. Vondrak. Adaptivity and approximation for stochas-
tic packing problems. In SODA ’05, pages 395–404.

5. B. Dean, M. Goemans, and J. Vondrak. The benefit of adaptivity: Approximating
the stochastic knapsack problem. In FOCS ’04, pages 208–217.

6. Brian Dean. Approximation Algorithms for Stochastic Scheduling Problems. PhD
thesis, Massachusetts Institute of Technology, Massachusetts, 2005.

7. Yefim Dinitz, Naveen Garg, and Michel X. Goemans. On the single-source unsplit-
table flow problem. Combinatorica, 19(1):17–42, 1999.

8. M. Goemans and J. Vondrak. Stochastic covering and adaptivity. In LATIN ’06,
pages 532–543.

9. A. Gupta, M. Pal, R. Ravi, and A. Sinha. Boosted sampling: Approximation
algorithms for stochastic optimization. In STOC ’04, pages 417–426.

10. A. Gupta, M. Pal, R. Ravi, and A. Sinha. What about wednesday? approximation
algorithms for multistage stochastic optimization. In APPROX ’05.

11. A. Gupta, R. Ravi, and A. Sinha. An edge in time saves nine: Lp rounding approx-
imation algorithms for stochastic network design. In FOCS ’04, pages 218–227.

12. N. Immorlica, D. Karger, M. Minkoff, and V. Mirrokni. On the costs and benefits of
procrastination: Approximation algorithms for stochastic combinatorial optimiza-
tion problems. In SODA ’04, pages 684–693.

13. Jon Kleinberg. Single-source unsplittable flow. In FOCS ’96, pages 68–77.
14. S. G. Kolliopoulos and C. Stein. Approximation algorithms for single-source un-

splittable flow. SIAM Journal on Computing, 31(3):919–946, 2001.
15. R. Ravi and A. Sinha. Hedging uncertainty: approximation algorithms for stochas-

tic optimization problems. Mathematical Programming, 2005.
16. David Shmoys and Chaitanya Swamy. Sampling-based approximation algorithms

for multi-stage stochastic optimization. In FOCS ’05.
17. David Shmoys and Chaitanya Swamy. Stochastic optimization is (almost) as easy

as deterministic optimization. In FOCS ’04, pages 228–237.
18. Stochastic programming community homepage. http://stoprog.org/.
19. W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical

Society, 3(13):743–768, 1963.

An O(log n) Approximation Ratio for the
Asymmetric Traveling Salesman Path Problem

Chandra Chekuri1 and Martin Pál2

1 Lucent Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
2 Google Inc., 1440 Broadway, New York, NY 10018, USA

chekuri@cs.uiuc.edu, mpal@google.com

Abstract. Given an arc-weighted directed graph G = (V, A, �) and a
pair of vertices s, t, we seek to find an s-t walk of minimum length that
visits all the vertices in V . If � satisfies the asymmetric triangle inequality,
the problem is equivalent to that of finding an s-t path of minimum length
that visits all the vertices. We refer to this problem as ATSPP. When
s = t this is the well known asymmetric traveling salesman tour problem
(ATSP). Although an O(log n) approximation ratio has long been known
for ATSP, the best known ratio for ATSPPis O(

√
n). In this paper we

present a polynomial time algorithm for ATSPPthat has approximation
ratio of O(log n). The algorithm generalizes to the problem of finding a
minimum length path or cycle that is required to visit a subset of vertices
in a given order.

1 Introduction

In the classical traveling salesman problem (TSP) we are given an undirected
(directed) graph with edge (arc) lengths and we seek to find a Hamiltonian cycle
of minimum length. It is one of the most extensively studied combinatorial opti-
mization problems. TSP is not only NP-hard, it is also NP-hard to approximate
to within any polynomial factor - both these facts follow easily from the NP-
Completeness of the Hamiltonian cycle problem. We obtain a more tractable
variant of the problem if we ask for a tour instead of a cycle; that is we al-
low a vertex to be visited multiple times. In the undirected graph setting this
relaxation is equivalent to assuming that the edge lengths satisfy the triangle
inequality and in directed graphs this is equivalent to assuming that the arc
lengths satisfying the asymmetric triangle inequality. The relaxed problem is
referred to as Metric-TSP in undirected graphs and ATSP in directed graphs.
For Metric-TSP the best known approximation ratio is 3/2 due to Christofides
[6]. For ATSP an approximation ratio of log2 n was obtained by Frieze, Galbiati
and Maffioli [8]. This ratio has been slightly improved [3, 12] and the best ratio
known currently is 0.842 log2 n [12].

In this paper we are concerned with the traveling salesman path problem. The
input to the problem is a graph with edge (arc) lengths and two vertices s and
t. We seek a path from s to t of minimum length that visits all the vertices. The
path version is NP-hard and also hard to approximate to within any polynomial

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 95–103, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

96 C. Chekuri and M. Pál

factor via a reduction from the Hamiltonian path problem. We therefore con-
sider the relaxed version where the objective is to find a walk instead of a path.
We refer to undirected graph and directed graph versions as Metric-TSPP and
ATSPPrespectively. For Metric-TSPP the best known approximation ratio is
5/3 due to Hoogeveen [11] (see [10] for a different proof). The ATSPPproblem
does not seem to have been considered much in the literature and we are only
aware of the recent work of Lam and Newman [14] who give an O(

√
n) approx-

imation. Our main result is the following.

Theorem 1. There is an O(log n) approximation algorithm for the ATSPPproblem.

We also consider a generalization of ATSPP. We are given a set of distinct ver-
tices {v1, v2, . . . , vk} and seek a minimum length path P (or cycle) that visits
all vertices of the graph but visits v1, v2, . . . , vk in that order. We can assume
without loss of generality that the path P starts at v1 and ends at vk. In the undi-
rected graph setting, this problem has been referred to as path-constrained TSP
and is a special case of a more general problem called precedence-constrained
TSP [4]. Bachrach et al. [2] gave a 3-approximation for the path-constrained
TSP in metric spaces. Our approach for ATSPPgeneralizes to the asymmetric
version of the path-constrained TSP.

Theorem 2. There is an O(log n) approximation algorithm for the path-con-
strained ATSPPproblem.

ATSPP vs ATSP: It is easy to see that an α approximation for ATSPPimplies
an α approximation for ATSP; we can reduce a given ATSPinstance to an
ATSPPinstance on the same graph by choosing an arbitrary vertex v and and
setting s = t = v. At first glance it might appear that ATSPPcan be reduced
to ATSPby taking an instance of ATSPPand adding an arc (t, s) to the graph
with an appropriate length. It is, however, not hard to convince oneself that such
a reduction does not work. To better understand the difficulty in the directed
setting and develop the main ingredient of our algorithm we give a brief overview
of the algorithm of Frieze et al. [8] for ATSPand a variant proposed by Kleinberg
and Williamson [13] (see [16] for a description and proof). Both algorithms work
in an iterative fashion. We let Opt denote the value of an optimum solution to
a given instance.

The algorithm in [8] finds a collection of directed cycles othat partition the
vertex set (called a cycle-cover in some settings) such that the total length of the
cycles is minimized. at most Opt. This can be achieved in polynomial time using
a reduction to the minimum cost assignment problem. Note that the optimum
solution to the given instance of ATSPis a single cycle that spans the vertices,
and hence the length of the cycles computed is at most Opt. From each cycle
an arbitrary vertex is chosen to be the cycles proxy and the problem is reduced
to the graph induced on the proxy vertices. The number of proxies is no more
than half the number of initial vertices since each cycle constains at least two
vertices. A tour in the smaller graph can be extended to the original graph using
the cycles. Further, it can be easily seen that there must be a tour of length Opt

An O(log n) Approximation Ratio for the ATSPP 97

in the new instance on the proxy vertices. Thus the algorithm incurs a cost of
Opt in each iteration and since the number of vertices is reduced by a factor
of 2 in each iteration, the total length of the final tour is upper bounded by
log2 n ·Opt.

The algorithm in [13] works differently. It finds a single cycle in each iteration
such that the ratio of the length of the cycle to the number of vertices in the cy-
cle is minimum. Such a cycle (also called a minimum mean cycle) can be found in
polynomial time [1]. An arbitraryvertex in the cycle is chosen as a proxy and the al-
gorithmworks in a reduced graphwith the non-proxy vertices of the cycle removed.
The analysis is similar to that of the analysis of the greedy algorithm for covering
problems, in particular the set cover problem [7]. This results in an approximation
ratio of 2Hn where Hn = 1 + 1/2 + . . . + 1/n is the n-th harmonic number.

Both the algorithms described above crucially rely on the fact that cycles
allow the problem size to be reduced. Cycles can be used in a similar way for
ATSPPas well. However, in ATSPP, cycles cannot be relied on as the only
building blocks since the solution to the problem might not contain any cycle;
for example G can be a directed path. In addition to cycles, we also need to
consider paths. However there is no simple way to reduce the problem size using
paths. We therefore restrict ourselves to maintaining a single partial path from
s to t. A simple, and indeed the only natural way to augment a partial path P is
to replace one of the arcs (u, v) of P by a subpath P ′ from u to v that contains
some yet unvisited vertices. Our main technical contribution is the following: for
any partial path there exists an augmentation to a path that contains all vertices
such that the length of augmentation is at most 2Opt. We combine this with
the greedy approach similar to that in [13] to prove Theorem 1 and Theorem 2.

Related Work: TSP is a cornerstone problem for combinatorial optimization and
there is a vast amount of literature on many aspects including a large number
of variants. The books [15, 9] provide extensive pointers as well as details. Our
work is related to understanding the approximability of TSP and its variants.
In this context one of the major open problems is to resolve whether ATSPhas
a constant factor approximation. The natural LP relaxation for ATSPhas only
a lower bound of 2 on its integrality gap [5]. Resolving the integrality gap of
this formulation is also an important open problem. The path-constrained TSP
problem is a special case of the precedence-constrained TSP problem [4]: we are
given a partial order on the vertices and the goal is to seek a minimum length
cycle that visits vertices in an order that is consistent with the given partial
order. In [4] it is shown that this general problem is hard to approximate for
even special classes of metric spaces.

2 Preliminaries

Let G be an arc-weighted directed graph. For a path P in G let V (P) and
A(P) denote the vertices and arcs of P respectively. Let P(s, t) denote the set
of all s � t paths in G. A path P ∈ P(s, t) is non-trivial if it contains internal

98 C. Chekuri and M. Pál

vertices, that is |V (P)| > 2. Let C(s, t) denote the set of cycles in G that do not
contain either s or t. Let P be a non-trivial path in P(s, t). Then the density of
P , denoted by d(P), is the ratio of the total arc length of P to the number of
internal vertices in P . In other words d(P) =

∑
a∈A(P) �(a)/|V (P)−2|. Similarly,

the density of a cycle C ∈ C(s, t) is defined to be d(C) =
∑

a∈A(C) �(a)/|V (C)|.

Lemma 1. Given a directed graph G and two vertices s, t, let λ∗ be the density
of a minimum density non-trivial path in P(s, t). There is a polynomial time
algorithm that either finds a path P ∈ P(s, t) such that d(P) = λ∗ or finds a
cycle C ∈ C(s, t) such that d(C) < λ∗.

Proof. We give a polynomial time algorithm that takes a parameter λ > 0 in
addition to G and s, t and outputs one of the following: (i) a non-trivial path
P ∈ P(s, t) with d(P) ≤ λ (ii) a cycle C ∈ C(s, t) with d(C) < λ (iii) a proof that
no path in P(s, t) has a density at most λ. This can be combined with binary
search to obtain the desired algorithm.

We remove arcs into s and out of t. This ensures that there are no cycles that
contain s or t and does not affect the solution. Given λ we create a graph Gλ

that differs from G only in the arc lengths. The arc lengths of Gλ, denoted by
�′, are set as follows:

�′(s, u) = �(s, u)− λ/2 u ∈ V − {s, t}
�′(u, t) = �(u, t)− λ/2 u ∈ V − {s, t}
�′(u, v) = �(u, v)− λ u, v ∈ V − {s, t}

It is easy to verify that the density of a path P ∈ P(s, t) or a cycle C ∈ C(s, t) is
at most λ iff its length in Gλ is non-positive. Thus we can use the Bellman-Ford
algorithm [1] to compute a shortest path in Gλ between s and t. If the algorithm
finds a negative length cycle we output it. Otherwise, if the shortest path length
is non-positive then we obtain a path of density at most λ. If the shortest path
is of positive length, we obtain a proof of the non-existence of a path in P(s, t)
of density λ. ��

We remark that the above proof only guarantees a weakly-polynomial time algo-
rithm due the binary search for λ∗. A strongly polynomial time algorithm can be
obtained by using a parametric shortest path algorithm. Our focus is on the ap-
proximation ratio and hence we do not go into the details of this well-understood
area and refer the reader to [1, 17].

Given a directed path P and two vertices u, v ∈ P we write u �P v if u
precedes v in P (we assume that u precedes itself). If u �P v and u = v we write
u ≺P v. If P is clear from the context we simply write u � v or u ≺ v.

We call a path P ∈ P(s, t) spanning if V (P) = V , otherwise it is partial. Let P1
and P2 be two paths in P(s, t). We say that P2 dominates P1 iff V (P1) ⊂ V (P2).
We say that P2 is an extension of P1 if P2 dominates P1 and the vertices in
V (P1) are visited in the same sequence in P2 as they are in P1. It is clear
that if P2 extends P1 then we can obtain P2 by replacing some arcs of P1 by
subpaths of P2. Let �(P1, P2) denote the cost of extension which is defined to be

An O(log n) Approximation Ratio for the ATSPP 99∑
a∈A(P2)\A(P1) �(a). Note that the cost of extension does not include the length

of arcs in P1.

3 Augmentation Lemma

Our main lemma is the following.

Lemma 2. Let G = (V,A, �) satisfy the asymmetric triangle inequality and let
P1, P2 in P(s, t) such that P2 dominates P1. Then there is a path P3 ∈ P(s, t)
that dominates P2, extends P1, and satisfies �(P1, P3) ≤ 2�(P2).

We remark that the above lemma only guarantees the existence of P3 but not
a polynomial time algorithm to find it. Let us introduce some syntactic sugar
before plunging into the proof. For a path P and two vertices u �P v, we use
P (u, v) to denote the subpath of P starting at u and ending at v. Specifically for
the path P1, we use the following notation: for a vertex u ∈ P1 \ {t}, we denote
by u+ the successor of u on P1.

Proof of Lemma 2. Consider the set X ⊆ P1 of vertices u with the property
that u ≺P2 u+. For each such vertex, we think of replacing the arc (u, u+) of
P1 by the subpath P2(u, u+). Näıvely, we could replace all arcs (u, u+) by the
corresponding subpaths of P2. Unfortunately this might cause some arcs of P2
to be used multiple times and thus incur a high cost of extension. To avoid this,
we choose only some of the vertices in X to replace their corresponding arcs. We
shall mark a subset of vertices u ∈ X with their corresponding path segments
P2(u, u+) such that each vertex of P2 occurs in some marked path segment at
least once, while each arc of P2 appears in at most two marked segments.

We construct a sequence g1, g2, . . . of marked vertices iteratively. To start,
we let g1 = s be the first marked vertex. Given g1, . . . , gi, we construct gi+1 as
follows. Find the last vertex v on the subpath P1(g+

i , t) such that v ∈ P2(s, g+
i).

Such a vertex v always exists, as g+
i belongs to both path segments. Note that,

by the choice of v, v+ /∈ P2(s, g+
i), which means that (unless v = t) v ≺P2 v+

and thus v ∈ X . If v = t, we let gi+1 = v and continue to the next iteration. If
v = t, we stop. Let gl be the last vertex of the constructed sequence. To prove
the lemma, it now suffices to prove the following two statements.

(P1) For every vertex v ∈ P2, there is at least one marked segment P2(gi, g
+
i)

that contains v.
(P2) Every arc a ∈ P2 belongs to at most two marked segments P2(gi, g

+
i), with

i = 1, . . . , l.

These statements in turn follow from the following inequalities:

(I1) For i = 1, . . . , l − 1, we have gi ≺P1 gi+1.
(I2) For i = 1, . . . , l − 1, we have gi ≺P2 gi+1 �P2 g+

i .
(I3) For i = 1, . . . , l − 2, we have g+

i �P2 gi+2.

100 C. Chekuri and M. Pál

In particular, (I2) shows that any two consecutive path segments P2(gi, g
+
i)

and P2(gi+1, g
+
i+1) overlap. Since the first segment contains s and the last seg-

ment contains t, the union of these segments must necessarily cover the whole
path P2. Hence (P1) holds. Inequalities (I2) and (I3) imply that two path seg-
ments P2(gi, g

+
i) and P2(gj , g

+
j) overlap only if |i − j| ≤ 1, and thus each arc

a ∈ P2 can belong to at most two consecutive segments. This proves (P2).
We finish the proof by showing that (I1)–(I3) hold. (I1) holds by construction,

as gi+1 ∈ P1(g+
i , t). The second part of (I2), gi+1 �P2 g+

i is easily seen to hold
as well, since gi+1 is defined to be the last vertex v along the path P1 such that
v �P2 g+

i .
From (I1) we know that gi+2 occurs on the path P1 later than gi+1, thus it

must be that gi+2 �P2 g+
i does not hold, and hence g+

i ≺P2 gi+2. This proves
inequality (I3).

Finally, we prove the first part of inequality (I2), gi ≺P2 gi+1. Since g1 = s,
this certainly holds for i = 1. For contradiction, suppose that gi+1 �P2 gi for
some i > 1. Consider the iteration in which gi got marked. Recall that by
construction, gi is the last vertex along the path P1 that belongs to P2(s, g+

i−1).
But then, from gi+1 �P2 gi and gi �P2 g+

i−1 it follows that gi+1 �P2 g+
i−1, and

hence gi+1 ∈ P2(s, gi−1). This is a contradiction, because by (I1), gi+1 occurs on
P1 later than gi. ��

We obtain the following useful corollary.

Corollary 1. Let P ∈ P(s, t). Then there is a spanning path P ′ ∈ P(s, t) such
P ′ extends P and �(P, P ′) ≤ 2Opt.

Proof. In Lemma 2, we let P1 = P and we choose P2 to be some fixed optimum
spanning path. The path P3 guaranteed by the lemma is the desired P ′. ��

4 Algorithm for ATSPP

Our algorithm for ATSPPworks in a greedy fashion, choosing a best ratio aug-
mentation in every step similar in spirit to that in [13]. The approximation ratio
follows from the same arguments as in the analysis of the greedy algorithm for
set cover [7].

At any point in time, the algorithm maintains an s-t path P , where P = (s =
p0, p1, . . . , pk = t), and a list C of vertex disjoint cycles C1, . . . , Cl. The cycles
are at all times disjoint from P and together with P partition the vertex set V .
From each cycle Ci, we pick a vertex ci as a proxy for that cycle. Initially, the
path P consists of a single arc s-t, and every vertex v ∈ V \ {s, t} is considered
a separate (degenerate) cycle. (Thus initially, each vertex will be its own cycle’s
proxy.)

In each iteration, we seek to decrease the number of components by performing
a path or cycle augmentation. In a path augmentation step, we pick a path π
that starts at some vertex pi = t on the path P , visits one or more cycle proxy
vertices, and ends at pi+1, the successor of pi on P . Let R(π) = ci1 , ci2 , . . . , cim

An O(log n) Approximation Ratio for the ATSPP 101

be the set of proxy vertices visited by π. Consider the union of the path π and
the cycles {Ci}ci∈R(π). In this graph, the in-degree of every vertex equals its
out-degree, except for pi and pi+1. Thus, it is possible to construct an Eulerian
walk from pi to pi+1 that visits all arcs (and hence all vertices) of

⋃
ci∈R(π) Ci.

Using triangle inequality and short-cutting, we convert the walk into a path π′

that visits every vertex only once without increasing its cost. We then extend
P by replacing the arc (pi, pi+1) by the path π′. Finally, we remove all cycles in
R(π) from C.

The cycle augmentation step is very similar. We pick a non-degenerate cycle
C on proxy vertices (that is, it contains two or more proxy vertices). We let R(C)
be the set of proxy vertices visited by C, and consider the graph C∪

⋃
ci∈R(C) Ci.

This graph is Eulerian: by following an Eulerian tour of it and short-cutting, we
obtain a cycle C′ visiting every vertex of

⋃
ci∈R(C) Ci. We add C′ to the list C

(we pick a proxy for C′ arbitrarily). Again, we remove all cycles in R(C) from
the list C.

In every iteration, we pick a path or a cycle augmentation step with minimum
density. In the following, we use π to refer to either an augmenting path or
augmenting cycle. For the purposes of this algorithm, we define the density of
a path or cycle π to be d(π) = �(π)/|R(π)| the ratio of the length of π to the
number of proxy vertices covered by π. Note that although we consider only
proxy vertices in the above definition of density, we can still use Lemma 1 to
find, in polynomial time, an augmenting path of minimum density λ∗, or find
an augmenting cycle with density no greater than λ∗.

Each augmenting path or cycle iteration reduces the size of the list C, and
hence it takes at most |V | − 2 iterations to exhaust it. At this point, all out-
standing cycles must have been included in P , and hence P is a spanning path.
We output P and stop.

4.1 Bounding the Cost

We now turn to bounding the cost of the resulting path. To do this, we observe
the quantity L = �(P) +

∑
c∈C �(C). Initially, L = �(s, t) ≤ Opt. Note that

in every augmentation step, L increases by at most �(π), where π is the cur-
rent augmenting path or cycle. Hence, it is enough to bound the lengths of the
augmenting paths and cycles.

Claim. In every iteration, if π is the augmenting path or cycle in that iteration,

�(π) ≤ |R(π)|
|C| · 2Opt.

Proof. Let P ∗ be a minimum length s-t path that visits all proxy vertices
of cycles in C. One such path can be obtained by short-cutting the optimum
ATSPPpath in G, hence �(P ∗) ≤ Opt. Lemma 2 states that the path P can
be extended to a path P3 such that R(C) ⊆ P3 and the cost of the extension is
at most 2�(P ∗) ≤ 2Opt. The extension covers |C| proxy vertices, and hence has

102 C. Chekuri and M. Pál

density at most 2Opt/|C|. The subpaths of this extension are also valid augmen-
tation paths; and one of them must have density no greater than the density of
the whole extension. Thus, there is an augmenting path with density 2Opt/|C|;
the density of the best path or cycle can only be lower. ��

Lemma 3. The overall cost of the path output by the algorithm is at most
max(4Hn−2, 1) ·Opt.

Proof. At any given stage of the algorithm, let k = |C| be the number of com-
ponents left. We claim that the cost of reducing k by one is at most 4Opt/k.
Assuming the claim and summing over k = 1, . . . , |V |− 2 yields an upper bound
of 4Hn−2Opt on the total cost of the augmentation steps. We also have to ac-
count for the arc (s, t) included in the initialization phase; note that if n ≥ 3,
this arc will be removed during the execution of the algorithm and hence does
not contribute to the final cost. It is easy to verify that for n = 2, our algorithm
finds an optimal solution.

To prove the claim, consider any fixed value of k and consider the augmen-
tation step in which the value of |C| drops from some k1 ≥ k to k2 < k. The
augmentation step was either a path step, or a cycle step. In a path step, k1−k2
cycles are removed at cost 2Opt(k1−k2)/k1, i.e. 2Opt/k1 ≤ 2Opt/k per cycle.
In a cycle step, k1 − k2 + 1 cycles are removed and one cycle is added, at cost
2Opt(k1−k2+1)/k1. The amortized cost per cycle is thus 2Opt

k1
· k1−k2+1

k1−k2
. Since

in a cycle step, k1−k2 ≥ 1, the amortized cost per cycle is at most 4Opt/k1. ��

We briefly discuss the running time of the algorithm. The number of augmenting
iterations is, in the worst case, linear in n. In each iteration we need to find a
parametric shortest path between every adjacent pair of vertices in the current
partial path. Thus, in the worst case the algorithm requires Θ(n2) parametric
shortest path computations. Each parametric shortest path computation can be
implemented in O(nm + n2 logn) time in a graph with n vertices and m arcs
[17]. One way to simplify the implementation is to use the transitive closure of
the original graph: an arc (u, v) in the trantive closure has length equal to the
shortest path from u to v in the original graph. A simple upper bound on the
number of arcs in the closure is n2. Thus a parametric shortest path computation
takes O(n3) time. Putting together these bounds gives a total running time of
O(n5) steps. The running time can be improved at the expense of a (slightly)
worse approximation guarantee. In particular the density computation for the
augmentation in each iteration can be approximate.

Path-constrained ATSPP. Our algorithm for ATSPPgeneralizes to the path-
constrained version in a straight forward fashion. Recall that we are given a
sequence of vertices s = v1, v2, . . . , vk = t and seek a minimum length span-
ning path in P(s, t) that visits v1, v2, . . . , vk in order. The only change from
the algorithm for ATSPPis in the initialization step. Instead of starting with
a path consisting of the arc (s, t) we start with a path P consisting of the arcs
(v1, v2), (v2, v3), . . . , (vk−1, vk). Note that the length of this path is a lower bound
on the length of an optimum path. The algorithm simply augments this path

An O(log n) Approximation Ratio for the ATSPP 103

to a spanning path in exactly the same way as for ATSPP. The analysis is
essentially the same as for ATSPP.

Acknowledgments. We thank Fumei Lam for an enlightening conversation, for
sending us a copy of the manuscript [14] and for pointing out [2]. We thank
Moses Charikar for pointing out [13]. Part of this work was done while the
second author was at Lucent Bell Labs. Chandra Chekuri acknowledges support
from an ONR basic research grant N00014-05-1-0256 to Lucent Bell Labs.

References

1. R. Ahuja, T. Magnanti and J. Orlin. Network Flows. Prentice Hall, 1993.
2. A. Bachrach, K. Chen, C. Harrelson, S. Rao and A. Shah. Lower Bounds for

Maximum Parsimony with Gene Order Data. RECOMB Comparative Genomics,
1–10, 2005.

3. M. Bläser. A New Approximation Algorithm for the Asymmetric TSP with Trian-
gle Inequality. Proc. of ACM-SIAM SODA, 638–645, 2002.

4. M. Charikar, R. Motwani, P. Raghavan and C. Silverstein. Constrained TSP and
lower power computing. Proc. of WADS, 104–115, 1997.

5. M. Charikar, M. Goemans, and H. Karloff. On the Integrality Ratio for Asymmetric
TSP. Proc. of IEEE FOCS, 101–107, 2004.

6. N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman
problem. Technical report, GSIA, CMU, 1976.

7. V. Chvatal. A greedy heuristic for the set-covering problem. Math. of Oper. Res.,
Vol 4:233–235, 1979.

8. A. Frieze, G. Galbiati and M. Maffioli. On the worst-case performance of some
algorithms for the asymmetric traveling salesman problem. Networks 12, 23–39,
1982.

9. G. Gutin and A. P. Punnen (Eds.). Traveling Salesman Problem and Its Variations.
Springer, Berlin, 2002.

10. N. Guttmann-Beck, R. Hassin, S. Khuller and B. Raghavachari. Approximation
Algorithms with Bounded Performance Guarantees for the Clustered Traveling
Salesman Problem. Algorithmica, Vol 28 pp. 422–437, 2000. Preliminary version
in Proc. of FSTTCS, 1998.

11. J. Hoogeveen. Analysis of Christofides’ heuristic: Some paths are more difficult
than cycles. Operations Research Letters, 10:291–295, 1991.

12. H. Kaplan, M. Lewenstein, N. Shafir and M. Sviridenko. Approximation Algorithms
for Asymmetric TSP by Decomposing Directed Regular Multidigraphs. Journal of
ACM vol. 52 (2005), pp. 602-626.

13. J. Kleinberg and D. Williamson. Unpublished note, 1998.
14. F. Lam and A. Newman. Traveling Salesman Path Problems. Manuscript, April

2005.
15. E. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. Shmoys (Eds.). The

Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. John
Wiley & Sons Ltd., 1985.

16. D. Williamson. Lecture Notes on Approximation Algorithms. IBM Research Re-
port RC 21273, February 1999.

17. N. Young, R. Tarjan and J. Orlin. Faster parametric shortest path and minimum
balance algorithms. Networks, 21(2): 205–221, 1991.

Online Algorithms to Minimize Resource
Reallocations and Network Communication

Sashka Davis1,�, Jeff Edmonds2, and Russell Impagliazzo1,�

1 Dept. of Computer Science, Univ. of California, San Diego
2 Dept. of Computer Science, York University, Canada

Abstract. In this paper, we consider two new online optimization prob-
lems (each with several variants), present similar online algorithms for
both, and show that one reduces to the other. Both problems involve a
control trying to minimize the number of changes that need to be made in
maintaining a state that satisfies each of many users’ requirements. Our
algorithms have the property that the control only needs to be informed
of a change in a users needs when the current state no longer satisfies
the user. This is particularly important when the application is one of
trying to minimize communication between the users and the control.

The Resource Allocation Problem (RAP) is an abstraction of schedul-
ing malleable and evolving jobs on multiprocessor machines. A scheduler
has a fixed pool of resources of total size T . There are n users, and each
user j has a resource requirement for rj,t resources. The scheduler must
allocate resources �j,t to user j at time t such that each allocation satisfies
the requirement (rj,t ≤ �j,t) and the combined allocations do not exceed
T (

∑
j �j,t ≤ T). The objective is to minimize the total number of changes

to allocated resources (the number of pairs j, t where �j,t �= �j,t+1).
We consider online algorithms for RAP whose resource pool is in-

creased to sT and obtain an online algorithm which is O(logs n)-
competitive. Further we show that the increased resource pool is crucial
to the performance of the algorithm by proving that there is no online
algorithm using T resources which is f(n)-competitive for any f(n). Note
that our upper bounds all have the property that the algorithms only
know the list of users whose requirements are currently unsatisfied and
never learn the precise requirements of users. We feel this is important
for many applications, since users rarely report underutilized resources
as readily as they do unmet requirements. On the other hand, our lower
bounds apply to online algorithms that have complete knowledge about
past requirements.

The Transmission-Minimizing Approximate Value problem is a gen-
eralization of one defined in [1], in which low-power sensors monitor
real-time events in a distributed wireless network and report their re-
sults to a centralized cache. In order to minimize network traffic, the
cache is allowed to maintain approximations to the values at the sensors,
in the form of intervals containing the values, and to vary the lengths

� Research partially supported by NSF Award CCR-0515332, but views expressed are
not endorsed by the NSF.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 104–115, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Online Algorithms to Minimize Resource Reallocations 105

of intervals for the different sensors so that sensors with fluctuating val-
ues are measured less precisely than more stable ones. A constraint for
the cache is that the sum of the lengths of the intervals must be within
some precision parameter T . Similar models are described in [2, 3]. We
adapt the online randomized algorithm for the RAP problem to solve
TMAV problem with similar competitive ratio: an algorithm can main-
tain sT precision and be O(logs n)-competitive in transmissions against
an adversary maintaining precision T .

Further we show that solving TMAV is as hard as solving RAP, by
reducing RAP to TMAV. This proves similar lower bounds for TMAV
as we had for RAP, when s is near 1.

1 Introduction

Many applications have the following form: a central control is allocating re-
sources among several users. Users have requirements and complain to the con-
trol when requirements are not met. The control may then reallocate resources
to satisfy the complaints. However, such reallocation is expensive and should be
minimized.

1.1 Resource Allocation Problems

For example, consider jobs competing for processor time on a parallel machine. In
such time-shared multiprocessor machines, jobs with rigid requirements, which
cannot run unless they obtain at least a fixed number of processors, can be a
bottleneck, reducing system throughput and processor utilization. This overhead
might be reduced by treating jobs as having malleable, evolving requirements
rather than having a hard, fixed requirement for a specific number of processors.
Malleable jobs are parallel tasks that can be performed with different numbers
of processors, depending on how many they are allotted by the control. Evolv-
ing jobs have requirements that vary over time, and can request changes in
their allotments when their needs change. Scheduling for such jobs is studied in
[4, 5, 6, 7].

We consider the problem of scheduling evolving parallel tasks that can request
more processors from a scheduler of a multi-processor system with T identical
processors while they are running. Preemption is possible, but expensive, since
many parallel tasks have a high context switch cost (e.g. rendering applications).
The goal of the scheduler is thus to minimize preemption while satisfying the
processor requirements. We make this precise below. In the following problem,
a user will represent a task/job and resources represent processors.

Definition 1. Resource Allocation Problem (RAP) There are n users.
The input specifies the amount of resources rj,t required by user j at time t. At
each point in time, a scheduler A must allocate an amount �A

j,t to user j that is
at least this required amount (�A

j,t ≥ rj,t). The scheduler has only T resources to
allocate and hence

∑
j �A

j,t ≤ T . The objective function is to minimize the number
of times that the schedule changes the amount �A

j,t allocated to each user.

106 S. Davis, J. Edmonds, and R. Impagliazzo

We assume that at each point in time, the total resources requested
∑

j rj,t does
not exceed the amount T available. Otherwise, all schedulers will fail. If these
amounts are equal, then the scheduler has no choice. However, if it is less, then
the scheduler must decide where to allocated the extra resources. If the scheduler
knows the future then it will give the extra resources to users that will need more
later.

An online scheduler lacks knowledge about future requirements of the users
and so it must guess where to allocate its extra resources. Making it harder, in
many situations, the online scheduler will not learn of changes to user’s require-
ments until the user complains because it does not have enough. To formalize
the above limitation on information available to a scheduler, we consider a re-
stricted class of schedulers. A restricted scheduler only has access to input in
the following way. At time t, it learns the set of currently unsatisfied users. It
then repeatedly reallocates resources, paying a cost for each change. After each
reallocation, it learns the set of unsatisfied users (some users given more might
still not have enough resources, whereas others might become unsatisfied after
part of their allocations were given to complaining users.) This repeats until all
users are satisfied. (Note that the scheduler in this model may be charged repeat-
edly for reallocations involving the same processor in the same time step.) We
denote the above Restricted-scheduler Resource Allocation Problem as
RRAP. Note that unlike RAP, in RRAP the scheduler never learns the resource
requirements exactly, only an upper bound for each.

In RAP, it is always possible to fulfill all the requirements. However, schedulers
often have to deny some requests in order to preserve resources for others. Our
techniques also apply to the following variant, where the scheduler can deny
requests by paying a penalty.

Definition 2. Resource Allocation Problem with Penalties (RAPP)
There are n users and a pool of T resources. At time t some user j ∈ [n] produces
a request for resource rj,t with a penalty pj,t ≥ 1. At each time, the scheduler
allocates �j,t resources to user j, where the sum of the allocations is at most
T . The scheduler’s cost is the total number of changes made to allocations, plus
the total penalties pj,t over all times when the scheduler fails to satisfy the t’th
request.

Note that, for simplicity, we define user requirements for this problem as instan-
taneous rather than continuing. However, we could model users with continuing
requirements by having users issue requests whenever their current requirements
are unmet (due to increase in their requirements or reallocation of their re-
sources).

A restricted scheduler for the RAPP problem only learns of requests that
are currently unsatisfied, but learns the required amount and penalty for such
requests.

RAPP could model resource allocation for distributed grid computing sys-
tems, where the penalty represents the priority of the job requesting the re-
source. The higher the priority the higher the penalty if the algorithm chooses
to not satisfy the request. It could also model malleable jobs, which would make

Online Algorithms to Minimize Resource Reallocations 107

requests for each possible number of processors from largest to smallest until a
request is satisfied, with increasing penalties.

We will show that the RAP problem reduces to RAPP, by repeating requests
until they must be satisfied. RAP could represent a situation where the jobs are
rigid but evolving and the scheduler is not allowed to starve any job.

For our algorithms, we consider memoryless online algorithms that utilize sT
resources, and compare them to all knowing all powerful adversaries with a total
budget of T . The reason is that when given no extra resources, the online/off-line
competitive ratio is infinite (See Sect. 5). Let E(As(σ)) denote the expected cost
of algorithm A with sT resource on input σ. Let OPT1(σ) denote the minimum
cost of any solution with T resources on the same sequence σ. We call the
algorithm A (s, c)-competitive if there exists a constant d, possibly depending
on n and T , such that for all inputs σ, E(As(σ)) ≤ c OPT1(σ) + d. Our goal
is to find algorithms that are (s, c)-competitive for as small values of s and c
as possible. Our results are (s,O(logs n)-competitive algorithms for RAP and
RAPP problems.

1.2 Transmission-Minimizing Approximate Value Problem

Small power wireless sensor networks are used for variety of applications from
monitoring seismological data to tracking wildlife. Communication in such net-
works is expensive, especially in terms of power usage. Consider such a network
in which there is a set of sensors each capable of transmitting one value to a
central cache. The cache needs to know the values read by each sensor, allowing
for some imprecision. If the cache needs perfect precision then the cache must
be updated each time a sensor’s value changes. To minimize communication, the
central station might relax the precision for the values read by the sensor. The
cache would still need to be notified when the value changed by more than the
allowable precision. Thus, some sensors (with fluctuating values) might be given
a more relaxed standard of precision than sensors with more stable values.

The problem of setting the precision of approximated cached values is defined
in [1] as follows. There are data sources S1, . . . , Sn. Each data source Si hosts
a value Vi. There is a cache C, which holds an interval approximation to the
exact values V1, . . . , Vn. An interval [L,H] is a valid approximation of a numeric
value V if V ∈ [L,H]. If an interval becomes invalid, then the cache must be
updated. We add a hard requirement that the sum of the lengths of intervals
assigned to the data sources be at most a parameter T ; in [1], this was a soft
requirement. The goal is to maintain valid intervals of total size T in a way that
minimizes the overall network traffic, assuming that each report of an invalid in-
terval and each reassignment of intervals takes one message. We call our version
of this problem Transmission-Minimizing Approximate Value Problem
(TMAV). [1] give an optimal solution to a related problem under the assump-
tion that the sources’ values arise from certain types of probability distributions.
Similar problems were studied in [2, 3], who present heuristic approaches and ex-
perimentally evaluate their performance. However, we give the first analysis of
algorithms when we allow the values read by the data sources to be adversarial.

108 S. Davis, J. Edmonds, and R. Impagliazzo

Similarly to the RAP problem, we compare online algorithms whose sum
of all intervals adds up to sT to an adversary bounded by the total precision
T . Our algorithm is almost identical to that for RAP, and achieves a similar
competitive ratio of O(logs n). For scheduling, it would seem more compelling
to take s as small as possible, but for TMAV, a larger value of s might still be
reasonable, since a factor of s corresponds to a loss of only log s bits of precision.
Again, our algorithm only uses very restricted access to the input: it only sees
the current value at a sensor when it becomes invalid or when it changes the
required precision at the sensor. This seems essential to any meaningful solution
to the problem, since we are trying to minimize communication. Nevertheless,
when we prove lower bounds, they apply to algorithms that have a complete
history of all values up to the current time.

Our results and outline of paper: In Sect. 2 we present a random-
ized, memoryless, online algorithm for RRAP problem that is (s,O(logs n)-
competitive for s > 3 and show how this algorithm can be used to solve RAP
and RAPP. In Sect. 3 we show how the algorithm above is modified to give a
similar result for the TMAV problem, for s > 6. In Sect. 4 we also show how to
reduce RAP to TMAV and RAP to RAPP using competitive ratio preserving
online reduction with respect to adaptive online adversaries. In Sect. 5 we prove
lower bounds on the competitive ratio achieved by any online algorithm.

2 The Steal From the Rich Algorithm

Our algorithm, Steal-From-the-Rich (SFR) for the RRAP problem, is more or less
as follows. When a user j requests more resources (but does not specify how much
he needs), the scheduler chooses a random user k with probability proportional
to the amount �A

k,t currently allocated to it. Then he moves resources from j to
k so that neither changes by more than a factor of r = Θ(

√
s).

The SFR algorithm is defined more precisely as follows. Initially, the resources
are partitioned evenly, i.e. �SFR

j,0 = sT
n . Let r = Θ(

√
s) and μ > 0 be parameters

defined more precisely later. If at time t user j requests more resources, the
algorithm repeats the following until all demands are satisfied; setting j to be
the user whose demands are not satisfied:

– It selects another user k at random with probability proportional to its

resource allocation, i.e. Pr[k is selected] = �SFR
k,t−1

sT−�SFR
j,t−1

.

– δ ← min
{

�SFR
k,t−1−μT

n , r−1
r �SFR

k,t−1, (r − 1)�SFR
j,t−1

}
, �SFR

k,t ← �SFR
k,t−1−δ,

�SFR
j,t ← �SFR

j,t−1 + δ. The other allocations are left unchanged.

Note that the choice of δ is the maximum so that �SFR
k does not decrease below

μT
n nor by more than a factor of r and that �SFR

j does not increase by more than
a factor of r. In addition SFR maintains that

∑
j �SFR

j,t = sT and �SFR
j,t ≥ μT

n for
all intervals, hence it is a valid schedule using sT resources.

Theorem 1. For s > 3, the algorithm SFR for the Resource Allocation Problem
is (s,O(logs n))-competitive against an adaptive online adversary.

Online Algorithms to Minimize Resource Reallocations 109

Proof. Let OPT be any adaptive online adversary strategy with a total of T
resources. We prove the O(logs n) competitive ratio using the potential function
Φ : Rn ×Rn → R+, where the first input describes the algorithm’s configuration
and the second the adversary’s. More precisely,

Φj,t =
14

log r

∣∣∣∣∣log

(
�SFR
j,t

r�OPT
j,t + μT/n

)∣∣∣∣∣ and Φt =
j=n∑
j=1

Φj,t.

The intuition is that this potential function is small when all allocations assigned
by the SFR are proportional to those assigned by the adversary. In this case,
SFR allocates more to each user and hence any cost incurred by the algorithm
will also be incurred by the adversary. At any point when SFR has a cost and
the adversary does not, SFR will grow an allocation that is short relative to the
adversary’s and will probably shrink an allocation that is long relative to the
adversary’s, thus reducing the potential.
Observe that Φj,t ≤ O(logs n). There are two cases in bounding Φj,t.

1. If �SFR
j,t >> �OPT

j,t then

Φj,t = 14
log r log

(
�SFR

j,t

r�OPT
j,t +μT/n

)
≤ 14

log r log
(

sT
μT/n

)
≤ O

(
log n
log s

)
= O(logs n).

2. If �SFR
j,t << �OPT

j,t , then

Φj,t = 14
log r log

(
r�OPT

j,t +μT/n

�SFR
j,t

)
≤ 14

log r log
(

rT+μT/n
μT/n

)
≤ O

(
log n
log s

)
=O(logs n).

This implies that Φt ≤ O(n logs n), for all t.
Let SFRt and OPTt be the costs incurred by the algorithm and the adversary

during the tth change in allocations and define at = SFRt + (Φt − Φt−1) to
be the amortized update cost to the algorithm. We will show that for every t,
E(at) ≤ O(logs n)OPTt, where the expectation is over the SFR’s random choice
for k conditioned on the configurations at time t−1. This establishes the claimed
competitive ratio because:

E(SFRs(σ)) = E
(∑

t

SFRt

)
= E

(∑
t

(at − Φt + Φt−1)
)

=
∑

t

E(at)− Φend+Φ0 ≤
∑

t

E(at) + Φ0

≤
∑

t

O

(
logn

log s

)
OPTt + O(n log n) = O(logs n)OPT (σ) + d,

for some d ∈ O(n log n) (Recall that for all j, t we bounded Φj,t ≤ O(logs n) and
s is a constant, hence Φ0 ≤ O(n logs n).

Our goal is to establish E(at) ≤ O(logs n)OPTt. We assume without loss of
generality that the adversary reallocates resources before issuing an increased
request for resources, since moving such a reallocation to before the request
changes neither the adversary’s nor the algorithm’s cost. Thus, we can break the
analysis into two cases where one type of two events described below happen.
Case 1: The adversary reallocates resources to users, and the algorithms does
nothing (since no user’s demands have changed).

110 S. Davis, J. Edmonds, and R. Impagliazzo

Case 2: One iteration of SFR’s main loop occurs. The algorithm moves resources
from one user to another, the adversary does nothing.

Note that the claim, E(at) ≤ O(logs n)OPTt, holds trivially when SFRt =
OPTt =0, because at =0.

Analysis Case 1: The adversary, anticipating that the user’s needs will change,
adjusts the allocations of some of the users, while the the algorithm not aware
of them makes no changes to its configuration: SFRt = 0 and OPTt > 0. For
each such user j, Φj increases by at most its maximum value, which we saw
is O(logs n). Hence, at ≤ 0 + O(logs n)OPTt, giving the competitive ratio as
stated.
Analysis Case 2: One iteration of SFR has occurred. SFRt = 2 because SFR
has changed the allocations of two users j and k, and OPT does nothing, hence
OPTt = 0. Because user j is requesting more from SFR and not from OPT,
we have that �SFR

j,t−1 ≤ �OPT
j,t−1. Having changed only the allocations of user j and

the randomly chosen user k, ΔΦ = Φt − Φt−1 = ΔΦj + ΔΦk. We bound the
expectation of this change to be at most −2. This gives the required bound as
E(at) = 2 + E(Φt − Φt−1) ≤ 0. We consider two cases.
Event B: Let B be the unlikely and unfortunate event that user k which is
randomly selected by SFR has a relatively small allocation, namely �SFR

k,t−1 <

r2�OPT
k,t−1 +μrT

n . This event is unlikely because on average the users are allocated
s = Θ(r2) times more under SFR and because the probability k is selected is
proportionally to its allocation. More formally, let K denote the set of users k
for which if selected event B occurs. We choose each such k with probability

�SFR
k,t−1

sT−�SFR
j,t−1

. Because j is requesting, we have that �SFR
j,t−1 ≤ �OPT

j,t−1 ≤ T . Because k

causes event B, we have that �SFR
k,t−1 < r2�OPT

k,t−1 + μrT
n . This gives

Pr[B] =
∑
k∈K

Pr[SFR chooses k] =
∑
k∈K

�SFR
k,t−1

sT − �SFR
j,t−1

<

∑
k∈K(r2�OPT

k,t−1 + μrT
n)

sT − T
≤ r2 · T + μr · T

(s− 1)T
=

r2 + μr

s− 1
≤ 3

7
.

We set r = Θ(
√

s) so that this is true. Note that for r > 1 and μ > 0, we need
s > 3.34 for this to be true. (We could decrease s to 3+ε by setting r = 1+ ε

11 ,
μ = ε

11 , Pr[B] = 1
2 −

ε
11 , the multiplicative constant 14 in the formula for Φt,j

to 11
ε , and the competitive ratio1 to O(11

ε log r log(rn
μ)) = O(log n

ε2).)
Event B: Suppose that the unlikely and unfortunate event B does not occur and
the user selected has relatively big allocation, namely k has �SFR

k,t−1 ≥ r2�OPT
k,t−1 +

μrT
n . Recall that �SFR

j,t−1 is increased and �SFR
k,t−1 is decreased by δ = min{�SFR

k,t−1 −
μT

n , r−1
r �SFR

k,t−1, (r − 1)�SFR
j,t−1}. The first of these possible values for δ does not

occur when B happens, because �SFR
k,t−1 ≥ μrT

n and hence �SFR
k,t−1−μT

n ≥
r−1

r �SFR
k,t−1.

1 If OPT was restricted so that it could never give more than αT to a single user, then
we could decrease s to 2+α+ε, because �SFR

j,t−1 ≤ �OPT
j,t−1 ≤ αT allows us to change the

s − 1 to s − α.

Online Algorithms to Minimize Resource Reallocations 111

Now lets look at the change of the potential function for user j when we
are in case 2. Here we have �SFR

j,t−1 < �OPT
j,t−1, then �SFR

j,t ≤ r�SFR
j,t−1 ≤ r�OPT

j,t−1 =

r�OPT
j,t < r�OPT

j,t + μT
n . Recall that Φj = 14

log r

∣∣∣log
(

�SFR
j

r�OPT
j +μT/n

)∣∣∣ and because of

the absolute value operator, this function decreases as �SFR
j increases when �SFR

j

is small and increases with it when it is large.
We now consider the effect of these changes on Φj and Φk in the two remaining

cases: when j increases by a factor of r (event C) or when k decreases by a factor
of r (event D).

– Let C ∩ B be the event that δ = (r−1)�SFR
j,t−1, and hence �SFR

j,t−1 increases

by a factor of r. Then E(ΔΦSFR
j |C ∩ B) = 14

log r log
(

�SFR
j,t−1

�SFR
j,t

)
= −14. Further

because �SFR decreases then E(ΔΦSFR
k |C ∩B) = 14

log r log
(

�SFR
k,t

�SFR
k,t−1

)
< 0. Com-

bined we have that E(ΔΦSFR|C∩B) = E(ΔΦSFR
k |C∩B)+E(ΔΦSFR

j |C∩B) <
−14.

– Let D ∩B be the event that δ = r−1
r �SFR

k,t−1, and hence �SFR
k,t−1 decreases by a

factor of r. Given event B happens, we have
�SFR
k,t ≥ 1

r �
SFR
k,t−1 ≥ 1

r

(
r2�OPT

k,t−1 + μrT
n

)
= r�OPT

k,t + μT
n , then E(ΔΦSFR

k |D ∩

B) = 14
log r log

(
�SFR

k,t

�SFR
j,t−1

)
= −14. As in the previous case since �SFR

j,t−1 in-

creases we have E(ΔΦSFR
j |D ∩ B) = 14

log r log
(

�SFR
j,t−1

�SFR
j,t

)
< 0. Combined we

have E(ΔΦSFR|D ∩B) = E(ΔΦSFR
k |D ∩B) + E(ΔΦSFR

j |D ∩B) = −14.

Now we bound the expectation of the change of the potential function when we
are in Case 2, and event B has not occurred:

E(ΔΦSFR|B) = Pr[C ∩B] · E(ΔΦSFR|C ∩B) + Pr[D ∩B] · E(ΔΦSFR|D ∩B)
≤ −14(Pr[C ∩B] + Pr[D ∩B]) ≤ −14 Pr[B].

Event B: We now bound ΔΦ when the unlikely and unfortunate event B does
occur. Because we are in Case 2, the above argument that E(ΔΦSFR

j |B) ≤ 0
does not change. Since SFR does not change k by more than a factor of r
and because OPT does not change the allocations at all, then E(ΔΦSFR

k |B) =
14

log r log(
�SFR

k,t−1

�SFR
k,t

) ≤ 14
log r log r.

E(ΔΦ|B) ≤ E(ΔΦj |B) + E(ΔΦk|B) ≤ 14.

Conclude Case 2: We bound the change of the potential function as:

E(ΔΦ) = Pr[B] ·E(ΔΦ | B)+(1−Pr[B]) ·E(ΔΦ | B) ≤ 3
7
·(14)+

4
7
·(−14) = −2.

We have established that E(at) = SFRt + E(ΔΦ) ≤ 0 = O(logs n)OPTt. Hence
E(at) ≤ O(logs n)OPTt, thus concluding the proof. ��

112 S. Davis, J. Edmonds, and R. Impagliazzo

2.1 Using SFR to Solve RAPP

We can also use a variant of SFR to solve RAPP as follows. When at time t user
j requests rj,t resources with penalty pj,t then we call the main loop for SFR(j)
�pj,t� times or until lj,t ≥ rj,t.

We argue that this is O(logs n)-competitive. First, note that the total penalty
costs for SFR are at most half that of its communication costs, since we only
suffer a penalty pj,t after calling the main loop SFR(j) at least pj,t times, and
each time has communication cost 2. Thus, if we can bound the communication
costs of SFR in terms of the total costs of OPT, the same bound, times 1.5,
holds for the total costs for SFR.

We use the same potential function as for the analysis of SFR for RAPP. Note
that the same bounds in the proof hold for changes in the adversary’s allotments.
Moreover, the same bound on the expected amortized cost of a loop of SFR holds
when �SFR

j,t−1 ≤ �OPT
j,t−1. If �SFR

j,t−1 ≥ rj,t, there is no complaint and the algorithm has
no costs. In the final case, rj,t ≥ �SFR

j,t−1 ≥ �OPT
j,t−1, so the adversary fails to satisfy

the request and pays penalty pj,t. Since SFR performs at most 2pj,t iterations
of its main loop, and each iteration has communication cost 2, and changes the
potential function by at most 28, the total amortized communication costs are
at most 60 times the costs for OPT.

3 The Transmission Minimizing Approximate Value
Problem

Recall that TMAV problem has n sensors reading values and a central cache
must maintain an estimate of each value by knowing an interval Ij,t = [aj,t, bj,t]
containing this value. The constraint is that the sum of the intervals (or allowable
errors) always be bounded by T , namely

∑
j(bj,t−aj,t) ≤ T . Among other things,

this assures that the cache knows the sum
∑

j vj,t ∈
[∑

j aj,t,
∑

j bj,t

]
within an

accuracy of T . In an online algorithm, the cache only learns the new value vj,t if
it moves outside of its current interval. At such times, the cache sends a message
to the node telling it its new interval. The objective is to minimize the number
of messages sent between the cache and the nodes.

To solve the TMAV problem we will modify our algorithm for the RAP. The
input to the TMAV problem specifies the value vj,t of node j ∈ [n] at time
t ≥ 0. The algorithm for RAP on the other side computes allocations, based on
resource requests, so we need to map: 1) the allocations computed to intervals
and 2) resource pool sT to appropriate precision parameter.

The Steal-From-the-Rich algorithm for this problem mimics that for Resource
Allocation Problem but with a total precision of sT/2. The algorithm partitions
the precision sT/2 amongst the n nodes. When the cache learns a new value
vj,t, it sets Ij,t = [vj,t − �SFR

j,t , vj,t + �SFR
j,t] to have width 2�SFR

j,t centered around
this new value. We assume the algorithm learns a new value vj,t, when the value
moves out of the current interval or when the interval is changed.

Online Algorithms to Minimize Resource Reallocations 113

When a node reports that its value is outside its current interval, then we
mimic one iteration of SFR to increase its allocation �SFR

j,t , decrease one other
nodes interval. We assign both nodes intervals of width their new allocations,
centered around their current values. Note that since

∑
i �

SFR
j,t = sT

2 then the
total length of intervals is sT .

Theorem 2. For s>6, the algorithm SFR for TMAV problem is (s,O(logs n))-
competitive against an adaptive online adversary.

4 Reductions Between Online Problems

In general reductions between problems are used in at least two different ways.
The first usage is: given an algorithm for problem A we can obtain an algorithm
for problem B by combining an appropriate reduction function which maps in-
stances of B to instances of A, then use a good algorithm for A. On the other
hand, if we have a lower bound for problem B, we inherit the same lower bound
for problem A from a reduction from B to A. Online reductions have been used
to design algorithms in, for example, [8], which solves a fractional version of a
Maximizing Switch Throughput problem and then reduces the more interesting
discrete version to the fractional version. Unlike in complexity, online reduc-
tions have rarely been used to compare the likely hardness of online algorithms,
probably because researchers have been successful at proving lower bounds di-
rectly. Since there is a large gap between our lower and upper bounds for these
problems, however, we are interested in the relationship between them.

In the full version of the paper we formalize the notion of a general online
reduction, which preserves competitive ratio especially against adaptive online
adversaries. We use online reductions to relate the hardness of RAP and TMAV,
RAP and RAPP, and later in Sect.5 Paging and RAP problems.
Theorem 3. Let A be any (s, k)-competitive algorithm against adaptive online
adversaries for the TMAV problem. Then there exists an (s, k)-competitive algo-
rithm against adaptive online adversaries for the RAP problem.

Theorem 4 (RAP ≤AD ON RAPP). There is an online adaptive reduction
from RAP with resource factor s to RAPP with resource factor s.
Proof. Let A be an algorithm for RAPP. We define an algorithm B for RAP as
follows. At any time B will have the same allocation as A does. If at any time t,
a user j becomes unsatisfied, B simulates a request for rj,t resources from user
j to A, assigning it penalty 1, and changes allocations as A does. This continues
while there is an unsatisfied user. B maintains the same budget as A, and has
costs at most the costs of A.

Let OptB be an online adaptive adversary for RAP. When OptB reallocates
resources, OptA reallocates resources accordingly. When OptB generates a re-
quest rj,t for resources, let OptA simulate B, generating the same sequence of
requests to A. Note that, since OptB ’s allocation must satisfy all users’ require-
ments, there is no penalty cost for OptA for this sequence of requests. Thus,
OptA’s total costs are the same as its reallocation costs, which are the same as
OptB. OptA maintains the same budget as OptB. ��

114 S. Davis, J. Edmonds, and R. Impagliazzo

5 Lower Bounds

Next we show that the factor of s extra resources is crucial to algorithm’s per-
formance. We consider the case when both the algorithm and the adversary have
the same resources.

Theorem 5. There is no online algorithm that is (1, O(f(n)))-competitive for
the RAP problem or the TMAV, for any function f .

Proof. (sketch) We give a strategy for the adversary. We consider RAP with
n = 2 and T = 1. The adversary picks a random r ∈ [0, 1] and places r resources
with user 1 and 1−r resources with user 2. The request sequence is then generated
as follows: To generate the t-th request, st ∈ [0, 1] is chosen uniformly at random.
If st ≤ r, a request for st resources is made by user 1. If st > r, a request for
1−st resources is made by user 2. The adversary can always meet these requests
without transferring resources, so the adversaries costs are constant for the entire
sequence. We show that, for any online algorithm, the expected costs diverge as
t goes to infinity, because to do better would require learning the real value r
with a finite number of bits of information. ��

In our upper bounds we compared the performance of an online algorithms
using sT resources against adversary using T resources. We want to obtain lower
bounds on the competitive ratio achievable by online algorithms for RAP using
(1 + ε) resources against adversary using 1 resource. We use the following lower
bound for Paging.

Theorem 6 ([9, 10]). Any randomized online algorithm for (h, k)-paging prob-
lem has a competitive ratio of at least ln k

k−h − ln ln k
k−h + 1

2 against oblivious
adversary.

Lemma 1 ((h,k)-Paging ≤AD ON RAP). There is an online adaptive reduc-
tion from the (h,k)-Paging problem with algorithm using cache of size k = 1

ε ,
adversary using cache of size h= k−1, and total number of pages needed to be
served k + 1 to RAP.

The reduction is trivial. The k+1 pages are mapped each to one user of RAP in-
stance. The RAP algorithm is given k resourceswhile the RAP adversarywill use h
resources. Each request generated for page i at time t is mapped to ri,t =1 request
to the RAP algorithm. If the interval assigned to user j by the RAP algorithm is
at least 1 then the j-th page will be in the cache, else it will be left out.

Lemma 1, Theorem 6, and the the standard paging lower bound imply the
following results.
Theorem 7. Any online algorithm using (1+ ε) resources for the RAP problem
has competitive ratio Ω(log(1

ε)) against an oblivious adversary using resource
pool of size 1.

Theorem 8. Any online algorithm for the RAP problem using (1+ ε) resources
has competitive ratio Ω(1

ε) against an adaptive online adversary using resource
pool of size 1.

Online Algorithms to Minimize Resource Reallocations 115

6 Future Work

We obtained (s,O(logs n))-competitive algorithms for the RRAP, RAP, RAPP,
and TMAV problems and proved that the extra resource sT granted to the
algorithm is vital. Our intuition is that the upper bound proved in Sect. 2 is
tight, however we have not been able to prove a matching lower bound.

There are two new issues that we have raised. Although online reductions
were used before our work ([8]) as a general technique for obtaining new online
algorithms from algorithms for other problems. To our knowledge our work is
the first that uses the notion of reduction between online problems to prove
lower bounds on competitive ratio and relate hardness of one problem to that of
another with respect to adaptive online adversaries using reductionist approach.

The second issue is that traditionally online algorithms have known the past
history and were oblivious to the future. In this paper we study memoryless
algorithms that not only were unaware of the past when making current decision,
but also did not know the current demands exactly. Their knowledge of the
current request is limited and in the process they only learn an upper bound
approximation of the request. It will be interesting to know whether other online
problems can have similar online solutions.

References

1. Olston, C., Loo, B.T., Widom, J.: Adaptive precision setting for cached approxi-
mate values. In: SIGMOD Conference. (2001) 355–366

2. Chandramouli, B., Yang, J., Vahdat, A.: Distributed network querying with
bounded approximate caching. In: DASFAA. (2006) 374–388

3. Çetintemel, U., Keleher, P.J., Ahmad, Y.: Exploiting precision vs. efficiency trade-
offs in symmetric replication environments. In: PODC. (2002) 128

4. Kalé, L.V., Kumar, S., DeSouza, J.: A malleable-job system for timeshared parallel
machines. In: CCGRID, IEEE Computer Society (2002)

5. Pruyne, J., Livny, M.: Parallel processing on dynamic resources with carmi. In:
JSSPP. (1995) 259–278

6. Ioannidis, S., Rencuzogullari, U., Stets, R., Dwarkadas, S.: Craul: Compiler and
run-time integration for adaptation under load. Scientific Programming 7 (1999)

7. Edmonds, J.: Scheduling in the dark. Theor. Comput. Sci. 235 (2000) 109–141
8. Azar, Y., Litichevskey, A.: Maximizing throughput in multi-queue switches. In:

ESA. (2004) 53–64
9. Young, N.E.: On-line caching as cache size varies. In: SODA. (1991) 241–250

10. Young, N.E.: The k-server dual and loose competitiveness for paging. Algorithmica
11 (1994) 525–541

11. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

Weighted Sum Coloring in Batch Scheduling of
Conflicting Jobs

Leah Epstein1, Magnús M. Halldórsson2, Asaf Levin3, and Hadas Shachnai4

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il

2 Department of Computer Science, University of Iceland, IS-107 Reykjavik, Iceland
mmh@hi.is

3 Department of Statistics, The Hebrew University, 91905 Jerusalem, Israel
levinas@mscc.huji.ac.il

4 Department of Computer Science, The Technion, Haifa 32000, Israel
hadas@cs.technion.ac.il

Abstract. Motivated by applications in batch scheduling of interval
jobs, processes in manufacturing systems and distributed computing, we
study two related problems. Given is a set of jobs {J1, . . . , Jn}, where
Jj has the processing time pj , and an undirected intersection graph G =
({1, 2, . . . , n}, E); there is an edge (i, j) ∈ E if the pair of jobs Ji and Jj

cannot be processed in the same batch. At any period of time, we can
process a batch of jobs that forms an independent set in G. The batch
completes its processing when the last job in the batch completes its
execution. The goal is to minimize the sum of job completion times. Our
two problems differ in the definition of completion time of a job within
a given batch. In the first variant, a job completes its execution when
its batch is completed, whereas in the second variant, a job completes
execution when its own processing is completed.

For the first variant, we show that an adaptation of the greedy set
cover algorithm gives a 4-approximation for perfect graphs. For the sec-
ond variant, we give new or improved approximations for a number of
different classes of graphs. The algorithms are of widely different gen-
res (LP, greedy, subgraph covering), yet they curiously share a common
feature in their use of randomized geometric partitioning.

1 Introduction

Batching (see Chapter 8 in [3]) is usually defined as follows. A batch is a set of
jobs that can be processed jointly. The completion time of all the jobs in a batch
is the finishing time of the last job in the batch. In the p-batch set of problems,
the length of a batch is defined as the maximum processing time of any job in
the batch. The s-batch set of problems has a different definition for the length of
a batch, namely, it is partitioned into a setup time and the sum of the processing
times of the jobs in the batch. In this paper we study p-batch problems.

Consider a line communication network (e.g., an optical network), which con-
sists of a set of points on the line, V = {1, . . . , n}. Given is a set of requests

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 116–127, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs 117

Ri = [ai, bi], where ai, bi ∈ V ; each request Ri has a length pi, meaning that dur-
ing a period of pi time units the communication links along the interval [ai, bi]
must be dedicated to the processing of Ri. In order to ease the allocation of
resources, we need to divide time into disjoint periods; during such a period,
each link is dedicated to at most a single request, so the processing of this re-
quest starts at the beginning of the period and ends at some point within the
same period. When the processing of all jobs assigned to the same time period is
completed, this time period ends, and we start serving the requests of the next
time period. Note that the intersection graph of the corresponding requests is
an interval graph, and at any time period it is possible to process an indepen-
dent set in this graph. Motivated by the above scheduling problem and other
batch scheduling problems arising in manufacturing systems and in distributed
computing (see in [5]), we study two related problems.

In the minimum sum of batch completion times problem (MSBCT),
we are given a set of jobs J = {J1, . . . , Jn}, where Jj has the processing time
pj , and an undirected intersection graph G = ({1, 2, . . . , n}, E); there is an edge
(i, j) ∈ E if the pair of jobs Ji and Jj cannot be processed in the same batch.
The goal is to minimize the sum of job completion times. In each time period
we can process a batch of jobs that forms an independent set in G. A batch is
completed when the last job in the batch finishes its processing, and all the jobs
in a batch terminate once the batch is completed. Therefore, in MSBCT, the
goal is to partition V into independent sets, and to sort these independent sets,
so that the weighted sum of batch completion times is minimized; the weight
of each batch (or, independent set) S is the number of vertices in S, and its
processing time is equal to the maximum processing time of any job in S. Note
that once we have a partition of V into independent sets, the optimal order of
the sets can be found using Smith’s rule [18] (see also [3]).

The minimum sum of job completion times problem (MSJCT) is simi-
lar to MSBCT, except that each job can terminate as soon as its processing is
completed, i.e., a job need not wait until the end of processing of the entire batch.
However, we still cannot start other jobs that conflict with this job until the end
of the batch. Thus, at the beginning of each time period we start the processing
of an independent set S in G, and until all the jobs in S are completed, we cannot
start any other job. Upon completion of the last job in S, a new time period starts,
and we can start processing another independent set in G.

Denote an (optimal) algorithm and its cost by (opt) A . Since the prob-
lem is scalable, we consider the absolute approximation ratio criterion. For a
minimization (maximization) problem, the absolute approximation ratio of an
algorithmA is the infimum (supremum) R such that for any input, A ≤ R·OPT
(A ≥ R · OPT). An algorithm A for a minimization (maximization) problem
yields an R-approximation if its approximation ratio is at most (at least) R.

The sum coloring (SC) problem is the following. Given an input graph
G = (V,E), find a proper coloring of V , i.e., a function f : V → N satis-
fying f(u) = f(v) whenever (u, v) ∈ E, such that

∑
v∈V f(v) is minimized.

Halldórsson et al. [11] considered a class of graphs, that we denote by F , for

118 L. Epstein et al.

which one can compute in polynomial time a maximum size �-colorable in-
duced subgraph, for any � ≥ 1. This class includes interval graphs, comparability
graphs and co-comparability graphs (see [7, 20]). They presented a (randomized)
1.796-approximation algorithm for SC when G belongs to F , and a determinis-
tic (1.796 + ε)-approximation algorithm for this problem on F . This last result
improves an earlier 2-approximation algorithm of Nicoloso et al. [16] for sum
coloring of interval graphs. Bar-Noy et al. [1] presented a 4-approximation al-
gorithm for SC of perfect graphs, a 2-approximation algorithm for SC of line
graphs and a k-approximation algorithm for SC of k + 1-claw free graphs. They
also showed a lower bound of n1−ε for SC of general graphs. We note that SC is
the special case of both MSBCT and MSJCT where all the processing times
are equal. Due to the hardness result of SC of general graphs that applies also
to our problems, we consider MSBCT and MSJCT only on special families of
graphs.

Feige et al. [6] extended the definition of SC to the following variant of set
cover, called minimum sum set cover (MSSC). We are given a collection of
subsets S1, S2, . . . , Sm of a ground set S = {1, 2, . . . , n}. A feasible solution is
an ordering π of a subset S′ of 1, 2, . . . ,m, such that

⋃
X∈S′

X = S, and for each

element j of the ground set we incur a cost i such that j ∈ Sπ(i) and j /∈ Sπ(k)
for all k < i. The goal is to find an ordering that minimizes the total cost. They
extended the greedy algorithm of [1] to obtain a 4-approximation algorithm for
MSSC. This greedy algorithm is equivalent to the well known greedy algorithm
for the classical set cover problem [13, 14]. They further showed that this ap-
proximation ratio is best possible unless P = NP . A weighted generalization
of this problem, motivated by database applications, was considered recently by
Munagala et al. [15]. In this problem, each subset S� has a weight c�. For an
element j of the ground set, let i be an index such that j ∈ Sπ(i) and j /∈ Sπ(k)

for all k < i. The cost incurred by j is
∑i

�=1 c�. They showed that an application
of the weighted greedy set cover algorithm (see [4]) gives a 4-approximation for
this problem as well. To show this, they used linear programming. Note that the
above results can be applied to MSBCT on perfect graphs. In a graph the sets
Si are given implicitly, however, in perfect graphs we can compute a maximum
independent set in polynomial time.

Bar-Noy et al. [2] studied MSJCT with integer weights. They presented a 16-
approximation for perfect graphs. Their method can be generalized and applied
for arbitrary real non-negative weights.

In the MaxIS problem, we are given an undirected graph G = (V,E), and the
goal is to find a subset U of V where E does not contain an edge between a
pair of vertices in U , such that the size of U is maximized. This problem is well-
known to be NP-hard on general graphs (see problem [GT20] in [9]). However,
there are graph classes for which it is solvable in polynomial time (e.g. perfect
graphs and line graphs), and there are graph classes for which there are efficient
approximation algorithms. Given a graph G, we denote by ρ the approximation
ratio of an algorithm for MaxIS on the graph class that contains G.

Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs 119

Recall the following properties of perfect graphs (see e.g. [17]): a subgraph
of a perfect graph is perfect, and for a perfect graph we can solve MaxIs in
polynomial time; also, we can find a proper coloring that uses the minimum
number of colors. Let e ≈ 2.71828 denote the base of the natural logarithm.
Our Results: We describe below our main results for MSBCT and MSJCT.
In Section 2 we define the extension of the greedy algorithm and its analysis
(due to [6]) to obtain a 4

ρ -approximation algorithm for MSBCT. Note that this
result for the case ρ = 1 also follows from the results of [15], however their proof
technique is different.

In Section 3 we study MSJCT: we first present a 2e ≈ 5.43656-approximation
algorithm for the problem on interval graphs, and later obtain a better bound
of 1.296e+ 3/2 + ε ≈ 5.022 for any graph class that belongs to F . The first two
algorithms can be combined to obtain an improved bound of 4.912 for interval
graphs. Then, we show a 4e

ρ -approximation algorithm for any graph class that
has a ρ-approximation algorithm for MaxIS. We also show that the classical
Greedy algorithm (given in Section 2) provides alternative 4e

ρ -approximation
for MSJCT. Thus, both of these algorithms yield combinatorial 4e ≈ 10.87313-
approximation for perfect graphs and line graphs, and a (2ek+ε)-approximation
for (k + 1)-claw free graphs.

In the full version of this paper (see in [5]), we present a general LP-based
scheme for batch scheduling that yields a bound of 9.9 for perfect graphs, and
9.9+o(1) for line graphs. Our results for MSJCT yield significant improvements
over previous bounds, in particular, the bounds that we derive for interval graphs,
line graphs and perfect graphs improve upon the uniform bound of 16 obtained
for these graph classes in [2]. We summarize the known results for MSJCT in
Table 1. New bounds given in this paper are shown in boldface, with the previous
best known bound given in parenthesis. The reference to previous results is [2].

Table 1. Known results for batch scheduling of conflicting jobs under minsum criteria

MSJCT
General graphs n/ log2 n [1]
Perfect Graphs 9.9 (16)
Family F 5.022
Interval Graphs 4.912 (16)
k-colorable Graphs 1.544k + 1 [2]
Bipartite Graphs 2.796 [2]
k + 1-claw free Graphs 2ek + ε

Line Graphs 9.9 + o(1) (16)

Techniques: While the algorithms that we develop for various graph classes
are inherently different and tailored to exploit the intrinsic properties of each
graph class, there is an interesting link among the approaches at the basis of
these algorithms. Crucial to obtaining our approximation results is the usage
of randomized geometric partitioning. Our main partitioning lemma (Lemma 1)

120 L. Epstein et al.

uses randomized rounding to partition the jobs in the instance to weight classes.
This randomized partitioning enables to improve the bound of 16 obtained in
[2] for MSJCT, to 4e. Our algorithm for the family F (see in Section 3.3) ran-
domizes on �, and then finds an �-colorable subgraph, from which to construct
batches. Finally, our LP-based scheme (omitted) combines randomized partition-
ing in two different ways, after solving a linear programming relaxation of the
problem. We show that the resulting algorithms can be derandomized while pre-
serving their approximation ratio within an additive of ε, for some small ε > 0.
We believe that this powerful technique will find more applications in solving
other scheduling and partitioning problems.

Due to space constraints, some of the proofs and implementation details are
omitted. The detailed results appear in [5].

2 Approximating MSBCT

In this section, we present the greedy algorithm for MSBCT and show that it
yields a 4

ρ -approximation for the problem. Our proof follows a similar proof of
[6] for the unweighted case.

The Greedy Algorithm
while G is non-empty do:

for each j = 1, 2, . . . , n do:
Let Gj be the induced subgraph of G over the vertex set {j′ : pj′ ≤ pj}.
Find a ρ-approximate independent set Sj in Gj .

Let j = argminj′=1,2,...,n
pj′
|Sj′ | .

Schedule the jobs in Sj in the next pj time units, and remove Sj from G

Theorem 1. The greedy algorithm yields a 4
ρ -approximation for MSBCT.

Proof. The greedy algorithm clearly returns a feasible solution. To analyze the
running time note the following facts. The ρ-approximation algorithm for max-
imum independent set runs in polynomial time (by definition). Therefore, each
iteration of the greedy algorithm runs in polynomial time. Since in each itera-
tion, the size of the vertex set decreases by at least one, the number of iterations
is at most n. We get that the algorithm terminates in polynomial number of
steps. Thus it remains to show the approximation ratio of the algorithm.

For i = 1, 2, . . . let Xi denote the set of jobs that belongs to the independent
set of the i-th iteration of the greedy algorithm. Let Ri be the set of jobs that
are still not processed prior to the i-th iteration. Note that Xi ⊆ Ri. Denote
by Pi = max

j∈Xi

pj the processing time of the batch Xi. Note that the cost of the

greedy algorithm is
∑

i Pi · |Ri|. For each j ∈ Xi we define the price of job
j to be price(j) = |Ri|·Pi

|Xi| . Then, clearly the cost of the greedy algorithm is∑n
j=1 price(j).
Consider the following histogram corresponding to OPT. There are n col-

umns, one for every job, where the jobs are ordered from left to right by the order

Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs 121

in which they were processed by the optimal solution (we break ties arbitrarily).
The height of a column is the time step at which the job was completed by
the optimal solution (i.e., the time in which the batch that contains the job is
completed). Hence, we get a histogram with nondecreasing heights. The total
area beneath this histogram is exactly OPT.

Consider now a different diagram corresponding to the greedy solution. Again
there are n columns, one for every job, and in analogy to the previous diagram,
the jobs are ordered by the order in which they were processed by the greedy solu-
tion. But unlike the previous diagram, the height of a column is not the time step
by which the job was completed, but rather its price. Hence the heights are not
necessarily monotone. The total area of the histogram is exactly the total price,
i.e., the cost of the greedy solution. We would like to show that the area of the sec-
ond histogram is at most 4

ρ times that of the first. To do this we shrink the second
histogram by a factor of 4

ρ as follows. We shrink the height of each column by a
factor of 2/ρ. Hence the column heights are price(j)ρ/2. We also shrink the width
of each column by a factor of two. Hence the total width of the second histogram
is now n

2 . We align the second histogram to the right. Namely, it now occupies the
space that was previously allocated to columns n

2 + 1 up to n (assume for sim-
plicity of notation and without loss of generality that n is even). Now we claim
that this shrunk version of the second histogram fits completely within the first
histogram, implying that its total area is no more than that of the first histogram.
This suffices in order to prove the approximation ratio of the greedy algorithm.

Consider an arbitrary point q in the original second histogram, let j be the job
to which it corresponds, and let i denote the iteration of the greedy algorithm
in which we chose to process job j (i.e., j ∈ Xi). Then the height of q is at
most price(j), and the distance of q from the right hand side boundary is at
most |Ri|. The shrinking of the second histogram maps q to a new point q′. We
now show that q′ must lie within the first histogram. The height of q′ (which we
denote by h) satisfies h ≤ |Ri|·Pi·ρ

2|Xi| , and the distance of q′ from the right hand

side boundary (which we denote by r) satisfies r ≤ |Ri|
2 . For this point q′ to lie

within the first histogram, it suffices to show that by time step h, at least r jobs
are still not completed by the optimal solution.

Consider now only the jobs in the set Ri. No independent set whatsoever can
complete more than |Xi|

Pi·ρ jobs from Ri per time unit. Hence in h time units the

optimal solution could complete processing at most h|Xi|
Piρ

≤ |Ri|·Pi·ρ
2|Xi| ·

|Xi|
Pi·ρ = |Ri|

2

jobs from Ri, leaving at least |Ri|
2 jobs of Ri that the optimal solution still has

not completed. Hence the point q′ indeed lies within the first histogram. ��
Remark 1. If G is perfect or claw-free, then greedy is a 4-approximation algo-
rithm for MSBCT.

3 Approximating MSJCT

The outline of the algorithms is as follows: In the preprocessing phase, all of
our algorithms partition the jobs into classes according to their processing times

122 L. Epstein et al.

and round up the processing time of each job to the maximum processing time
of a job in its class. Then, each batch that we generate is devoted to a single
class of jobs. For each class of graphs, we design a specialized algorithm to find
an approximate partition of each class into batches. Then, all of our algorithms
find an optimal sequence of the resulting batches, using Smith’s rule. We first
present our preprocessing step.

Preprocessing Algorithm
Pick uniformly a random number α in the range [0, 1), i.e., α ∼ U[0, 1).
Partition the jobs into classes according to their processing times,

i.e., let J 0 = { j : pj ≤ eα}, and J i = { j : ei−1+α < pj ≤ ei+α}.
Denote by k the largest index of any non-empty class.
For all i = 0, . . . , k and for any job j ∈ J i, round up
the processing time of job j; let p′j = ei+α.

We now show that by partitioning the input into the classes Ji, rounding up the
processing times (as done in the Preprocessing Algorithm) and requiring that
each batch contains jobs from a single class, we lose a factor of at most e.

Lemma 1. Denote by OPT a fixed optimal solution, and for a fixed value of α
denote by OPTα an optimal solution to the instance in which we use the rounded
up processing times p′j and the solution must satisfy an additional requirement
that is for each batch the jobs scheduled in the batch have a common class.
Denote also by OPT and OPTα the cost of OPT and OPTα, respectively. Then,
E[OPTα] ≤ e ·OPT , where the expectation is over the random choice of α.

Proof. In the sequel, we prove that it is possible to replace every batch with a
sequence of other batches, so that the new schedule satisfies the requirements of
the lemma, and the total processing time processing time of each batch grows
by an expected multiplicative factor of e.

Consider a fixed batchB of OPT with job set J , where the maximum processing
time of a job in this batch is ex (i.e., x = ln maxj∈J pj). We replace B with a set
of batches: the i-th batch in the set serves the jobs of Ji ∩ J and has rounded-up
processing time ei+α. Since Ji ∩ J = ∅ for i > x− α, we add to the set of batches
(that replacesB) only the batcheswith integer index i such that i ≤ �x−α�.Denote
by imax the maximum index of a batch in this set, i.e., imax = �x − α�. Then, the
total processing time of the batches in this set of batches is at most

∑imax

i=0 ei+α ≤
eimax+α· 1

1− 1
e

= eimax+1+α

e−1 . Since the total processing timeof this job is ex, it suffices

to show that E[eimax+α−x] = e − 1. Since α is uniformly distributed in [0, 1), so
is the random variable imax + α − x. The claim regarding the length of the batch
follows by noting that for u ∼ U[0, 1), E[eu] =

∫ 1
u=0 eudu = e1 − e0 = e− 1.

Next, we need to prove that the completion time of a job j within the set of
batches which replaces its batch also grows by an expected multiplicative factor
of e. However, the proof is identical to the above, since if a job has original length
ey, then its processing time within the batch used to be ey. Let i′ = �y − α�,
the time until the new batch of j is completed is now at most

∑i′

i=0 ei+α, whose
expected value is ey+1 = e · ey. ��

Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs 123

We next fix a value of α and show how to design algorithms that approximate
OPTα within constant factors. Then, using Lemma 1, the approximation ratio
of the combined algorithms will be e times these constants.

A result of Lemma 1 is that there exists a value of α whose effect on the
rounding and classification is an increase of the total cost by a factor of at
most e. In [5] we show that the preprocessing step can be derandomized, while
maintaining the performance guarantee of Lemma 1. We comment that a similar
derandomization method can be applied to the randomized algorithm of [11], for
the SC problem on a graph that belongs to F , to obtain a deterministic 1.796-
approximation algorithm, improving the deterministic 1.796 + ε approximation
algorithm of [11].

3.1 The Final Step of the Algorithms

To approximate OPTα, we use a different algorithm for each class of graphs, so
the choice of algorithm depends on the smallest class to which the graph G be-
longs. In the next sections we first present a 2-approximation for interval graphs,
then we present an approximation algorithm for graphs that belong to F , and fi-
nally we show that a greedy algorithm is a 4

ρ -approximation algorithm. However,
the final step of the algorithms is identical and is therefore presented now.

We assume that the algorithm has determined the partition of the jobs of each
class into batches. Therefore, we have a set of batches, each is a set of jobs with
a common (rounded-up) processing time, and we need to schedule the batches so
as to minimize the sum of job completion times. We note that such an ordering
can be found optimally using Smith’s rule [18, 3]. Sort the batches according to
a non-decreasing order of the ratio of the weight of the batch divided by the
(common) processing time of the jobs in the batch, where a weight of a batch is
the number of jobs assigned to this batch.

Since we find an optimal ordering of the batches, in our analysis we can
consider some fixed ordering (that may depend on the structure of the optimal
solution), and note that our algorithm will return a better solution than the one
indicated by some other (sub-optimal) order of the same batches. It remains to
show how to partition the jobs of each class into a set of batches.

3.2 Interval Graphs

Nicoloso et al. [16] designed a 2-approximation algorithm for SC of interval
graphs. Their algorithm computes G� for all � = 1, 2, . . . , χ(G), where G� is
a maximum size �-colorable induced subgraph of G. They considered the case
when G� are computed from left to right (according to an interval representation
of the graph, that can be found in polynomial time [10]) in a greedy fashion.
Given the output of such a process, they showed that for all � > 1, G� contains
G�−1 and the difference graph G� − G�−1 is 2-colorable. Thus their algorithm
simply colors G1 using color 1, and the difference graph G� − G�−1 is colored
using colors 2�− 2 and 2�− 1.

For the rounded-up instance resulting from the preprocessing step we apply
the algorithm of [16] on each class Ji separately to find a partition of this job

124 L. Epstein et al.

class into batches (and then apply the final step of the algorithm described
in Section 3.1). Let p(V) =

∑
v∈V pv (p′(V) =

∑
v∈V p′v) denote the sum of

(rounded) processing times of all jobs.

Theorem 2. There is resulting algorithm yields a 2e-approximation ratio for
interval graphs. Moreover, the output solution has cost at most 2eOPT−2p′(V)+
p(V).

3.3 Graphs That Belong to F
Recall that, for a graph G that belongs to F , for all �, a maximum size induced
subgraph of G that is �-colorable can be found in polynomial time.

Let A denote an algorithm uses as a subroutine (defined later). We require
thatA is be a fully polynomial time dual approximation scheme for the following
variant of the Knapsack problem: each item can be packed at most n times, and
packing � times of item i results a profit of ci(�) where ci is a monotonically
non-decreasing integer valued function of �. We are given a budget B on the
total size of all the packed items. I.e., A runs in polynomial time (where the
polynomial is a function of n and 1

ε) and returns a solution such that the total
size of the returned solution is within (1 + ε) multiplicative factor of the budget
(i.e., at most (1 + ε)B), and the total profit of the packed items is at least the
total profit of the optimal solution that uses only total size that is at most the
given budget.

For each class Ji, denote by Gi the subgraph of G induced by the vertices that
correspond to the jobs of Ji. The outline of our algorithm for this case is as fol-
lows. Partition the jobs into batches in iterations. In each iteration the algorithm
decides to open a set of batches. The length of an iteration, defined to be the
sum of completion times of the batches of this iteration, increases geometrically
between the iterations. In each iteration, given the current bound on the length,
i.e. the sum of completion times of the batches in the current iteration, pack a
maximum number of jobs into the batches of the current iteration, using a total
length of time which is within factor 1 + ε of the required length.

Algorithm Pack Subgraphs

1. Apply the Preprocessing Algorithm.
2. Pick uniformly at random a number β from the range [0, 1) (independently

of α). I.e., β ∼ U[0, 1). Set t = 0, and set q to a constant value to be fixed
afterwards.

3. While there are jobs that still have not been assigned to batches do:
(a) For i = 0, 1, . . . , k do:

ai = qi+α.
For � = 1, 2, . . . , |Ji| do:
Let Wi,� be the vertex set of a maximum size �-colorable subgraph of Gi,
and denote by ci(�) = |Wi,�|.

(b) Apply Algorithm A to approximate the Knapsack problem instance
where the profit from packing � copies of the i-th element is ci(�), and

Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs 125

the size of the i-th element is ai. The budget on the total sizes of all
elements that we place in the knapsack is qt+β .

(c) For i = 0, 1, . . . , k do:
Assume that the approximate solution places bi copies of the i-th ele-
ment; then place exactly bi batches for the class Ji in the current set of
batches SB. For these batches, pick a maximum size bi-colorable induced
subgraph of Gi; assign to these batches all the jobs that participate in
this induced subgraph.1 Distribute the set of new assigned jobs among
the bi new batches of Ji so that each batch is an independent set. Add
this set of batches to a pool of all batches. These batches will be assigned
to times after all jobs have been assigned to batches.

(d) Remove the jobs that have been assigned in the current iteration from
G and increase t by 1.

4. Apply the final step.

We now turn to analyze the performance of Pack Subgraphs

Lemma 2. For all q > 1, Algorithm Pack Subgraphs always returns a feasible
solution in polynomial time.

Let fr denote the completion time of the r-th job according to OPTα. Then,
clearly OPTα =

∑n
r=1 fr. Note that fr is monotonically non-decreasing se-

quence. Consider now the class of solutions, which similarly to OPTα do not
assign jobs of different classes (i.e., different rounded processing times) to a com-
mon batch. For each r denote by dr the minimum time in any solution from the
class above that is needed to complete at least r jobs. Then, clearly fr ≥ dr, and
therefore we establish the following lemma.

Lemma 3. OPTα ≥
∑n

r=1 dr.

Consider the jobs sorted according to non-decreasing completion times in the
solution returned by Algorithm Pack Subgraphs. Consider now the r-th job ac-
cording to this order. Assume that this job belongs to the set of batches created
in an iteration in which t = τ (i.e., the value of t in the beginning of the iteration
in which we allocate this job, is τ). We define the modified completion time of
this job to be πr = (1 + ε) ·

(∑τ−1
i′=1 qi′+β + qτ+β

2

)
.

Instead of analyzing the solution we achieved, which orders all batches opti-
mally by applying the final step, we analyze a solution which assigns the batches
of each iteration consecutively. Each time the algorithm defines a set of batches
for a new iteration, it assigns them right after the batches of the previous iter-
ation. This can be done using Smith’s rule. This way, the algorithm selects the
best order of these batches. Applying Smith’s rule on the complete set of batches
results in a solution that is not worse than this solution. Furthermore, for the
analysis we use the fact that this order is not worse than the better one out of
the following two orders: (i) an arbitrary order, and (ii) the batches are ordered
in the exact opposite order.
1 Note that assigned jobs are removed from G and thus from Gi, therefore all the

chosen jobs were not assigned prior to this iteration.

126 L. Epstein et al.

Lemma 4. The cost of the solution returned by Algorithm Pack Subgraphs is at
most

∑n
r=1 πr +

∑n
r=1 p′

r

2 .

Note that (1 + ε) ·
(∑τ−1

i′=1 qi′+β + qτ+β

2

)
≤ (1 + ε) · qτ+β ·

(
1

q−1 + 1
2

)
. We next

present a bound on
∑n

r=1 πr in terms of
∑n

r=1 dr.

Lemma 5. Let q be chosen as the root of the equation lnx = x+1
x . That is

q ∼ 3.591, then
E[∑n

r=1 πr]∑
n
r=1 dr

≤ (1 + ε) · 1.796.

Theorem 3. Pack Subgraphs is a randomized (1.296e + 3
2 + ε)-approximation

algorithm for MSJCT on graphs that belong to F .

In [5] we show how the algorithm can be derandomized. Hence, we get

Proposition 1. There is a deterministic (1.296 · e + 3
2 + ε)-approximation al-

gorithm for MSJCT on graphs that belong to F .

Note that this also improves the bound of Theorem 2 for interval graphs, to 5.022.
We next analyze an improved algorithm for interval graphs, that combines the
two algorithms. We run both the algorithm for interval graphs of Section 3.2,
and algorithm Pack Subgraphs, and we pick the better solution.

Theorem 4. The resulting algorithm is a 4.912-approximation algorithm for
interval graphs.

Proof. By Theorem 2, the cost of the solution is at most 2eOPT−2p′(V)+p(V).
Since we have already established that E[p′(V)] = (e−1)p(V), we conclude that
the expected cost of the returned solution E[SOL] (whose cost is the minimum
of the two outputs) satisfies E[SOL] ≤ 2eOPT − (2e− 3)p(V). By the proof of
Proposition 1, we conclude that E[SOL] ≤ (1.796e + ε)OPT +

(3−e
2

)
p(V). We

multiply the first inequality by 3−e
3e−3 and the second inequality by 4e−6

3e−3 . Then,
we obtain E[SOL] ≤ (1.807e + ε)OPT ≈ 4.912OPT . ��
We note that since both algorithms can be derandomized without affecting the
approximation ratio, so does this combined algorithm. It remains to show how
to implement Algorithm A for our Knapsack problem. We give the details in
the full version of the paper.
A 4

ρ -approximation algorithm: We now analyze the greedy algorithm from
Section 2, to approximate the SC instance defined as the set of jobs from Ji,
i.e., we first apply the preprocessing step and then each class is approximated
separately. Then, we order the resulting batches according to our final step using
Smith’s rule.

Theorem 5. There is a 4e
ρ -approximation algorithm for problem MSJCT .

Recall that MaxIS can be solved in polynomial time on line graphs, and within
k/2 + ε factor on k + 1-claw free graphs for any ε > 0 [12]. Thus, we have

Corollary 1. MSJCT can be approximated within factor 4e on line graphs and
2ek + ε for any ε > 0 on k + 1-claw free graphs.

We can also show that the greedy algorithm applied directly gives the same
ratio. This is deferred to the full version.

Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs 127

References

1. A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir. On chro-
matic sums and distributed resource allocation. Inf. Comput., 140(2):183–202,
1998.

2. A. Bar-Noy, M. M. Halldórsson, G. Kortsarz, R. Salman, and H. Shachnai. Sum
multicoloring of graphs. J. of Algorithms, 37(2):422–450, 2000.

3. P. Brucker. Scheduling Algorithms 4th ed. Springer-Verlag, 2004.
4. V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of

Operations Research, 4:233–235, 1979.
5. L. Epstein, M. M. Halldórsson, A. Levin and H. Shachnai. Weighted

Sum Coloring in Batch Scheduling of Conflicting Jobs. full version.
http://www.cs.technion.ac.il/∼hadas/PUB/cosum.pdf.

6. U. Feige, L. Lovász, and P. Tetali. Approximating min sum set cover. Algorithmica,
40(4):219–234, 2004.

7. A. Frank. On chain and antichain families of a partially ordered set. J. of Combi-
natorial Theory Series B, 29:176–184, 1980.

8. R. Gandhi R., M. M Halldórsson, G. Kortsarz and H. Shachnai, Improved Bounds
for Sum Multicoloring and Scheduling Dependent Jobs with Minsum Criteria. In
Proc. of WAOA, 2004.

9. M. R. Garey and D. S. Johnson. Computers and intractability. W. H. Freeman
and Company, New York, 1979.

10. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
1980.

11. M. M. Halldórsson, G. Kortsarz, and H. Shachnai. Sum coloring interval and
k-claw free graphs with application to scheduling dependent jobs. Algorithmica,
37(3):187–209, 2003.

12. C. A. J. Hurkens, and A. Schrijver. On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM J. Discrete Math., vol. 2, 1989, pp. 68–72.

13. D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences, 9:256–278, 1974.

14. L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathe-
matics, 13:383–390, 1975.

15. K. Munagala, S. Babu, R. Motwani, and J. Widom. The pipelined set cover prob-
lem. In Proc. of ICDT 2005.

16. S. Nicoloso, M. Sarrafzadeh, and X. Song. On the sum coloring problem on interval
graphs. Algorithmica, 23(2):109–126, 1999.

17. A. Schrijver. Combinatorial optimization polyhedra and efficiency. Springer-Verlag,
2003.

18. W. E. Smith. Various optimizers for single-stage production. Naval Research
Logistics Quarterly, 3:59–66, 1956.

19. G. J. Woeginger. When does a dynamic programming formulation guarantee the
existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS
J. on Computing, 12(1):57–74, 2000.

20. M. Yannakakis and F. Gavril. The maximum k-colorable subgraph problem for
chordal graphs. Information Processing Letters, 24(2):133–137, 1987.

Combinatorial Algorithms for Data Migration
to Minimize Average Completion Time

Rajiv Gandhi1,� and Julián Mestre2,��

1 Department of Computer Science, Rutgers University-Camden, Camden, NJ 08102
rajivg@camden.rutgers.edu

2 Department of Computer Science, University of Maryland, College Park, MD 20742
jmestre@cs.umd.edu

Abstract. The data migration problem is to compute an efficient plan
for moving data stored on devices in a network from one configuration to
another. It is modeled by a transfer graph, where vertices represent the
storage devices, and the edges represent the data transfers required be-
tween pairs of devices. Each vertex has a non-negative weight, and each
edge has unit processing time. A vertex completes when all the edges
incident on it complete; the constraint is that two edges incident on the
same vertex cannot be processed simultaneously. The objective is to min-
imize the sum of weighted completion times of all vertices. Kim (Journal
of Algorithms, 55:42-57, 2005) gave an LP-rounding 3-approximation
algorithm. We give a more efficient primal-dual algorithm that achieves
the same approximation guarantee, which can be extended to yield a
5.83-approximation for arbitrary processing times. We also study a vari-
ant of the open shop scheduling problem. This is a special case of the
data migration problem in which the transfer graph is bipartite and the
objective is to minimize the completion times of edges. We present a sim-
ple algorithm that achieves an approximation ratio of

√
2 ≈ 1.414, thus

improving the 1.796-approximation given by Gandhi et al.(ACM Trans-
action on Algorithms, 2(1):116-129, 2006). We show that the analysis of
our algorithm is almost tight.

1 Introduction

The data migration problem arises in large storage systems, such as Storage
Area Networks [13], where a dedicated network of disks is used to store
multimedia data. As the data access pattern changes over time, the load across
the disks needs to be rebalanced so as to continue providing efficient service.
This is done by computing a new data layout and then “migrating” data to
convert the initial data layout to the target data layout. While migration is
being performed, the storage system is running suboptimally, therefore it is
important to compute a data migration schedule that converts the initial layout
to the target layout quickly.
� Research partially supported by Rutgers University Research Council Grant.

�� Research supported by NSF Awards CCR-0113192 and CCF-0430650, and the Uni-
versity of Maryland Dean’s Dissertation Fellowship.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 128–139, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Combinatorial Algorithms for Data Migration 129

This problem can be modeled as a transfer graph [15], in which the vertices
represent the storage disks and an edge between two vertices u and v corresponds
to a data object that must be transferred from u to v, or vice-versa. Each edge
has a length that represents the transfer time of a data object between the disks
corresponding to the end points of the edge. An important constraint is that
any disk can be involved in at most one transfer at any time. In this work, we
assume that the edges have unit length, that is, all data transfers take the same
amount of time.

Several variations of the data migration problem have been studied. These
variations arise either due to different objective functions or due to additional
constraints. One common objective function is to minimize the makespan of
the migration schedule, i.e., the time by which all migrations complete. Coffman
et al. [4] show that when the edges have equal (unit) lengths, the problem reduces
to edge coloring of the transfer (multi)graph of the system. The best approxima-
tion algorithm known for minimum edge coloring [17] then yields an algorithm
for data migration with unit edge length, whose makespan is 1.1χ′ + 0.8, where
χ′ is the chromatic index of the graph. Approximation algorithms are also de-
veloped [9, 1, 13, 14] for generalizations of the makespan minimization problem
in which there are storage constraints on disks and constraints on how the data
can be transferred.

The data migration problem has also been studied with the objective of min-
imizing the sum of weighted completion time over all storage disks. Kim [15]
proved that the problem is NP-hard when edge lengths are the same and showed
that Graham’s list scheduling algorithm [7], when guided by an optimal solution
to a linear programming relaxation, gives an approximation ratio of 3. When
edges have arbitrary lengths there are several constant factor approximation
algorithms [5, 15, 20] with the best approximation guarantee being 5.03 [5].

A problem related to the data migration problem is open shop scheduling. In
this problem, we have a set of jobs, J , and a set of machines M1, . . . ,Mm. Each
job Jj ∈ J consists of a set of mj operations. For 1 ≤ i ≤ mj , operation oj,i

has processing time pj,i and must be processed on Mφ(j,i). Each machine can
process a single operation at any time, and two operations that belong to the
same job cannot be processed simultaneously. Each job Jj has a positive weight,
wj and the objective is to minimize the sum of weighted completion times of
all jobs. This problem is a special case of the data migration problem [5]. Open
shop scheduling problem has been studied in [3, 12, 19, 20].

There has also been interest in the study of data migration problem with the
objective function being to minimize the average completion time over all data
transfers. This corresponds to minimizing the average edge completion time in
the transfer graph. For arbitrary edge lengths, several constant factor approx-
imation algorithms [11, 15, 6] are known with the best approximation factor
being 7.682 [6]. For the case of unit edges lengths, Bar-Noy et al. [2] showed
that the problem is NP-hard and gave a simple 2-approximation algorithm.
When restricted to bipartite graphs, the latter problem becomes a variant of
open shop scheduling in which the operations have unit processing times and

130 R. Gandhi and J. Mestre

the objective is to minimize the sum of completion times of operations; for
this problem Gandhi et al. [5] give a 1.796-approximate solution that uses an
algorithm for sum coloring of interval graphs due to Halldórsson et al. [11].

Our Contribution: First we study the data migration problem with unit length
edges and the objective of minimizing the average completion time over all stor-
age disks. Kim [15] gave a 3-approximation algorithm that rounds the solution
produced by a linear programming relaxation for the problem. This algorithm
involves solving a linear program with an exponential number of constraints,
though there are equivalent linear programs with a polynomial number of con-
straints (cf. [6]). Gandhi et al. [5] show that Kim’s algorithm can not give an
approximation guarantee better than 3. In this work, we present an efficient
primal-dual algorithm that gives a 3-approximate solution; our scheme can be
extended to yield a 5.83-approximation for arbitrary processing times.

The second problem we study is the data migration problem with the objective
of minimizing the sum of completion times of edges. In other words, given a graph
G = (V,E) we want to partition the edge set E into matchings M1,M2, . . ., so as
to minimize

∑
i i|Mi|. Bar-Noy et al. [2] show that if Mi is maximal with respect

to G \ ∪j<iMj then we get a 2-approximate solution. We show that if, for all
b ≥ 1, the b-matching ∪j≤bMj is maximal in G then we get a

√
2-approximate

schedule. We show that such schedules always exist in bipartite graphs and
can be computed in polynomial time. Data migration in bipartite graphs is
equivalent to a variant of open shop scheduling in which we want to minimize
the sum of operation completion times. Marx [16] has shown that the problem
is APX-hard. Gandhi et al. [5] show that using the sum-coloring algorithm of
Halldórsson et al. [11] one can obtain a 1.796 approximation guarantee. We
improve this ratio to

√
2 ≈ 1.414, though our guarantee does not extend to the

objective of minimizing the sum of weighted edge completion times. We also show
that the analysis is almost tight by giving an example on which the algorithm
gives a 1.375-approximate solution.

2 Data Migration Problem

We are given a graph G = (V,E). Let E(u) denote the set of edges incident on
a vertex u. The vertices and edges in G are jobs to be completed. Each vertex v
has weight wv. We assume that edges have unit length. The completion time of
an edge is simply the time at which its processing is completed. The completion
time, Cv, of v is the latest completion time of any edge in E(v). The crucial
constraint is that two edges incident on the same vertex cannot be processed at
the same time. The objective is to minimize

∑
v∈V wvCv.

We first analyze the performance of the following natural and intuitive al-
gorithm: Process the edges in any order scheduling them as early as possible
without creating conflicts with the edges scheduled so far. While this algorithm
gives a solution that is at most twice the cost of optimal for min

∑
e Ce [2],

we show in Appendix A that for the objective of min
∑

v Cv it may produce a
solution with cost Ω(3

√
n) times the optimum.

Combinatorial Algorithms for Data Migration 131

2.1 A Linear Programming Relaxation

The linear programming relaxation for the data migration problem was given
by Kim [15]. Such relaxations have been proposed earlier by Wolsey [22] and
Queyranne [18] for single machine scheduling problems and by Schulz [21] and
Hall et al. [10] for parallel machines and flow shop problems. For the purpose
of clarity, we state only portions of the LP relaxation relevant for obtaining the
primal-dual algorithm.

For a vertex v, let Cv represent the completion time of v. Let N(u) represent
the neighbors of vertex u.

min
∑
v∈V

wv Cv

subject to∑
v∈Su

Cv ≥
|Su| (|Su|+ 1)

2
∀u ∈ V, Su ⊆ N(u) (1)

Cv ≥ 0 ∀v ∈ V

The dual LP contains a variable ySu (for each set Su) corresponding to each
constraint represented by (1). The dual LP is given below.

max
∑
u∈V

Su⊆N(u)

|Su|(|Su|+ 1)
2

ySu

subject to ∑
u∈V

Su:v∈Su

ySu ≤ wv ∀v ∈ V (2)

ySu ≥ 0 ∀u ∈ V, Su ⊆ N(u)

2.2 Algorithm

The high level idea of the algorithm is as follows. There are two phases—labeling
and scheduling.

In the labeling phase, each vertex is initially unlabeled. This phase proceeds
in iterations; iteration i labels some neighbors of xi. Vertex xi is chosen to be
the one with maximum number of unlabeled neighbors. Let Sxi be the unlabeled
neighbors of xi. The value of the dual variable ySxi

is incremented until the dual
constraint (2) is met with equality for some vertex v ∈ Sxi . In other words, ySxi

assumes the smallest value such that for some vertex v ∈ Sxi we have∑
j<i : v∈Sxj

ySxj
+ ySxi

= wv.

132 R. Gandhi and J. Mestre

Let Txi ⊆ Sxi be the vertices for which the above equality holds. All vertices Txi

are labeled |Sxi |. The label of vertex u is denoted by �(u).
In the scheduling phase, the edges in E are ordered so that edge (u, v)

precedes (u′, v′) if:

(i) min{�(u), �(v)} < min{�(u′), �(v′)}, or

(ii) min{�(u), �(v)} = min{�(u′), �(v′)} ∧max{�(u), �(v)} ≤ max{�(u′), �(v′)}.

The edges in E are then processed in order. When processing (u, v) ∈ E, the
edge is scheduled at the earliest time such that no edge incident upon u or v is
already scheduled at that time. The pseudo-code is given below.

Primal-Dual(G = (V, E))

1 // labeling phase
2 for each v ∈ V do
3 �(v) ← nil // v is unlabeled
4 i ← 0
5 while (there exists an unlabeled vertex) do
6 i ← i + 1
7 xi ← vertex with the maximum number of unlabeled neighbors.
8 Sxi ← unlabeled neighbors of xi.
9 ySxi

← minv∈Sxi
{wv}

10 Txi ← {v ∈ Sxi | wv = ySxi
}

11 for each v ∈ Txi do
12 �(v) ← |Sxi | // v is now labeled
13 for each v ∈ Sxi do
14 wv ← wv − ySxi

15 // scheduling phase
16 sort edges (u, v) ∈ E in lex. order of

〈
min{�(u), �(v)}, max{�(u), �(v)}

〉
17 for each edge e = (u, v) ∈ E processed in order do
18 schedule e if no edge in E(u) ∪ E(v) is already scheduled.

2.3 Analysis

Let C̃v be the completion time of vertex v in our algorithm. Recall that E(v) is
the set of edges incident on a vertex v and N(v) denotes the neighbors of v.

Lemma 1. For each v ∈ V , C̃v ≤ �(v) + |E(v)| − 1.

Proof. Let (w, v) be the last edge to finish among the edges in E(v). Also, let
F (w, v) = {y ∈ N(w) | �(y) ≤ �(v)}. Observe that because of the order in which
the edges are scheduled, C̃v ≤ |F (w, v)| + |E(v)| − 1. Let i be the iteration of
the algorithm in which the first vertex in F (w, v) is labeled, and let y be that
vertex. At the beginning of the ith iteration vertex w has at least |F (w, v)|
unlabeled neighbors. Because xi is chosen (line 7 of the pseudocode) to be the

Combinatorial Algorithms for Data Migration 133

vertex with the maximum number of unlabeled neighbors it must be the case
that |F (w, v)| ≤ |Sxi | = �(y), which by definition is at most �(v). ��
Theorem 1. The data migration problem with edges having unit processing
times has a 3-approximate primal-dual algorithm.

Proof. Let G = (V,E) be an instance of the data migration problem. Let
DFS(G) denote the cost of the dual feasible solution for instance G obtained by
our algorithm. Let OPT (G) denote the cost of an optimal solution for instance
G. Clearly, DFS(G) ≤ OPT (G). Also, OPT (G) ≥

∑
v∈V wv|E(v)|. Let iter(v)

be the iteration in which v gets labeled. The cost of our algorithm is given by∑
v

wvC̃v ≤
∑

v

wv (�(v) + |E(v)|) (using Lemma 1)

=
∑

v

wv �(v) +
∑

v

wv|E(v)|

=
∑

v

⎛⎝ ∑
i : v∈Sxi

ySxi

⎞⎠ �(v) + OPT (G)

=
∑

v

⎛⎝ ∑
i : v∈Sxi

ySxi

⎞⎠ |Sxiter(v) |+ OPT (G)

≤
∑

v

∑
i : v∈Sxi

ySxi
|Sxi |+ OPT (G)

=
∑

i

∑
v∈Sxi

ySxi
|Sxi |+ OPT (G)

=
∑

i

ySxi
|Sxi |2 + OPT (G)

=
∑
u∈V

Su⊆N(u)

ySu |Su|2 + OPT (G)

≤ 2 ·DFS(G) + OPT (G)

≤ 3 ·OPT (G)

��
We finish this section by mentioning that the above labeling procedure coupled
with the scheduling technique used by Gandhi et al. [5] yields a constant factor
approximation for the case of arbitrary processing times.

Theorem 2. The data migration problem with edges having arbitrary processing
times has a 5.83-approximate primal-dual algorithm.

Due to space limitation the proof of the above theorem is deferred to the journal
version of this paper.

134 R. Gandhi and J. Mestre

3 Minimizing Sum of Edge Completion Times

The problem of scheduling the edges of a graph to minimize the sum of their
completion times can be cast as an edge coloring problem: Given G = (V,E)
we want to partition the edge set E into matchings M1, . . . ,Mk as to minimize∑

i i |Mi|. Indeed, this problem is also known as minimum sum edge coloring.
Bar-Noy et al. [2] show that any minimal schedule is 2-approximate. In a

minimal schedule every matching Mi is maximal with respect to G \ ∪j<iMj .
The main result of this section is to identify a stronger minimality requirement
that results in a better approximation guarantee.

Definition 1. A schedule M1, . . . ,Mk of G is said to be strongly minimal if,
for all 1 ≤ b ≤ k, the b-matching ∪i≤bMi is maximal w.r.t. G.

Theorem 3. Any strongly minimal schedule is
√

2-approximate.

Proof. The high level idea of the proof is to assign every edge to at least one
of its endpoints. Each vertex is responsible for paying for the cost of the edges
assigned to it. In order to pay for this cost each vertex charges a lower bound
on the completion time of the edges assigned to it.

Let (u, v) ∈ Mi, we say endpoint u is full if u is matched in all Mj<i. We
consider the endpoints of edges in M1 to be full. Notice that every edge (u, v) ∈
Mi must have at least one full endpoint, otherwise ∪j<iMj + (u, v) would be a
valid (i − 1)-matching, which contradicts the fact that the schedule is strongly
minimal. If both endpoints of (u, v) are full then the edge is half-assigned to u
and v. Otherwise the edge is fully-assigned to the one full endpoint.

Every vertex u is responsible for the cost of edges assigned to it. If an edge is
half-assigned to u, then u pays for half of its completion time; if the edge is fully-
assigned then u pays in full. Let s1 and s2 be the number of half-assigned and
fully-assigned edges to u respectively. Notice that all edges assigned to u must
belong to Mj for some j ≤ s1 + s2. We think of u as paying 1

2 of the completion
time of all edges assigned to it, plus an additional 1

2 for the fully-assigned edges,
which in the worst case will be scheduled the latest,

u must pay ≤ 1
2

s1+s2∑
i=1

i +
1
2

s1+s2∑
i=s1+1

i

Vertex u will pay this amount by charging the completion time (in the optimal
solution) of the edges assigned to it. Fully-assigned will be charged a soon-to-
be-determined ρ factor, and half-assigned edges will be charged ρ

2 . This will be
u’s budget. How fast can the optimal solution possibly schedule these edges?

u’s budget ≥ ρ

2

s1+s2∑
i=1

i +
ρ

2

s2∑
i=1

i

Notice that every edge is charged at most to an extent of ρ: fully-assigned
edges are charged ρ once, from a single endpoint, and half-assigned edges are

Combinatorial Algorithms for Data Migration 135

charged ρ
2 twice, once from each endpoint. Thus, strongly greedy schedules are

ρ-approximate. The discrepancy between the upper and lower bound on the
completion times of edges assigned to u is due to fully-assigned edges which are
scheduled the latest in the upper bound, and the earliest in the lower bound.
We need to determine the smallest ρ such that u’s budget is enough to cover u’s
payment, namely

(s1 + s2)(s1 + s2 + 1)
4

+
(2s1 + s2 + 1)s2

4
≤

ρ
(s1 + s2)(s1 + s2 + 1)

4
+ ρ

s2(s2 + 1)
4

.

Or equivalently,

(s1 + s2)2 + (2s1 + s2)s2 ≤ ρ(s1 + s2)2 + ρs2
2 + (ρ− 1)(s1 + 2s2).

Let α = s2
s1+s2

, since ρ > 1 the above follows provided

1 + 2α− α2

1 + α2 ≤ ρ.

The left hand side is maximized for α =
√

2− 1, which yields
√

2 ≤ ρ ��

While strongly minimal schedules are not guaranteed to exist for general graphs,
we now show that in bipartite graphs they always exist and can be computed
in polynomial time. The bipartite, is an interesting and nontrivial case: it is a
variant of the open shop scheduling problem in which we want to minimize the
sum of completion time of operations [5]. This problem is APX-hard [16]. The
best known approximation guarantee for the problem is 1.796 [5].

Theorem 4. The procedure find strongly minimal is a
√

2-approximation
for minimizing the sum of completion times of unit length operations in open
shop scheduling.

find strongly minimal(G)

1 for i← Δ down to 1 do
2 Mi ← a matching incident to all vertices of G with degree i
3 G← G \Mi

4 return M1,M2, . . . ,MΔ

In each iteration, the procedure find strongly minimal computes a match-
ing incident to the maximum degree vertices of G and removes the matching
from G. This continues until all edges have been removed. The matchings found
are then scheduled in reverse order. Because the degree of G decreases by one

136 R. Gandhi and J. Mestre

with each iteration, the algorithm finishes after Δ iterations, here Δ is the degree
of the original graph.

Let us argue that the schedule found is strongly minimal. Let e ∈ Mi and
b < i, we want to show that e cannot be added to ∪j≤bMj without violating the
b-matching property. Let G′ be the remaining graph when Mi was computed.
One of the endpoint of e must have degree i in G′, let u be that endpoint. After
removing Mi the degree of u becomes i − 1, and thus u must be matched in
Mi−1. In general u will be matched in all Mj<i. Therefore, the degree of u in
∪j≤b Mj is b, which in turn means the b-matching is maximal with respect to e.

In bipartite graphs a matching incident to all the maximum degree vertices
always exists and can be computed in polynomial time (cf. [8]). Together with
Theorem 3, this finishes the proof of Theorem 4.

3.1 An Almost Tight Example

While at first sight the analysis of the approximation factor of strongly minimal
schedules may seem too pessimistic, it turns out it is almost tight. Consider
the following bipartite graph with vertices u1, . . . , un on one side and vertices
v1, . . . , vn on the other side of the bipartition. There is an edge (ui, vj) ∈ E if
and only if i ≤ j.

It is not difficult to show that the optimal schedule uses matchings

Mk = {(ui, vi+k−1) | i ≤ n− k + 1}

and has cost
∑n

i=1 i (n− i + 1) = 1
6n

3 + 3n2 + 2n.
Now suppose we run find strongly minimal. Initially the maximum degree

vertices are u1 and vn, and the algorithm finds the matching Mn consisting of
(u1, vn

2
) and (un

2 +1, vn). After removing Mn the maximum degree vertices are
u1, u2, vn−1, and vn. In general the algorithm may find, for n

2 < k ≤ n,

Mk = {(ui, vi+k− n
2 −1) | i ≤ n− k + 1} ∪ {(uj−k+ n

2 +1, vj) | j ≥ k}.

After these matchings are removed from the graph we are left with a complete
bipartite graph on u1, . . . un

2
and vn

2 +1, . . . vn, thus |Mk| = n
2 for all 1 ≤ k ≤ n

2 .
Therefore, the cost of this strongly minimal schedule is 11

48n
3 + 5

8n
2 + 1

3n.
The ratio of the cost of the optimal and strongly minimal solutions approaches

1.375 as n → ∞. Compare this to approximation guarantee of
√

2 ≈ 1.414
obtained in Theorem 3.

3.2 Integrality Gap

Let us now study the inherent limitations of the lower bounding technique used
to prove Theorem 3. The lower bound used there can be generalized as follows:
for any subset of edges S incident on a vertex, we know that any feasible schedule
must spend at least |S|(|S|+1)

2 time on these edges. We can charge the cost of this
set of edges a factor yS ≥ 0. If for every edge e the total charge

(∑
S : e∈S yS

)
on

Combinatorial Algorithms for Data Migration 137

e is at most 1, then
∑

S
|S|(|S|+1)

2 yS offers a lower bound on the cost an optimal
schedule. The best such lower bound corresponds to the optimal solution of the
following dual LP:

max
∑
S

|S|(|S|+ 1)
2

yS

subject to∑
S:e∈S

yS ≤ 1 ∀e ∈ E (3)

yS ≥ 0 ∀S ⊆ E(u), u ∈ V

In hindsight, the proof of Theorem 3 can be viewed as a case of dual-fitting
in which constraint (3) is violated a

√
2 factor. To determine how good a lower

bound the dual offers, we derive the primal LP and study its integrality gap.

Theorem 5. The integrality gap of the LP below is at least 4
3 in general graphs

and at least 10
9 in bipartite graphs.

min
∑
e∈E

Ce

subject to∑
e∈S

Ce ≥
|S|(|S|+ 1)

2
∀S ⊆ E(u), u ∈ V (4)

Ce ≥ 0 ∀e ∈ E

Proof. For general graphs, consider a triangle. The optimal solution schedules
one edge at the time, and incurs a cost of 6. The LP can schedule all edges at
Ce = 1.5, with a cost of 4.5. Thus, the integrality gap for this graph is 4

3 .
For the bipartite case (our example is in fact a

21

12

2
21

1

2
3 1

1

tree) consider a spider with three legs of length
two. The graph is shown on the right along with
the edge completion times of an optimal sched-
ule (in black and to the left) and of the opti-
mal LP solution (in gray and to the right). Op-
timum schedules three edges in M1, two in M2
and one in M3, with a total cost of 10. On the
other hand, the LP solution manages to schedule all edges in two rounds, with
a total cost of 9. Thus the integrality gap for bipartite graphs is at least 10

9 . ��

3.3 Limitations of Strongly Minimal Schedules

We conclude this section with a note on the limitations of strongly minimal
schedules. One common generalization of our scheduling problem is to minimize

138 R. Gandhi and J. Mestre

the weighted sum of completion times. In this setting the proof of Theorem 3
does not go through as we make crucial use of the fact that the edges have
uniform weight.

It would be natural to hope that the following slight modification of find
strongly minimal would produce good schedules: Instead of finding any
matching incident to the maximum degree vertices, we find one with minimum
weight. Unfortunately, the following bipartite example shows that strongly
minimal schedules are just not suited for the weighted case. Take a path of
length four and replace each edge with a copy of Kt,t. The edges in the first
and the last Kt,t have weight 1, and the ones in the middle have weight
0. The optimal solution schedules the first and the last Kt,t in the first t
rounds and the remaining edges are scheduled in the next 2t rounds, with
a total cost of t(t + 1). On the other hand, a strongly minimal solution
can schedule at most t edges with weight 1 per round, thus incurring a total
cost of t(2t+1). The ratio of the cost of the two solutions approaches 2 as t→∞.

Acknowledgements. We thank Yoo-Ah Kim for useful discussions.

References

1. E. Anderson, J. Hall, J. Hartline, M. Hobbes, A. Karlin, J. Saia, R. Swaminathan,
and J. Wilkes. An Experimental Study of Data Migration Algorithms. Proc. of the
Workshop on Algorithm Engineering, pages 145-158, 2001.

2. A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir. On Chro-
matic Sums and Distributed Resource Allocation. Information and Computation,
140:183-202, 1998.

3. S. Chakrabarti, C. A. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein.
Improved Scheduling Problems For Minsum Criteria. Proc. of the 23rd Interna-
tional Colloquium on Automata, Languages, and Programming, LNCS 1099, 646-
657, 1996.

4. E. G. Coffman, M. R. Garey, D. S. Johnson, and A. S. LaPaugh. Scheduling File
Transfers. SIAM Journal on Computing, 14(3):744-780, 1985.

5. R. Gandhi, M. M. Halldórsson, G. Kortsarz, and H. Shachnai. Improved Results
for Data Migration and Openshop Scheduling. ACM Transactions on Algorithms,
2(1):116-129, 2006.

6. R. Gandhi, M. M. Halldórsson, G. Kortsarz, and H. Shachnai. Improved Bounds for
Scheduling Conflicting Jobs with Minsum Criteria. Proc. of the Second Workshop
on Approximation and Online Algorithms, 68-82, 2004.

7. R. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical
Journal, 45:1563-1581, 1966.

8. H. Gabow and O. Kariv. Algorithms for edge coloring bipartite graphs and multi-
graphs. SIAM Journal of Computing, 11(1), February 1982.

9. J. Hall, J. Hartline, A. Karlin, J. Saia, and J. Wilkes. On Algorithms for Efficient
Data Migration. Proc. of the 12th ACM-SIAM Symposium on Discrete Algorithms,
620-629, 2001.

10. L. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to Minimize Average
Completion Time: Off-line and On-line Approximation Algorithms. Mathematics
of Operations Research, 22:513-544, 1997.

Combinatorial Algorithms for Data Migration 139

11. M. M. Halldórsson, G. Kortsarz, and H. Shachnai. Sum Coloring Interval Graphs
and k-Claw Free Graphs with Applications for Scheduling Dependent Jobs. Algo-
rithmica, 37:187-209, 2003.

12. H. Hoogeveen, P. Schuurman, and G. Woeginger. Non-approximability Results For
Scheduling Problems with Minsum Criteria. Proc. of the 6th International Con-
ference on Integer Programming and Combinatorial Optimization, LNCS 1412,
353-366, 1998.

13. S. Khuller, Y. Kim, and Y. C. Wan. Algorithms for Data Migration with Cloning.
In Proc. of the 22nd ACM Symposium on Principles of Database Systems, 27-36,
2003.

14. S. Khuller and A. Malekian. Improved Algorithms for Data Migration. To appear
in APPROX 2006.

15. Y. Kim. Data Migration to Minimize the Average Completion Time. Journal of
Algorithms,55:42-57, 2005.

16. D. Marx. Complexity results for minimum sum edge coloring. Manuscript, 2004.
17. T. Nishizeki and K. Kashiwagi. On the 1.1 edge-coloring of multigraphs. SIAM

Journal on Discrete Mathematics, 3(3):391-410, 1990.
18. M. Queyranne. Structure of a Simple Scheduling Polyhedron. Mathematical Pro-

gramming, 58:263-285, 1993.
19. M. Queyranne and M. Sviridenko. A (2+ε)-Approximation Algorithm for General-

ized Preemptive Open Shop Problem with Minsum Objective. Journal of Algorithms,
45:202-212, 2002.

20. M. Queyranne and M. Sviridenko. Approximation Algorithms for Shop Scheduling
Problems with Minsum Objective. Journal of Scheduling, 5:287-305, 2002.

21. A. S. Schulz. Scheduling to Minimize Total Weighted Completion Time: Perfor-
mance Guarantees of LP-based Heuristics and Lower Bounds. In Proc. of the 5th
International Conference on Integer Programming and Combinatorial Optimiza-
tion, LNCS 1084, 301-315, 1996.

22. L. Wolsey. Mixed Integer Programming Formulations for Production Planning and
Scheduling Problems. Invited talk at the 12th International Symposium on Math-
ematical Programming, MIT, Cambridge, 1985.

A Minimal Schedules and min
∑

v Cv

Since any minimal schedule is 2-approximate with respect to the objectives
min

∑
e Ce [2] and min maxe Ce, it may tempting to think that they also perform

well for min
∑

v Cv. Unfortunately that is not the case. Take a complete bipar-
tite graph Kq,q and attach to it 2q copies of K1,

√
q so that each node in Kq,q

is the center of one of the stars. The optimal solution first schedules the stars
in parallel and then the edges in Kq,q, with a total cost of Θ(q2). A minimal
solution may schedule Kq,q before the stars, incurring a cost of Θ(q2.5). Since
the graph has Θ(q1.5) vertices, a minimal schedule can be a factor Ω(3

√
n) away

from the optimum.

LP Rounding and an Almost Harmonic
Algorithm for Scheduling with Resource

Dependent Processing Times�

Alexander Grigoriev1, Maxim Sviridenko2, and Marc Uetz1

1 Maastricht University, Quantitative Economics, P.O. Box 616,
6200 MD Maastricht, The Netherlands

{a.grigoriev, m.uetz}@ke.unimaas.nl
2 IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights,

NY 10598, USA
sviri@us.ibm.com

Abstract. We consider a scheduling problem on unrelated parallel ma-
chines with the objective to minimize the makespan. In addition to its
machine dependence, the processing time of any job is dependent on the
usage of a scarce renewable resource, e.g. workers. A given amount of
that resource can be distributed over the jobs in process at any time.
The more of the resource is allocated to a job, the smaller is its process-
ing time. This model generalizes the classical unrelated parallel machine
scheduling problem by adding a time-resource tradeoff. It is also a natu-
ral variant of a generalized assignment problem studied by Shmoys and
Tardos. On the basis of an integer linear programming formulation for
(a relaxation of) the problem, we adopt a randomized LP rounding tech-
nique from Kumar et al. (FOCS 2005) in order to obtain a deterministic,
integral LP solution that is close to optimum. We show how this round-
ing procedure can be used to derive a deterministic 3.75-approximation
algorithm for the scheduling problem. This improves upon previous re-
sults, namely a deterministic 6.83-approximation, and a randomized 4-
approximation. The improvement is due to the better LP rounding and
a new scheduling algorithm that can be viewed as a restricted version of
the harmonic algorithm for bin packing.

1 Introduction

Unrelated parallel machine scheduling to minimize the makespan, R| |Cmax in
the three-field notation of Graham et al. [3], is one of the classical problems in
combinatorial optimization. Given are n jobs that have to be scheduled on m
parallel machines, and the processing time of job j if processed on machine i
is pij . The goal is to minimize the latest job completion, the makespan Cmax. If
the number of machines m is part of the input, the best approximation algorithm
� This work was done while the second author was visiting Maastricht University,

supported by METEOR, the Maastricht Research School of Economics of Technology
and Organizations.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 140–151, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Scheduling with Resource Dependent Processing Times 141

to date is a 2-approximation by Lenstra, Shmoys and Tardos [11]. Moreover, the
problem cannot be approximated within a factor strictly smaller than 3/2, unless
P=NP [11].

In this paper, we consider a generalization of the unrelated parallel machine
scheduling problem R| |Cmax by adding a time-resource tradeoff. This general-
ization also involves a scarce renewable resource (e.g., workers) that can be used
in order to speed up the processing times of the jobs. This generalization has
recently been studied by Grigoriev et al. [4] and Kumar et al. [10]; it can be
seen also as a variant of the unrelated machine scheduling problem with budget
constraint that was considered by Shmoys and Tardos [13]. More precisely, a
maximum number of k units of a resource is available at any time. It may be
used to speed up the jobs, and the available amount of k units of that resource
must not be exceeded at any time. In contrast to the linearity assumption of
the relation of processing times and costs in [13], the only assumption we make
in this paper is that the processing times pijs, which now depend also on the
number s of allocated resources, are non-increasing in s for each job-machine
pair. That is, we assume that pij0 ≥ pij1 ≥ · · · ≥ pijk for all jobs j and all
machines i = 1, . . . ,m.

As a matter of fact, machine scheduling problems with the additional feature
of a nonrenewable resource constraint, such as a total budget constraint, have
received quite some attention in the literature as time-cost tradeoff problems.
To give a few references, see [1, 7, 8, 13, 14]. Surprisingly, time-resource tradeoff
problems with a renewable resource constraint, such as personnel, seem to have
received less attention, although they are not less appealing from a practical
viewpoint. Apart from our previous paper [4], some (restricted) versions of the
problem were considered in [5, 6, 9, 12, 15].

In this work we improve upon our previous deterministic 6.83-approximation
from [4], and upon a randomized 4-approximation by Kumar, Marathe, Partha-
sarathy, and Srinivasan [10]. The main result of the paper is a deterministic 3.75-
approximation algorithm for the unrelated machine scheduling problem with re-
source dependent processing times. Compared to our previous approach from [4],
the improvement is obtained by using two new ingredients. The first ingredient
is a more sophisticated LP rounding that can be seen as a derandomized version
of a randomized rounding approach by Kumar et al. [10]. The second ingredi-
ent is a new scheduling algorithm that resembles (a restricted version of) the
well-known harmonic algorithm for bin packing.

In fact, the new rounding procedure can be viewed as an extension of the
Shmoys and Tardos rounding theorem for the generalized assignment prob-
lem [13]. In this extension we consider the generalized assignment problem on a
bipartite multigraph instead of a simple bipartite graph. Note that the techniques
from [13] do not seem to be extendible to the case of a multigraph.

Combining the greedy scheduling algorithm from our previous paper [4] with
the new rounding theorem yields a deterministic 4-approximation algorithm for
scheduling with resource dependent processing times; matching the correspond-
ing result of Kumar et al. [10]. But using a more sophisticated linear programming

142 A. Grigoriev, M. Sviridenko, and M. Uetz

relaxation that still fits the framework for the rounding procedure, combined with
(a restricted version of) the harmonic algorithm for the classical bin packing prob-
lem, we design an even better 3.75-approximation algorithm. In particular, this
considerably improves upon our previous 6.83-approximation [4].

2 Problem Definition

Let V = {1, . . . , n} be a set of jobs. Jobs must be processed non-preemptively
on a set M = {1, . . . ,m} of unrelated parallel machines. The objective is to
find a schedule that minimizes the makespan Cmax, that is, the time of the
last job completion. During its processing, a job j may be assigned an amount
s ∈ {0, 1, . . . , k} of an additional resource, for instance additional workers, that
may speed up its processing. If s resources are allocated to a job j, and the
job is processed on machine i, the processing time of that job is pijs. The only
assumption on the processing times, regarding their dependence on the amount
of allocated resources, is monotonicity. That is, we assume that

pij0 ≥ pij1 ≥ · · · ≥ pijk

for every machine-job pair (i, j). Without loss of generality, we also assume that
all processing times pijs are integral. Hence, we can restrict to feasible schedules
where the jobs only start (and end) at integral points in time.

The allocation of resources to jobs is restricted as follows. At any time, no
more than the available k units of the resource may be allocated to the set of
jobs in process. Moreover, since we assume a discrete resource, the amount of
resources assigned to any job must be integral, and we require it to be the same
along its processing. In other words, if � ≤ k units of the resource are allocated
to some job j, tj and t′j denote j’s starting and completion time, respectively,
only k − � of the resources are available for other jobs between tj and t′j .

We finally introduce an additional piece of notation. Since we do not assume
that the functions pijs are strictly decreasing in s, the only information that
is effectively required is the breakpoints of pijs, that is, indices s where pijs <
pij,s−1. Hence, define the ‘relevant’ indices for job j on machine i as

Sij = {0} ∪ {s | s ≤ k, pijs < pij,s−1} ⊆ {0, . . . , k} .

Considering this index sets obviously suffices, since in any solution, if s units of
the resource are allocated to some job j, we may as well only use s′ units, where
s′ ≤ s and s′ ∈ Sij , without violating feasibility.

3 LP-Based Approximations for Unrelated Parallel
Machines

Integer programming relaxation. Let xijs denote binary variables, indicating that
an amount of s resources is used for processing job j on machine i. Then consider
the following integer linear program, referred to as (IP).

Scheduling with Resource Dependent Processing Times 143

∑
i∈M

∑
s∈Sij

xijs = 1 , ∀ j ∈ V , (1)

∑
j∈V

∑
s∈Sij

xijs pijs ≤ C , ∀ i ∈M , (2)

∑
j∈V

∑
i∈M

∑
s∈Sij

xijs s pijs ≤ k C , (3)

xijs = 0 , if pijs > C, (4)
xijs ∈ {0, 1} , ∀ i, j, s. (5)

Here, C represents the schedule makespan. Equalities (1) make sure that every
job is assigned to one machine and uses a constant amount of resources during
its processing. Inequalities (2) express the fact that the total processing on each
machine is a lower bound on the makespan. Inequality (3) represents the aggre-
gated resource constraint: In any feasible schedule, the left-hand side of (3) is the
total resource consumption of the schedule. Because no more than k resources
may be consumed at any time, the total resource consumption cannot exceed
k C. Finally, constraints (4) make sure that we do not use machine-resource pairs
such that the job processing time exceeds the schedule makespan. These con-
straints are obviously redundant for the integer program (IP), but they will play
a role later when rounding a fractional solution for the linear relaxation of (IP).
Summarizing the above observations, we have:

Lemma 1 ([4]). If there is a feasible schedule with makespan C for the unrelated
machine scheduling problem with resource dependent processing times, integer
linear program (1)–(5) has a feasible solution (C, x).

Linear programming relaxation. The integer linear program (IP) with the 0/1-
constraints on x relaxed to

xijs ≥ 0 , j ∈ V , s ∈ Sij , i ∈M

also has a solution for value C if there is a feasible schedule for the original
scheduling problem with makespan C. We note that it can be solved in polyno-
mial time, because it has a polynomial number of variables and constraints. Since
we assume integrality of data, we are actually only interested in integral values C.
Moreover, an upper bound for C is given by

∑
j∈V mini∈M{pijk}. Therefore, by

using binary search on possible values for C, we can find in polynomial time
the smallest integral value CLP such that the linear programming relaxation of
(1)–(5) has a feasible solution xLP. We therefore obtain the following.

Lemma 2 ([4]). The smallest integral value value CLP such that the linear
programming relaxation of (1)–(5) has a feasible solution is a lower bound on
on the makespan of any feasible schedule, and it can be computed in polynomial
time.

144 A. Grigoriev, M. Sviridenko, and M. Uetz

Notice that, as long as we insist on constraints (4), we can not just solve a single
linear program minimizing C, since constraints (4) depend nonlinearly on C.
Moreover, due to the fact that we only search for integral values C, the binary
search on C does not entail any additional approximation error.

Rounding the LP solution. Given a feasible solution (CLP, xLP) for the linear
programming relaxation of (1)–(5), the vector xLP may clearly be fractional. We
aim at rounding this fractional solution to an integer one without sacrificing too
much in terms of violation of the constraints (2) or (3). We present a rounding
procedure that is inspired by a recent paper by Kumar et al. [10]. In fact, it
can be seen as a deterministic version of the randomized rounding algorithm
of [10]. In the following lemma, we replace the total resource consumptions of
jobs, s pijs, by arbitrary (nonnegative) coefficients cijs. This will come in handy
in Section 4.

Lemma 3. Let CLP be the minimal integer for which the following linear pro-
gram has a feasible solution∑

i∈M

∑
s∈Sij

xijs = 1 , ∀ j ∈ V, (6)

∑
j∈V

∑
s∈Sij

xijs pijs ≤ CLP, ∀ i ∈M , (7)

∑
j∈V

∑
i∈M

∑
s∈Sij

xijscijs ≤ kCLP , (8)

xijs = 0 , if pijs > C, (9)
xijs ≥ 0 , ∀ i, j, s , (10)

and let (CLP, xLP) be the corresponding feasible solution, then we can find a fea-
sible solution x∗ = (x∗

ijs) for the following integer linear program in polynomial
time. ∑

i∈M

∑
s∈Sij

xijs = 1 , ∀ j ∈ V, (11)

∑
j∈V

∑
s∈Sij

xijs pijs ≤ CLP + pmax, ∀ i ∈M , (12)

∑
j∈V

∑
i∈M

∑
s∈Sij

xijscijs ≤ kCLP , (13)

xijs ∈ {0, 1} , ∀ i, j, s , (14)

where pmax = max{pijs | xLP
ijs > 0} and cijs ≥ 0 are arbitrary fixed coefficients.

One option to prove the lemma is to derandomize the corresponding random-
ized rounding algorithm of [10], using the method of conditional probabilities.

Scheduling with Resource Dependent Processing Times 145

However, for reasons of self-containedness and accessibility, we prefer to present
a direct proof here. Notice, however, that the basic elements of the proof are
indeed the same as in [10].

Proof (of Lemma 3). The rounding algorithm works in stages. Let x denote the
current fractional solution in a given stage. In the first stage, define x = xLP,
and notice that xLP fulfills (11)–(13). Subsequently, we alter the current solution
x, while maintaining validity of constraints (11) and (13).

In each stage, we consider a bipartite multigraph G(x) = (V ∪M,E), where
the set E of edges is defined as follows. For every pair i ∈ M and j ∈ V , E
contains a set of parallel edges, namely one for each fractional value 0 < xijs < 1,
s = 0, . . . , k. Therefore, we could have up to k + 1 parallel edges between every
machine-job pair (i, j). Notice that the degree of any non-isolated vertex v ∈ V
is at least 2, due to constraint (11). We furthermore eliminate isolated vertices
from graph G(x).

We will encode each edge e ∈ E by the triplet (i, j, s). For every vertex
w ∈ V ∪M let dw denote its degree in G(x). We define a variable εijs for every
edge (i, j, s) ∈ E and a set of linear equations:∑

(i,j,s)∈Ej

εijs = 0, j ∈ V , (15)

∑
(i,j,s)∈Ei

pijsεijs = 0, i ∈M and di ≥ 2 . (16)

Let c1 and c2 be the number of constraints in (15) and (16), respectively. Let
r ≤ min{c1 + c2, |E|} be the rank of that system. Now observe that c1 ≤ |V | ≤
|E|/2, because of constraint (11). Moreover, c2 ≤ |E|/2 by definition. Thus we
obtain that either r ≤ c1 + c2 ≤ |E| − 1 or c1 = c2 = |E|/2. In the latter
case, constraints (11), the degree condition in (16), and the fact that there are
no isolated vertices, imply that there are exactly |E| vertices in G(x). Hence,
the degree of each vertex must equal 2 (and graph G(x) is a collection of even
cycles).

Consider the first case when r ≤ |E| − 1. Since the system of linear equations
(15)–(16) is underdetermined, by Gaussian elimination we can find a general
solution of this system in the form εijs =

∑|E|−r
t=1 αtijsδt in polynomial time.

Here, δt, t = 1 . . . , |E| − r, are the real valued parameters representing the
degrees of freedom of the linear system, and αtijs = 0 are the corresponding
coefficients. Hence, by fixing δ2 = δ3 = · · · = δ|E|−r = 0, we obtain a solution
εijs = α1ijsδ1. For convenience of notation we just write εijs = αijsδ, and note
that δ is an arbitrary parameter.

Next, we can define a new fractional solution of the original linear program
by letting

x̄ijs =

{
xijs + αijsδ if xijs is fractional,
xijs otherwise.

Due to constraints (15) and (16) we obtain that constraints (11) are satisfied for
all j ∈ V , and constraints (12) are satisfied for all i ∈ M except those vertices

146 A. Grigoriev, M. Sviridenko, and M. Uetz

(machines) i ∈M that have |Ei| = 1. Finally, since
∑

j∈V

∑
i∈M

∑
s∈Sij

x̄ijscijs

is a linear function of δ we obtain that constraint (13) is satisfied either for
positive or for negative δ. Therefore, by choosing δ either maximal or minimal
such that 0 ≤ x̄ijs ≤ 1 and such that constraint (13) is still satisfied, we obtain
a new solution with one more integral variable satisfying constraints (11) and
(13).

Repeating the above procedure we either end up with an integral solution x,
fulfilling constraints (11) and (13), together with an empty graph G(x), or we
end up with some fractional solution x such that the degree of each vertex in
G(x) is at most 2 (even exactly 2). This means that at most two fractional jobs
are assigned to any machine, and each fractional job is assigned to at most two
machines. If that happens, we continue with with a rounding procedure that is
akin to the dependent rounding that was proposed by Gandhi et al. [2]. Let us
therefore call the following rounding stages late stages, and the previous ones
early stages.

In a late stage, the maximum vertex degree in G(x) is 2. Moreover, since G(x)
is bipartite, we can partition G(x) into two matchings M1 and M2. Thus we can
define a new fractional solution

x̄ijs =

⎧⎪⎨⎪⎩
xijs for xijs integral,
xijs + δ for (i, j, s) ∈M1,

xijs − δ for (i, j, s) ∈M2,

for some δ. Again, since
∑

j∈V

∑
i∈M

∑
s∈Sij

x̄ijscijs is a linear function of δ

we obtain that constraint (13) is satisfied either for positive or for negative δ.
Therefore, by choosing δ either maximal or minimal such that 0 ≤ x̄ijs ≤ 1 and
such that constraint (13) is still satisfied, we obtain a new solution with at least
one more integral variable, still satisfying constraint (13). Moreover, since the two
edges incident to any vertex v ∈ V must belong to different matchings M1 and
M2, the assignment constraint (11) remains valid, too. Notice that the resulting
graph G(x̄) still has vertex degrees at most 2, since only edges are dropped due to
the rounding. Hence, we can iterate the rounding until all variables are integral.

In the end of the rounding algorithm we obtain an integral solution that obvi-
ously satisfies constraints (11). Since on every step we were choosing a solution
minimizing a linear function corresponding to constraint (13), we obtain that
this constraint is satisfied too.

To show that constraints (12) are satisfied for each i ∈ M , we have to show
that the left hand side of the original constraint (2) increases by at most pmax =
max{pijs | xLP

ijs > 0}. We consider the rounding stage when (2) is violated for
machine i ∈M .

On the one hand, this might happen in an early stage when di = 1. In this
case, however, since there is exactly one fractional edge incident to i, we could
add at most pmax in any future rounding stages to the total load of machine i.
Hence, constraint (12) is fulfilled by machine i.

On the other hand, the violation of the original constraint (2) might happen
in a late stage, where all vertices in G(x) have degree at most 2. When di = 1

Scheduling with Resource Dependent Processing Times 147

we argue as before. So assume di = 2. Consider machine i together with its
two incident edges (i, j, s) and (i, j′, s′). Whenever xijs + xij′s′ ≥ 1 before the
rounding, we claim that the total load of machine i increases by at most pmax by
any possible further rounding. This because the total remaining increase in the
left hand side of (2) for machine i is at most (1−xijs)pijs+(1−xij′s′)pij′s′ ≤ pmax.
So assume that xijs + xij′s′ < 1. We claim that at most one of the jobs j and j′

will finally be assigned to machine i. To see why, consider the stage where one
of these variables was rounded to an integer. Recalling that edges (i, j, s) and
(i, j′, s′) must belong to different matchings M1 and M2, we may assume that
xijs is rounded up, and xij′s′ is rounded down. Clearly, xijs + xij′s′ < 1 holds
before that rounding stage. Assuming that xijs is rounded to 1, it must hold
that xij′s′ ≥ 1 − xijs, because otherwise xij′s′ would become negative. In other
words, xijs + xij′s′ ≥ 1, a contradiction. Hence, the only way to round one of
the variables xijs or xij′s′ to an integer, is to round xij′s′ down to 0. Therefore
edge (i, j′s′) disappears, and indeed, at most job j can be assigned to machine i.
Clearly, the resulting increase in the left hand side of (2) for machine i is again
at most pmax. Hence, constraint (12) is fulfilled after the rounding. ��

4 Scheduling

We complete the paper by designing a new 3.75–approximation algorithm for the
unrelated parallel machine scheduling problem with resource dependent process-
ing times. Notice that this improves considerably upon the 6.83–approximation
from [4], and also upon the 4–approximation from [10]. To achieve this result,
we apply the same rounding as in Lemma 3 to another integer programming
relaxation, and we use a scheduling algorithm that is inspired by the harmonic
algorithm for bin packing.

Let Bij ⊆ Sij be the set of breakpoints that lie in the interval (k/2, k], i.e.,
Bij = {s ∈ Sij | k/2 < s ≤ k }. If any two jobs are processed using s resources,
where s ∈ Bij , these two jobs cannot be processed in parallel. Then consider the
following integer linear program.∑

i∈M

∑
s∈Sij

xijs = 1 , ∀ j ∈ V , (17)

∑
j∈V

∑
s∈Sij

xijs pijs ≤ C , ∀ i ∈M , (18)

∑
j∈V

∑
i∈M

⎛⎜⎝1.5
∑

s∈Sij

xijs
s

k
pijs+ 0.25

∑
s∈Bij

xijspijs

⎞⎠ ≤ 1.75C , (19)

xijs = 0 , if pijs > C, (20)
xijs ∈ {0, 1} , ∀ i, j, s. (21)

148 A. Grigoriev, M. Sviridenko, and M. Uetz

Lemma 4. If there is a feasible schedule with makespan C for the unrelated
machine scheduling problem with resource dependent processing times, integer
linear program (17)–(21) has a feasible solution (C, x̃).

Proof. To prove the lemma we only have to verify validity of the new total
resource constraint (19). For any feasible schedule, two jobs with resource con-
sumption larger then k/2 cannot be processed in parallel, so

∑
j∈V

m∑
i=1

∑
s∈Bij

x̃ijspijs ≤ C. (22)

Combining (22) with valid inequality (3) we derive inequality (19). ��

As before, by binary search on C while using Lemma 4 instead of Lemma 1,
we can find a lower bound CLP on the makespan of an optimal solution for the
unrelated machine scheduling problem.

Lemma 5. Let CLP be the lower bound on the makespan of an optimal solution,
and let (CLP, xLP) be the corresponding feasible solution of the LP-relaxation of
(17)–(21), then we can find a feasible solution x∗ = (x∗

ijs) for the following
integer linear program in polynomial time.∑

i∈M

∑
s∈Sij

xijs = 1 , ∀ j ∈ V, (23)

∑
j∈V

∑
s∈Sij

xijs pijs ≤ CLP + pmax, ∀ i ∈M , (24)

∑
j∈V

∑
i∈M

⎛⎜⎝1.5
∑

s∈Sij

xijs
s

k
pijs+ 0.25

∑
s∈Bij

xijspijs

⎞⎠ ≤ 1.75CLP , (25)

xijs ∈ {0, 1} , ∀ i, j, s , (26)

where pmax = max{pijs | xLP
ijs > 0}.

Proof. The proof follows from Lemma 3 with

cijs =

{(1.5s
1.75k + 0.25

1.75

)
pijs for all s ∈ Bij ,

1.5s
1.75k pijs for all s ∈ Sij \Bij .

��

Now, we are ready to present a scheduling algorithm with performance guarantee
3.75. To that end, we first partition the set of jobs J into three groups J1, J2,
and J3 according to the amount of resources consumed. Define J1 = {j | k/2 <
s∗ ≤ k and xijs∗ = 1}, J2 = {j | k/3 < s∗ ≤ k/2 and xijs∗ = 1}, and
J3 = {j | s∗ ≤ k/3 and xijs∗ = 1}.

Scheduling with Resource Dependent Processing Times 149

Algorithm LP-Greedy: Let the resource allocations and machine as-
signments be determined by the rounded LP solution as in Lemma 5.
The algorithm schedules jobs group by group. In the first phase it sched-
ules jobs from J1 one after another (they cannot be processed in parallel
since they consume too much resources). Let C1 be the completion time
of the last job from J1. In the second phase the algorithm schedules jobs
from J2 starting at time C1. The algorithm always tries to run two jobs
from J2 in parallel. Let C2 be the first time when the algorithm fails to
do so. This could happen either because J2 is empty or all remaining
jobs must be processed on the same machine, say M1. In the last case
the algorithm places all remaining jobs on M1 without idle time between
them. In the third phase the algorithm greedily schedules jobs from J3,
starting no earlier than time C2. So if some job from J3 can be started
at the current time C2, we start processing this job. When no jobs can
start at the current time we increment the current time to the next job
completion time and repeat until all jobs are scheduled. Let C3 be the
completion time of the last job from the set J2 ∪ J3.

We now estimate the makespan CLPG of the schedule. Consider the machine i
with the job that finishes last in the schedule. Let B be the total time when
machine i is busy and I be the total time when machine i is idle in the interval
[0, CLPG], i.e., CLPG = B + I. By constraint (24) in Lemma 5, we have B ≤
CLP + pmax ≤ 2CLP, where the last inequality follows from (20).

To bound the total idle time on machine i we consider two cases. We first
consider the case where the job that finishes last belongs to J1 or J2. If the last
job is from J1, intervals [C1, C2] and [C2, C3] have length 0. If the last job is
from J2, there is no idle time on machine i in the interval [C2, C3]. Thus in both
cases, there is no idle time on machine i in the interval [C2, C3]. Let I1 be the
total idle time on machine i during [0, C1] and I2 be the total idle time during
[C1, C2]. Then I = I1 + I2 is the total idle time on machine i. Since we process
one job at a time from J1 during the time interval [0, C1] and two jobs at a time
from J2 during [C1, C2], the total resource consumption of the schedule during
idle times on machine i is at least

I1
k

2
+ I2

2k
3

.

Letting RI := I1/2 + 2I2/3, the total resource consumption of the schedule
during idle times on machine i is at least RIk, and we therefore get

I = I1 + I2 =
3
2

RI +
I1

4

≤
∑
j∈V

∑
i∈M

(
1.5

∑
s∈Sij

x̃ijs
s

k
pijs + 0.25

∑
s∈Bij

x̃ijspijs

)

≤ 1.75CLP . (27)

150 A. Grigoriev, M. Sviridenko, and M. Uetz

Here, the first inequality holds since
∑

j∈V

∑
i∈M

∑
s∈Sij

x̃ijs
s
kpijs equals the

total resource consumption of the schedule divided by k, and since I1 ≤ C1 =∑
j∈V

∑
i∈M

∑
s∈Bij

x̃ijspijs. The second inequality follows from (25).
Similarly, if the last job in the schedule belongs to J3, let I1 be the total

idle time on machine i during [0, C1], I2 be the total idle time on machine i
during [C1, C2] and I3 be the total idle time on machine i during [C2, C3]. Then
I = I1 + I2 + I3 is the total idle time on machine i. Again, we process one job at
a time from J1 during the time interval [0, C1], and two jobs at a time from J2
during [C1, C2]. Moreover, due to the resource constraint the last job –which is
from J3– could not be scheduled at idle times on machine i during [C2, C3], so
the total resource consumption of the schedule during idle times on machine i in
[C2, C3] is at least 2/3 k. Hence, the total resource consumption of the schedule
during idle times on machine i is at least

I1
k

2
+ (I2 + I3)

2k
3

.

Again, letting RI := I1/2 + 2(I2 + I3)/3, the total resource consumption of the
schedule during idle times on machine i is at least RIk, and we get

I = I1 + (I2 + I3) =
3
2
RI +

I1

4
.

Exactly as before in (27) we conclude that I ≤ 1.75CLP. Therefore, in either of
the two cases we have CLPG = B + I ≤ 2 CLP + 1.75 CLP = 3.75 CLP, and we
have proved the following theorem.

Theorem 1. Algorithm LP-Greedy is a 3.75–approximation algorithm for un-
related parallel machine scheduling with resource dependent processing times.

Acknowledgments

We thank the referees for some helpful remarks.

References

1. Z.-L. Chen, Simultaneous Job Scheduling and Resource Allocation on Parallel Ma-
chines, Annals of Operations Research 129 (2004), 135–153.

2. R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan, Dependent Rounding
in Bipartite Graphs, in Proc. 43rd Annual IEEE Symposium on Foundations of
Computer Science, 2002, 323–332.

3. R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, Opti-
mization and approximation in deterministic sequencing and scheduling: A survey,
Annals of Discrete Mathematics 5 (1979), 287–326.

4. A. Grigoriev, M. Sviridenko and M. Uetz, Unrelated Parallel Machine Schedul-
ing with Resource Dependent Processing Times, Proceedings 11th Conference on
Integer Programming and Combinatorial Optimization, M. Jünger and V. Kaibel
(eds.), Lecture Notes in Computer Science 3509, Springer, 2005, 182–195.

Scheduling with Resource Dependent Processing Times 151

5. A. Grigoriev and M. Uetz, Scheduling Jobs with Linear Speedup, Proceedings 3rd
Workshop on Approximation and Online Algorithms, T. Erlebach and P. Persiano
(eds.), Lecture Notes in Computer Science 3879, Springer, 2006, 203–215.

6. K. Jansen, Scheduling Malleable Parallel Tasks: An Asymptotic Fully Polynomial
Time Approximation Scheme, Algorithmica 39 (2004), pp. 59-81.

7. K. Jansen and M. Mastrolilli, Approximation schemes for parallel machine schedul-
ing problems with controllable processing times, Computers and Operations Re-
search 31 (2004), 1565–1581.

8. J. E. Kelley and M. R. Walker, Critical path planning and scheduling: An intro-
duction, Mauchly Associates, Ambler (PA), 1959.

9. H. Kellerer and V. A. Strusevich, Scheduling parallel dedicated machines under a
single non-shared resource, European Journal of Operational Research 147 (2003),
345–364.

10. V. S. A. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan, Approxi-
mation Algorithms for Scheduling on Multiple Machines, Proc. 46th Annual IEEE
Symposium on Foundations of Computer Science, 2005, 254–263.

11. J. K. Lenstra, D. B. Shmoys and E. Tardos, Approximation algorithms for schedul-
ing unrelated parallel machines, Mathematical Programming, Series A 46 (1990),
259–271.

12. G. Mounie, C. Rapine, and D. Trystram, Efficient Approximation Algorithms for
Scheduling Malleable Tasks, Proc. 11th Annual ACM Symposium on Parallel Al-
gorithms and Architectures, 1999, 23–32.

13. D. B. Shmoys and E. Tardos, An approximation algorithm for the generalized
assignment problem, Mathematical Programming, Series A 62 (1993), 461–474.

14. M. Skutella, Approximation algorithms for the discrete time-cost tradeoff problem,
Mathematics of Operations Research 23 (1998), pp. 909–929.

15. J. Turek, J. L. Wolf, and P. S. Yu, Approximate Algorithms for Scheduling Par-
allelizable Tasks, Proc. 4th Annual ACM Symposium on Parallel Algorithms and
Architectures, 1992, 323–332.

Approximating Buy-at-Bulk and Shallow-Light
k-Steiner Trees

M.T. Hajiaghayi1,�, G. Kortsarz2, and M.R. Salavatipour3,��

1 Department of Computer Science, Carnegie Mellon University
hajiagha@cs.cmu.edu

2 Department of Computer Science, Rutgers University-Camden
guyk@crab.rutgers.edu

3 Department of Computing Science, University of Alberta
mreza@cs.ualberta.ca

Abstract. We study two related network design problems with two cost
functions. In the buy-at-bulk k-Steiner tree problem we are given a graph
G(V, E) with a set of terminals T ⊆ V including a particular vertex s
called the root, and an integer k ≤ |T |. There are two cost functions on
the edges of G, a buy cost b : E −→ R+ and a distance cost r : E −→ R+.
The goal is to find a subtree H of G rooted at s with at least k termi-
nals so that the cost

∑
e∈H b(e) +

∑
t∈T−s dist(t, s) is minimize, where

dist(t, s) is the distance from t to s in H with respect to the r cost. We
present an O(log4 n)-approximation for the buy-at-bulk k-Steiner tree
problem. The second and closely related one is bicriteria approximation
algorithm for Shallow-light k-Steiner trees. In the shallow-light k-Steiner
tree problem we are given a graph G with edge costs b(e) and distance
costs r(e) over the edges, and an integer k. Our goal is to find a minimum
cost (under b-cost) k-Steiner tree such that the diameter under r-cost
is at most some given bound D. We develop an (O(log n), O(log3 n))-
approximation algorithm for a relaxed version of Shallow-light k-Steiner
tree where the solution has at least k

8 terminals. Using this we obtain
an (O(log2 n), O(log4 n))-approximation for the shallow-light k-Steiner
tree and an O(log4 n)-approximation for the buy-at-bulk k-Steiner tree
problem.

1 Introduction

We study network design problems on graphs with two cost functions on the
edges. These are the buy-at-bulk k−Steiner tree problem and the shallow-light
k−Steiner tree problem. In the buy at bulk k−Steiner tree problem we are given
an undirected graph G(V,E) with a terminal set T ⊆ V , a specific vertex s ∈ T
called the root, and an integer k ≤ |V | = n. We also have two (non-related) cost
functions on the edges of G: buy cost b : E −→ R+ and distance cost (sometimes

� This research was supported in part by IPM under grant number CS1383-2-02.
�� Supported by NSERC grant No. G121210990, and a faculty start-up grant from

University of Alberta.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 152–163, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximating Buy-at-Bulk and Shallow-Light k-Steiner Trees 153

also called rent cost) r : E −→ R+. We use the term non-uniform to denote that
b and r are not related. All variants studied here are non-uniform. Our goal is to
find a Steiner tree H spanning at least k vertices of T including the root which
minimizes the following: ∑

e∈H

b(e) +
∑

t∈T−s

L(t, s), (1)

where L(t, s) =
∑

e∈P (t,s) r(e) with P (t, s) being the unique path from t to s
in H .

Buy-at-bulk network optimization problems with two cost functions, have
been extensively studied, sometimes under different names such as cost-distance
(where one function defines buy cost and another function defines length). These
problems have practical importance (see e.g. [2, 8, 18, 17, 19, 20, 25, 27]).

The second problem we consider is a variant of the shallow-light network
design problem. A graph G(V,E) and a collection T ⊆ V of terminals are given
in addition to cost and length functions b, r : E −→ R+ and two bounds, a cost
bound B and a length bound D. The cost of a spanning subtree H(V,E′) is
b(E′) =

∑
e∈E′ b(e). For a path P , L(P) =

∑
e∈P r(e). The distance between

u, v in H is distH(u, v) = L(Pu,v) so that Pu,v is the unique path between
u, v in H . The diameter of H is diam(H) = maxu,v distH(u, v). Throughout,
whenever we talk about the cost of a path or the cost of a tree we mean the
cost under b-cost and whenever we say length or diameter we mean under r-
cost. Assuming a spanning subtree H(V,E′) with cost at most B and diameter
at most D exists, the shallow-light spanning tree problem is to find H . The
more general shallow-light k-Steiner tree problem requires to select for an input
k a tree spanning k nodes that meets the diameter and cost bounds D and B,
respectively. Even the shallow-light spanning tree (k = n) special case is NP-hard
and also NP-hard to approximate within a factor better than c logn for some
universal constant c [5]. Thus we focus on approximation algorithms. An (α, β)
bi-criteria approximation algorithm for the shallow-light k-Steiner tree problem
is an algorithm that delivers a tree H ′ with at least k terminals (vertices in T)
whose diameter is at most α ·D, and whose cost is at most β times the cost of
a D-diameter minimum cost tree.

Our result for shallow-light k−Steiner trees has implication for the well known
non-uniform multicommodity buy at bulk problem. For the most general case,
the best known ratio for the non-uniform buy-at-bulk multicommodity problem
is exp(O(

√
logn log logn)) by Charikar and Karagiozova [8]. Recently, we [11]

have improved this result to a polylogarithmic factor approximation using the
results for shallow-light k−Steiner trees.

1.1 Related Work

In the buy-at-bulk multicommodity problem we are given p source-sink pairs,
{si, ti}pi=1. A subset E′ of the edges is feasible if for every i, an si to ti path exists
in G′ = (V,E′), namely, si, ti belong to the same connected component in G′. The

154 M.T. Hajiaghayi, G. Kortsarz, and M.R. Salavatipour

cost of E′ is
∑

e∈E′ b(e)+
∑

i distG′(si, ti) where the distance is with respect to r,
and the goal is to find a minimum cost feasible E′. If we are also given an integer
k ≤ p and must find a solution that connects k (out of p) si, ti pairs then we have
the buy-at-bulk k-multicommodity problem. It is easy to see that the buy-at-
bulk Steiner (but not k-Steiner) tree problem is a special case of the buy-at-bulk
multicommodity problem in which all the sinks are at a single vertex (namely the
root). The buy-at-bulk k-Steiner tree problem is a special case of the buy-at-bulk
k-multicommodity problem. However, it is shown in [21] that if the buy-at-bulk
k-multicommodity problem admits a polylogarithmic ratio approximation then
so does the dense-k-subgraph problem (see [14]). For a long time now (almost
10 years) the best known approximation for the dense k-subgraph problem is
O(n1/3−ε) for some positive ε > 0 [14], and it is widely believed that the dense
k-subgraph problem admits no polylogarithmic ratio approximation. If indeed,
the dense k-subgraph problem admits no polylogarithmic approximation, then
the result in our paper shows that the case of single source (but many sinks)
namely, buy-at-bulk k-Steiner tree is provably easier to approximate than the
general case of arbitrary source-sink pairs.

In the uniform version of the buy-at-bulk multicommodity problem all the
buy values along edges are equal. The best approximation known for the uni-
form case is O(log n) due to the results of Awerbuch and Azar [3], Bartal [6]
and Fakcharoenphol et al. [13]. Kumar et al. [25] and Gupta et al. [19] present
constant factor approximation for a the case the cost of buying each edge is
equal to M times the cost of renting the edge (per unit length) for a fixed
M . The single sink uniform version also admits constant-factor approximation
algorithms [17, 20].

Meyerson et al. [27] study the buy-at-bulk Steiner tree or equivalently, the
non-uniform single sink buy-at-bulk multicommodity problem for which they
give a randomized O(log n)-approximation that was derandomized by Chekuri,
Khanna, and Naor [9] via an LP formulation. Note that none of these algorithms
yield any polylogarithmic ratio approximation for the k-Steiner tree case.

On the lower bound side, Andrews [1] showed that unless NP ⊆ ZPTIME
(npolylog n) the buy-at-bulk multicommodity problem has no O(log1/2−ε n)- ap-
proximation for any ε > 0. Under the same assumption, the uniform variant
admits no O(log1/4−ε n)-approximation for any constant ε > 0. For the single
sink case, Chuzhoy et al. [10] showed that the problem cannot be approximated
better than Ω(log logn) unless NP ⊆ DTIME(nlog log log n).

The buy-at-bulk k-Steiner tree problem generalizes the classic Steiner tree, k-
MST, and more generally k-Steiner tree problems when the rent cost is zero. See
for example [16]. As we mentioned above, the buy-at-bulk Steiner tree problem
first was studied by Meyerson et al. [27], but we are not aware of any result on
buy-at-bulk k-MST or buy-at-bulk k-Steiner tree.

The shallow-light k−Steiner tree problem generalizes the Shallow-light Steiner
problem [26] which is the special case of k = |T |. It generalizes the k-MST
problem [29, 4, 7, 15, 16] which is the case D =∞ and also the bounded diameter
spanning tree problem [23] which is the zero costs case.

Approximating Buy-at-Bulk and Shallow-Light k-Steiner Trees 155

Even the k = |T | special case is NP-hard and also NP-hard to approximate
within a factor better than c logn for some universal constant c [5]. For k = |T |
an (O(log n), O(log n))-approximation is given in [26]. The constraint that only
k < n nodes have to be picked seems to make this problem harder to approximate
than the usual shallow-light Steiner tree problem, namely, the k = |T | case.

1.2 Our Results

The approximation for both problems use as a subroutine an approximation for
a relaxed version of Shallow-light k-Steiner tree in which the algorithm finds a
k
8 -Steiner tree with diameter at most O(D logn) and b-cost at most O(B log3 n).

Theorem 1. Given an instance of the shallow-light k-Steiner tree problem with
diameter bound D we can obtain a k

8 -Steiner tree with diameter at most O(log n ·
D) and cost at most O(log3 n · OPT), where OPT is the cost of an optimum
shallow-light k-Steiner tree with diameter bound D.

Corollary 1. We can obtain an (O(log2 n), O(log4 n)) bicriteria approximation
for shallow-light k-Steiner tree.

For general k, no approximation for the problem was known previous to our
result. Theorem 1 is used to prove:

Theorem 2. There is a polynomial time O(log4 n)-approximation for the buy-
at-bulk k-Steiner tree problem.

No approximation was known for general k prior to this paper.
It is worth mentioning that Theorem 1 is one of the main tools we use to

obtain the first polylogarithmic approximation algorithm for the non-uniform
multicommodity buy-at-bulk problem [11].

The technique used to approximate the shallow-light k−Steiner tree problem
can be described as follows. Let a terminal be called a true terminal if it belongs
to the optimum solution. Our procedure keeps discarding terminals from T by
changing their status to “regular vertices”. The crucial point is that we prove
that even though “many” terminals are discarded, only “few” real terminals are
deleted.

2 The Algorithms

2.1 Reducing the Buy-at-Bulk k-Steiner Tree Problem to a
Shallow-Light k-Steiner Tree Problem

In this section, we show how to prove Theorem 2 and Corollary 1 using Theorem
1. A bicriteria network design problem [26] (A,B, S) is defined by identifying
two objective functions, A and B, and specifying a membership requirement
in a class of subgraphs S. Typically, there is a budget constraint on the first

156 M.T. Hajiaghayi, G. Kortsarz, and M.R. Salavatipour

objective and we seek to minimize the second objective function. This way, the
(diameter, cost, k-Steiner tree) problem is naturally defined as follows: we are
given an undirected graph G(V,E) with terminal set T , an integer k ≤ |T |,
diameter bound D, and two cost functions b : E −→ R+ and r : E −→ R+ on
the edges. Our goal is to find a minimum b-cost (i.e. minimizing the cost under
the b function) Steiner tree with k terminals in G such that the diameter of the
tree under the r-cost is at most D. We can assume that a particular terminal
s ∈ T , called the root belongs to the solution (we can simply guess this node s).
Therefore, we are solving the rooted shallow-light k-Steiner tree. We may relax
the condition of requiring at least k terminals being in the solution to at least
σk terminals be in the solution for some constant σ ≤ 1. We call this variation
the relaxed shallow-light k-Steiner tree.

We say an algorithm is an (α, β)-approximation for an (A,B, S)-bicriteria
problem if in the solution produced the first objective (A) value is within factor
at most α of the budget and the second objective (B) value is at most β times
the minimum for any solution that is within the budget on A. Marathe et al.
[26] gave an (O(log n), O(log n))-approximation for the (diameter, cost, Spanning
tree) problem. In Theorem 1 we show how to obtain an (O(log n), O(log3 n))-
approximation for the relaxed shallow-light k-Steiner tree where the solution has
at least k

8 terminals.
First consider the buy-at-bulk k-Steiner tree problem. Note that by doing a

binary search (or geometric-mean binary search):

Observation: We can assume we know the value of an optimum solution. Let
OPT denote this value.

Lemma 1. If there is an (α, β)-approximation for the relaxed shallow-light rooted
k-Steiner tree problem such that the solution has at least k

8 terminals, then we have
an O((α + β) log k)-approximation for (rooted) buy-at-bulk k-Steiner tree problem

Proof. Consider the input graph G(V,E) for the buy-at-bulk k-Steiner tree prob-
lem. By observation mentioned above we can assume we know OPT (the value
of optimum solution). We mark every vertex with r-distance larger than OPT
to s as “to be ignored”. Clearly these vertices cannot be part of any optimal
solution. Then, while k > 0 we do the following steps:

1. Run the (α, β)-approximation algorithm A for the relaxed shallow-light k
2 -

Steiner tree with diameter (under r-cost) bounded by D = 4OPT
k .

2. Mark all the terminals (except the root) of the solution of A as Steiner
nodes.

3. Decrease k by the number of new terminals found in this stage.

Since the root belongs to all the (sub)trees found in each iteration of the while
loop, at the end we will get a connected graph (tree) which spans k terminals.
Now we upper bound the cost of the solution.

At some iteration let k′ be the number of yet unspanned terminals. Consider
an optimal solution H∗ for buy-at-bulk k′-Steiner tree instance and iteratively
delete every leaf of H∗ with r-distance to s (the root) larger than 2 OPT

k′ . We

Approximating Buy-at-Bulk and Shallow-Light k-Steiner Trees 157

delete at most k′

2 terminals. Otherwise, more than k′/2 terminals have rent
distance at least 2 OPT/k′ to the root s and this is a contradiction as the total
cost is more than OPT. So we are left with a tree rooted at s containing at least
k′

2 terminals. An (α, β)-approximation for the relaxed shallow-light k′

2 -Steiner
tree finds a tree containing s with at least k′

16 new terminals with r-distance to
S is at most β · 2OPT

k′ and cost bounded by α ·OPT. Given the bound from the
root s, this adds at most k′ ·β · 2OPT

k′ = 2β ·OPT to the rent cost of the solution.
The buy cost added is at most α ·OPT. So we have covered a constant fraction
of the remaining terminals at cost at most α ·OPT and the diameter increase is
at most 2β · OPT. By a standard set-cover arguments (see [24]), after at most
O(log k) iterations, we have a tree with k terminals whose total cost is at most
O((α + β)OPT log k). �

Proof of Theorem 2: Follows from Lemma 1 and Theorem 1. �

An argument similar to Lemma 1 (by iteratively using the algorithm for
Theorem 1) proves Corollary 1.

2.2 Algorithm for Relaxed Shallow-Light k-Steiner Tree

In this subsection we prove Theorem 1. Our algorithm is inspired by the algo-
rithms of [26] (for shallow-light Steiner tree) and [4] for the (standard) k-MST
problem. Recall that the input consists of a graph G(V,E) with two edge costs
b and r, D is a bound on the diameter under the r cost, T ⊆ V is the set of
terminals including the root s, k is the number of terminals we wish to cover,
and ε is an error parameter.

First we transform the input graph G into another graph, Gc, which we call
the completion of G by doing the following. For every pair of vertices u, v ∈ V
we find a (1 + ε)-approximate minimum cost u, v-path under b-cost with length
(under r-cost) at most 2D. Let p∗(u, v) denote this cost. For this, we use the
FPTAS algorithm of Hassin [22] which runs in time O(|E|(n2

ε log n
ε)). We add a

new edge between u and v with b-cost equal to the cost of p∗(u, v) and r-cost
equal to the length of p∗(u, v). Later on, in any solution of Gc that uses this
new edge, we can replace it with path p∗(u, v) in G at no extra cost and without
increasing the length (diameter). Therefore:

Lemma 2. If we have a bicriteria solution of cost X and diameter Y in Gc

then we can find (in polynomial time) a solution of cost at most X and diameter
at most Y in G.

By this lemma, and since G ⊆ Gc, it is enough to work with graph Gc. Note that
we can delete every vertex which is not connected to s by a new edge (because
the r-distance of it to s is larger than D). So all the vertices are at distance at
most D from s and so are at distance at most 2D from each other in G. Thus
we can assume Gc is a complete (multi)graph.

Before presenting the algorithm, we should note that the “rooted” and “un-
rooted” versions of this problem are reducible to each other at the cost of a

158 M.T. Hajiaghayi, G. Kortsarz, and M.R. Salavatipour

constant factor loss in the approximation ratio. Clearly, if we can solve the
rooted version we can also solve the un-rooted version by simply trying all the
terminals as the root and choose the smallest solution. On the other hand, if we
have an algorithm for the un-rooted version we can do the following. Assume that
OPT is the cost of the optimum solution. Delete every node v ∈ Gc for which
the cost of edge sv is larger than (1 + ε)OPT. Solve the un-rooted problem and
if the solution does not contain the root v then add the root. This is done by
arbitrarily adding an edge from v to some node in T . This will increase the cost
by at most (1 + ε)OPT and the diameter by at most 2D. Hence, it is enough to
present an approximation algorithm for “un-rooted” shallow-light k-Steiner tree.

We focus on graph Gc and give an algorithm which finds a shallow-light k
8 -

Steiner tree in it that has cost at most O(log3 n · OPT) and diameter at most
O(D logn). The algorithm runs in rounds and in every round we may have
several iterations (of some loop). At every round we start with every terminal as
a singleton connected component. Initially, every terminal is the center of its own
component. In every iteration of a round we perform a test. Each test has one
of two outcomes: “success” or “failure”. If the test is a successes, we merge two
connected components and go to the next iteration. A single failure in a round
causes the entire round to be a failure (so we end that round). After a failed
round some of the terminals are deleted, we exit the loop, and start the next
round of algorithm with a new (smaller) set of terminals. As stated above we
initialize again each terminal to be a component of size 1, ignoring any mergers
that were done in the last failed round.

Our goal is to find a connected component (tree) containing at least k/8 ter-
minals. We say that a round is failure free if it has no failures at all. The number
of connected components is reduced by 1 by every test that ends with successes.
Thus, a failure free round will eventually end with a connected component with
at least k

8 terminals. Clearly, either we fail at every round, in which case the
number of terminals turns eventually empty, or we will eventually have a failure
free round. We later show that the first case above cannot happen.

Assume that in round i of the algorithm the number of terminals is ti, where
t1 = t = |T |. At each iteration of the loop in each round i, we divide the con-
nected components into O(log ti) clusters, where cluster j contains the connected
components whose number of terminals is between ti/2j+1 and ti/2j, for j ≥ 3.

Definition 1. In every iteration of round i (for every i ≥ 1), a cluster is called
light if the total number of terminals in the union of the connected components
in that cluster is at most ti

2 log ti
. Otherwise, it is called heavy.

Lemma 3. In every iteration of round i (for every i ≥ 1) there are at least ti

2
terminals in heavy clusters.

Proof. There are at most log ti light clusters as there are at most log ti clusters
in total, and therefore they have a total of at most ti

2 terminals. The rest of the
terminals must belong to heavy clusters. �
In any round i and any iteration of this round, we compute the light and heavy
clusters. Assuming that there are at least k

2 terminals remaining in Gc, we show

Approximating Buy-at-Bulk and Shallow-Light k-Steiner Trees 159

(in the Main Lemma) that there is a heavy cluster with at least two connected
components. Then we pick such a heavy cluster arbitrarily, say cluster Cj . As-
sume that all the components of Cj have between p and 2p terminals where
p = ti/2j+1. For every two components in Cj we consider the edge connecting
their centers (recall that since we are in Gc this edge may be obtained from the
approximate minimum cost path with length at most 2D between those vertices
in G). Two connected components ca and cb in Cj are called reachable if the cost
of the edge connecting their centers is at most 16 log2 t ·OPT ·p/k. We test to see
if there is a pair of reachable connected components in Cj . If there is such a pair
of components, then we merge the components by adding the edge between their
centers and then charge every node in the two components by 8 log2 t ·OPT /k.
Since there are at least 2p vertices in ca and cb combined, the total charge is
enough to pay for the cost of connecting the two components. We make one of
the centers of ca or cb (arbitrarily) to be the new center of the new (merged)
component and proceed to the next iteration of this round.

Otherwise, if our test fails because there are no two reachable centers in Cj

(i.e. the cost of every edge between the centers of components in Cj is larger than
16 log2 t ·OPT ·p/k) then we delete all the centers of the connected components
of Cj (which are all terminals). Assuming that Cj has xj components, we set
ti+1 = ti − xj , and then exit the loop and start round i + 1. Below is the formal
description of the algorithm.

1. Set the counter i (for round) to 1 and let t1 = t = |T |.
2. Every terminal is a connected component by itself and is the center of that

component.
3. Repeat until there is a connected component with k

8 terminals:
(a) Compute light and heavy clusters.
(b) Throw away (ignore) every heavy cluster which has only one connected

component and pick an arbitrary heavy cluster, say Cj , which has at
least two components.

(c) If there are two components ca and cb in Cj such that the cost of the
edge connecting their centers is at most 16 log2 t · OPT /k then we do
the following merger:
/* The test succeeded */
i. Merge the components by adding that edge.
ii. Charge every node in the two components by 8 log2 t ·OPT /k.
iii. Make one of the two centers the center of the new (merged) compo-

nent and goto step (a).
(d) Otherwise, /* The test failed */

i. Delete all the centers of components of Cj and reset the charges of
all nodes to 0.

ii. Set ti+1 = ti − xj where xj is the number of components of Cj .
iii. Set i = i + 1, exit this loop and goto Step 2.

Lemma 4. In any round i ≥ 1, every component participates in at most
O(log n) merger operations.

160 M.T. Hajiaghayi, G. Kortsarz, and M.R. Salavatipour

Proof. Each time a component participates in a merger the number of terminals
of the components it belongs to is multiplied by at least 3

2 . This follows as the
size of the large component is at most 2p for some integer p and of the smaller
one at least p. Therefore there are at most O(log n) (or more precisely O(log k))
iterations involving that component. �

Lemma 5. In any round i ≥ 1 of algorithm, for every component ca that may
be obtained from σ merge operations, the length (under r-cost) between the center
of ca and any other node in ca is at most 2σD.

Proof. The proof is by induction on σ and noting the fact that whenever we
merge two components the length of the edge we add (between the centers) is
at most 2D. �

Corollary 2. In any round i ≥ 1, every component has diameter at most
O(D logn), always.

Proof. Follows from Lemmas 4 and 5. �

Lemma 6. In any round i ≥ 1, every terminal is charged at most O(log n)
times and the total charge of every terminal is O(log3 n ·OPT /k).

Proof. Recall that every time a terminals is charged, the number of terminals
in its new (merged) cluster grows by at least a 3/2 factor. Thus, each terminal
participates in at most O(log n) mergers before we find a component with k

8
terminals or before the round fails (after which the charges are all reset to zero).
Furthermore, each time a terminal is charged 8 log2 t·OPT /k. So the total charge
of every terminal at any given time is O(log3 n ·OPT /k) �

By this lemma, if the algorithm terminates with a k
8 -Steiner tree then the cost

of the tree is at most O(log3 n · OPT). Also, by Corollary 2 the diameter is at
most O(D logn). Thus we only need to argue that the algorithm does find a k

8 -
Steiner tree and for that we need to show that the algorithm terminates before
the number of terminals goes down below k

8 . Since at every failed round the
number of terminals is reduced, after at most t rounds the number of terminals
becomes zero unless the algorithm terminates earlier with a feasible solution.
Hence, if we show that the the set of terminals can never be smaller than k

2 then
it means that the algorithm terminates before we have fewer than k

2 terminals.
We also need to prove that we can perform step 3(b) of algorithm (i.e. find a
heavy cluster with at least two connected components). These are proved in our
main lemma, below. For that, we use the following pairing lemma:

Lemma 7. [26] Let T be an arbitrary tree and let v1, v2, . . . , v2q be an even
number of vertices in T . There exists a pairing of the vi (into q pairs) so that
the unique paths joining the respective pairs are edge-disjoint.

In the following lemma, we claim some properties on terminals not previously
discarded by some failed round. We fix some optimal tree OPT and use that

Approximating Buy-at-Bulk and Shallow-Light k-Steiner Trees 161

tree for proving these claims. We use OPT to refer to both the optimal solution
and its cost. As some of the terminals in OPT may have been deleted by the
failed rounds, the original OPT as defined over G does not exist any longer (the
removal of deleted terminals may have destroyed that tree). Nevertheless, we
can still use this original OPT to prove properties on Gc.

Lemma 8 (Main Lemma). At the beginning of any round i ≥ 1, if the number
of terminals is ti ≥ k

2 then:

1. There is at least one heavy cluster with at least two connected components
(so we can perform step 3(b) of the algorithm).

2. The number of terminals in round i + 1 (if there is such a round) is at least
k/2.

Proof. 1) By Lemma 3 there are at least ti

2 ≥
k
4 terminals in heavy clusters.

Throw away every cluster with only one connected component. These compo-
nents have a total of at most k

8 + k
16 + . . . < k

4 terminals. Therefore, there is at
least one heavy cluster with at least two components.

2) We prove that the number of remaining terminals is always at least k
2 . Let

ki be the number of terminals of OPT that are in Gc at the beginning of round i;
so k1 = k. Note that always ki ≤ ti. Suppose at some iteration of round i and for
some heavy cluster Cj chosen by the algorithm, no pair of centers are reachable
to each other; so we have to delete all the centers of Cj from Gc. Assume that
all the components of Cj have size between pi and 2pi.

Proposition 1. The number of centers of components of Cj that belong to OPT
is at most k/(8pi log2 t).

Proof. Otherwise, using the pairing lemma (Lemma 7), we can pair those centers
in OPT such that the paths connecting the pairs in OPT are all edge-disjoint.
By averaging, there is at least one path with cost at most 16pi log2 t · OPT/k
contradicting our assumption (because if there was such a path we would have
merged the two components). �

Therefore, by Proposition 1, the number of terminals of OPT in Gc goes down
by a factor of at most 1− 1/(8pi log2 t). On the other hand, since Cj is a heavy
cluster and we have at most 2pi nodes in every component of Cj , there are at least
ti/(2 log ti)/(2pi) = ti/(4pi log ti) components in Cj . This is also a lower bound
on the number of centers (terminals) that are deleted in round i. Therefore, the
number of terminals in Gc goes down by a factor of at least 1 − 1/(4pi log ti).
Hence:

ki

(
1− 1

8pi log2 t

)
≤ ki+1 ≤ ti+1 ≤ ti

(
1− 1

4pi log ti

)
≤ ti

(
1− 1

4pi log t

)
We now use the following two inequalities:

If x ≤ 1/2, then 1− x ≥ e−2x (2)

162 M.T. Hajiaghayi, G. Kortsarz, and M.R. Salavatipour

and
1− x ≤ e−x (3)

Using Inequality (2) and since 1/(8pi log2 t) < 1/2, it follows that 1−1/(8pi log2

t) ≥ e−1/(4pi log2 t). On the other hand from Inequality (3): (1 − 1
4pi log t) ≤

e−1/(4pi log t). Thus

k · exp
(
−

i∑
�=1

1
4p� log2 t

)
≤ k

i∏
�=1

(
1− 1

8p� log2 t

)
≤ ki+1 ≤ ti+1

≤ t
i∏

�=1

(
1− 1

4p� log t

)
≤ t · exp

(
−

i∑
�=1

1
4p� log t

)
.

Note that both sequences ti and ki are decreasing but at different rates and ti
is lower bounded by ki.

Note that
∑i

�=1
1

4p�
≤ log t · ln t, because for this value ti+1 ≤ t · e− ln t = 1.

Plugging this upper bound on
∑i

�=1
1

4p�
in the ki+1 lower bound we get that

ki+1 ≥ k ln t/ log t ≥ k/2. Therefore, kj is always at least k/2 and so tj ≥ kj ≥
k/2. �

Acknowledgments

The first author would like to thank Kamal Jain and Kunal Talwar for some
initial discussions on the buy-at-bulk k-Steiner tree problem.

References

1. M. Andrews, Hardness of Buy-at-Bulk Network Design, In Proceedings of FOCS
2004, 115-124.

2. M. Andrews and L. Zhang, Approximation algorithms for access network design,
Algorithmica 34(2):197-215, 2002.

3. B. Awerbuch and Y. Azar, Buy-at-bulk network design, In Proceedings of FOCS
97, pp 542-547.

4. B. Awerbuch, Y. Azar, A. Blum, and S. Vempala, New approximation guaran-
tees for minimum-weight k-trees and prize-collecting salesmen, SIAM Journal on
Computing 28(1):254-262, 1999.

5. J. Bar-Ilan, G. Kortsarz, and D. Peleg, Generalized submodular cover problems and
applications, Theoretical Computer Science 250:179-200, 2001.

6. Y. Bartal, On approximating arbitrary matrices by tree metrics, In Proceedings of
STOC 1998, pp 161-168.

7. A. Blum, R. Ravi, and S. Vempala, A constant-factor approximation algorithm for
the k MST problem (extended abstract), In Proceedings of STOC 96, pp 442-448.

8. M. Charikar and A. Karagiozova, On non-uniform multicommodity buy-at-bulk net-
work design, In Proceedings of STOC 2005, pp 176–182.

9. C. Chekuri,S. Khanna, and J. Naor, A deterministic algorithm for the cost-distance
problem, In Proceedings of SODA 2001, 232-233.

Approximating Buy-at-Bulk and Shallow-Light k-Steiner Trees 163

10. J. Chuzhoy, A. Gupta,J. Naor, and A. Sinha, On the approximability of some
network design problems, In Proceedings of SODA 2005, pp 943-951.

11. C. Chekuri, M. Hajiaghayi, G. Kortsarz, and M. Salavatipour, Approximation Algo-
rithms for Non-Uniform Buy-at-Bulk Network Design Problems, submitted, 2006.

12. J. Cheriyan, F.S. Salman, R. Ravi, and S. Subramanian, Buy-at-bulk network de-
sign: Approximating the single-sink edge installation problem, SIAM Journal on
Optimization, 11(3):595–610, 2000.

13. J. Fakcharoenphol, S. Rao, and K.Talwar, A tight bound on approximating arbitrary
metrics by tree metrics, Journal of Computer and System Sciences 69(3):485-497,
2004.

14. U. Feige, G. Kortsarz, and D. Peleg, The dense k-subgraph problem, Algorithmica
29(3):410-421, 2001.

15. N. Garg, A 3-Approximation for the minimum tree spanning k vertices, In Pro-
ceedings FOCS 1996, pp 302-309.

16. N. Garg, Saving an epsilon: a 2-approximation for the k-MST problem in graphs,
In Proceedings of STOC 2005, pp 396-402.

17. S. Guha, A. Meyerson, K Munagala, A constant factor approximation for the single
sink edge installation problems, In Proceedings of STOC 2001, pp 383-388.

18. S. Guha and A. Meyerson and K. Munagala, Hierarchical placement and network
design problems, In Proceedings of FOCS 2001, pp 603-612.

19. A. Gupta, A. Kumar, M. Pal, and T. Roughgarden, Approximation Via Cost-
Sharing: A Simple Approximation Algorithm for the Multicommodity Rent-or-Buy
Problem, In Proceedings of FOCS 2003, page 606-617.

20. A. Gupta, A. Kumar, and T. Roughgarden, Simpler and better approximation al-
gorithms for network design, In Proceedings STOC 2003, pp 365-372.

21. M.T. Hajiaghayi and K. Jain, The Prize-Collecting Generalized Steiner Tree Prob-
lem via a new approach of Primal-Dual Schema, In Proceedings of SODA 2006, pp
631 - 640.

22. R. Hassin, Approximation schemes for the restricted shortest path problem, Math-
ematics of Operations Research 17(1):36-42, 1992.

23. R. Hassin and A. Levin, Minimum Restricted Diameter Spanning trees, In Pro-
ceedings of APPROX 2002, pp 175-184.

24. D.S. Johnson, Approximation algorithms for combinatorial problems, Journal of
Computer and System Sciences 9:256-278, 1974.

25. A. Kumar, A. Gupta, and T. Roughgarden, A Constant-Factor Approximation
Algorithm for the Multicommodity Rent-or-Buy Problem, In Proceedings of FOCS
2002, pages 333-342.

26. M. Marathe, R. Ravi, R. Sundaram, S.S. Ravi, D. Rosenkrantz, and H. Hunt,
Bicriteria network design problems, J. Algorithms 28(1):141-171, 1998.

27. A. Meyerson, K. Munagala, and S. Plotkin, Cost-Distance: Two Metric Network
Design, In Proceedings of FOCS 2000, pp 383–388.

28. A. Moss and Y. Rabani, Approximation algorithms for constrained node weighted
steiner tree problems, In Proceedings of STOC 2001, pp 373-382.

29. R. Ravi, R. Sundaram, M.V. Marathe, D.J. Rosenkrantz, and S. Ravi, Spanning
trees short or small, SIAM Journal on Discrete Mathematics 9(2):178-200, 1996.

Improved Algorithms for Data Migration

Samir Khuller1,�, Yoo-Ah Kim2, and Azarakhsh Malekian1,�

1 Department of Computer Science, University of Maryland, College Park, MD 20742
{samir, malekian}@cs.umd.edu

2 Department of Computer Science and Engineering, University of Connecticut,
Storrs, CT 06269

ykim@engr.uconn.edu

Abstract. Our work is motivated by the need to manage data on a col-
lection of storage devices to handle dynamically changing demand. As
demand for data changes, the system needs to automatically respond to
changes in demand for different data items. The problem of computing
a migration plan among the storage devices is called the data migration
problem. This problem was shown to be NP -hard, and an approxima-
tion algorithm achieving an approximation factor of 9.5 was presented
for the half-duplex communication model in [Khuller, Kim and Wan: Al-
gorithms for Data Migration with Cloning, SIAM J. on Computing, Vol.
33(2):448–461 (2004)]. In this paper we develop an improved approxima-
tion algorithm that gives a bound of 6.5 + o(1) using various new ideas.
In addition, we develop better algorithms using external disks and get
an approximation factor of 4.5. We also consider the full duplex com-
munication model and develop an improved bound of 4 + o(1) for this
model, with no external disks.

1 Introduction

To handle high demand, especially for multimedia data, a common approach is
to replicate data objects within the storage system. Typically, a large storage
server consists of several disks connected using a dedicated network, called a
Storage Area Network. Disks typically have constraints on storage as well as
the number of clients that can access data from a single disk simultaneously.
These systems are getting increasing attention since TV channels are moving to
systems where TV programs will be available for users to watch with full video
functionality (pause, fast forward, rewind etc.). Such programs will require large
amounts of storage, in addition to bandwidth capacity to handle high demand.

Approximation algorithms have been developed [16, 17, 7, 11] to map known
demand for data to a specific data layout pattern to maximize utilization, where
the utilization is the total number of clients that can be assigned to a disk that
contains the data they want. In the layout, we compute not only how many copies
of each item we need, but also a layout pattern that specifies the precise subset
of items on each disk. The problem is NP -hard, but there are polynomial-time

� Research supported by NSF Award CCF-0430650.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 164–175, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improved Algorithms for Data Migration 165

approximation schemes [7, 16, 17, 11]. Given the relative demand for data, the
algorithm computes an almost optimal layout. Note that this problem is slightly
different from the data placement problem considered in [9, 15, 3] since all the
disks are in the same location, it does not matter which disk a client is assigned
to. Even in this special case, the problem is NP -hard [7].

Over time as the demand for data changes, the system needs to create new
data layouts. The problem we are interested in is the problem of computing a
data migration plan for the set of disks to convert an initial layout to a target
layout. We assume that data objects have the same size (these could be data
blocks, or files) and that it takes the same amount of time to migrate any data
item from one disk to another disk. In this work we consider two models. In the
first model (half-duplex) the crucial constraint is that each disk can participate
in the transfer of only one item – either as a sender or as a receiver. In other
words, the communication pattern in each round forms a matching. Our goal is to
find a migration schedule to minimize the time taken to complete the migration
(makespan). To handle high demand for popular objects, new copies will have
to be dynamically created and stored on different disks. All previous work on
this problem deals with the half-duplex model. We also consider the full-duplex
model, where each disk can act as a sender and a receiver in each round for a
single item. Previously we did not consider this natural extension of the half-
duplex model since we did not completely understand how to utilize its power
to prove interesting approximation guarantees.

The formal description of the data migration problem is as follows: data item
i resides in a specified (source) subset Si of disks, and needs to be moved to a
(destination) subset Di. In other words, each data item that initially belongs
to a subset of disks, needs to be moved to another subset of disks. (We might
need to create new copies of this data item and store it on an additional set
of disks.) See Figure 1 for an example. If each disk had exactly one data item,
and needs to copy this data item to every other disk, then it is exactly the
problem of gossiping. The data migration problem in this form was first studied
by Khuller, Kim and Wan [4], and it was shown to be NP-hard. In addition, a
polynomial-time 9.5-approximation algorithm was developed for the half-duplex
communication model.

A slightly different formulation was considered by Hall et al. [10] in which a
particular transfer graph was specified. While they can solve the problem very
well, this approach is limited in the sense that it does not allow (a) cloning (cre-
ation of several new copies) and (b) does not allow optimization over the space
of transfer graphs. In [4] it was shown that a more general problem formula-
tion is the one with source and destination subsets specified for each data item.
However, the main focus in [10] is to do the transfers without violating space
constraints. Another formulation has been considered recently where one can
optimize over the space of possible target layouts [12]. The resulting problems
are also NP -hard. However, no significant progress on developing approxima-
tion algorithms was made on this problem. A simple flow based heuristic was

166 S. Khuller, Y.-A. Kim, and A. Malekian

presented for the problem, and was demonstrated to be effective in finding good
target layouts.

Job migration has also been considered in the scheduling context recently as
well [2], where a fixed number of jobs can be migrated to reduce the makespan
by as much as possible. There is a lot of work on data migration for minimizing
completion time for a fixed transfer graph as well (see [6, 14] for references).

2 4 5 1 2 5 1 3 5

1 3 4 1 3 5 1 2 4

Target Layout

Initial Layout

disk 1 disk 2 disk 3

S1={2,3} D1={1}

S2={1,2} D2={3}

S3={3} D3={1,2}

S4={1} D4={3}

S5={1,2,3} D5={}

Fig. 1. An initial and target layout, and their corresponding Si’s and Di’s. For example,
disk 1 initially has items {2, 4, 5} and in the target layout has items {1, 3, 4}.

1.1 Communication Model

Different communication models can be considered based on how the disks are
connected. In this paper we consider two models. The first model is the same
model as in the work by Hall et al. [10, 1, 4, 13] where the disks may commu-
nicate on any matching; in other words, the underlying communication graph
allows for communication between any pair of devices via a matching (a switched
storage network with unbounded backplane bandwidth). Moreover, to model the
limited switching capacity of the network connecting the disks, one could allow
for choosing any matching of bounded size as the set of transfers that can be
done in each round. We call this the bounded-size matching model. It was shown
in [4] that an algorithm for the bounded matching model can be obtained by
a simple simulation of the algorithm for the unbounded matching model with
excellent performance guarantees.

In addition we consider the full duplex model where each disk may act as a
sender and a receiver for an item in each round. Note that we do not require the
communication pattern to be a matching any more. For example, we may have
cycles, with disk 1 sending an item to disk 2, disk 2 to disk 3 and disk 3 to disk
1. In earlier work we did not discuss this model as we were unable to utilize the
power of this model to prove non-trivial approximation guarantees. Note that
this does not correspond directly to edge coloring anymore.

1.2 Our Results

Our approach is based on the approach initially developed in [4]. Using various
new ideas lets us reduce the approximation factor to 6.5+o(1). The main techni-
cal difficulty is simply that of “putting it all together” and making the analysis
work.

Improved Algorithms for Data Migration 167

In addition we show two more results. If we are allowed to use “external disks”
(called bypass disks in [10]), we can improve the approximation guarantee further
to 3 + 1

2 max(3, γ). This can be achieved by using at most �Δ
γ � external disks,

where Δ is the number of items that need to be migrated. We assume that each
external disk can hold γ items. This gives an approximation factor of 4.5 by
setting γ = 3.

Finally, we also consider the full-duplex model where each disk can be the
source or destination of a transfer in each round. In this model we show that an
approximation guarantee of 4 + o(1) can be achieved. Earlier, we did not focus
on this model specifically as we were unable to utilize the power of this model
in any non-trivial manner.

The algorithm developed in [4] has been implemented, and we performed an
extensive set of experiments comparing its performance with the performance of
other heuristics [8]. Even though the worst case approximation factor is 9.5, the
algorithm performed very well in practice, giving approximation ratios within
twice the optimal solution in most cases.

2 The Data Migration Algorithm

Our algorithms make use of known results on edge coloring of multigraphs.
Given a graph G with max degree ΔG and multiplicity μ the following results
are known (see Bondy-Murty [5] for example). Let χ′ be the edge chromatic
number of G. Note that when G is bipartite, χ′ = ΔG and such an edge coloring
can be obtained in polynomial time [5].

Theorem 1. (Vizing [20]) If G has no self-loops then χ′ ≤ ΔG + μ.

Theorem 2. (Shannon [18]) If G has no self-loops then χ′ ≤ 	 3
2ΔG
.

As in [4] let βj be |{i|j ∈ Di}|, i.e., the number of different sets Di, to which a
disk j belongs. We then define β as maxj=1...N βj . In other words, β is an upper
bound on the number of items a disk may need. Note that β is a lower bound
on the optimal number of rounds, since the disk j that attains the maximum,
needs at least β rounds to receive all the items i such that j ∈ Di, since it can
receive at most one item in each round. Moreover, we may assume that Di = ∅
and Di ∩ Si = ∅. This is because we can define the destination set Di as the set
of disks that need item i and do not currently have it. Before performing data
migrations, we first choose several representative sets from Si and Di.

2.1 Selecting Representative Sets

1. For an item i decide a primary source si ∈ Si so that α = maxj=1,...,N (|{i|j =
si}|+ βj) is minimized. In other words, α is the maximum number of items
for which a disk may be a primary source (si) or destination. Note that α is
also a lower bound on the optimal number of rounds. This step is the same
as in [4].

168 S. Khuller, Y.-A. Kim, and A. Malekian

2. Find Ri(⊆ Di) for each item i.
(a) We divide set Di into � |Di|

q � subgroups of size at most q (q is a parameter

that will be specified later.) That is, we create 	 |Di|
q
 subgroups of size q

and (if |Di| is not a multiple of q) one subgroup of size |Di| − q · 	 |Di|
q
.

(b) We find Ri ⊆ Di and assign subgroups to disks in Ri so that for each
disk in Ri the total size of subgroups assigned to the disk is at most
β + q. (We describe how to find Ri and the assignment, later in detail.)
Let ri be the disk in Ri to which the small subgroup (a subgroup with
size strictly less than q) is assigned. Note that if |Di| is a multiple of q,
there is no disk ri. We define Ri to be Ri \ ri.

3. For each item, we select G′
i ⊆ Di as follows.

(a) Compute Gi ⊆ Di such that |Gi| = 	 |Di|
β
 and they are mutually disjoint.

This step is the same as in [4].
(b) For each item i for which Gi = ∅ but Ri = ∅, we select a disk gi. Let

G′
i = Gi if Gi is not empty and G′

i = {gi} otherwise.

We now describe the details of Step 2 and Step 3.

Step 2: Select Ri for each item i. Let Dik (k = 1, . . . , � |Di|
q �) be k-th subgroup

of Di. The size of Dik is q for k = 1, . . . , 	 |Di|
q
 and Dik, k = 	 |Di|

q
+ 1 consists
of the remaining |Di| − q · 	|Di|/q
 disks (the last set is possibly empty). We
make use of the following theorem by Shmoys and Tardos to choose Ri.

Theorem 3. (Shmoys-Tardos [19]) We are given a collection of jobs J , each
of which is to be assigned to exactly one machine among the set M; if job j ∈ J
is assigned to machine i ∈ M, then it requires pij units of processing time, and
incurs a cost cij. Suppose that there exists a fractional solution (that is, a job
can be assigned fractionally to machines) with makespan P and total cost C.
Then in polynomial time we can find a schedule with makespan P + maxpij and
total cost C.

We can think of each subgroup Dik as a job and each disk as a machine. If
disk j belongs to Di, then we can assign job Dik to disk j with zero cost. The
processing time is the size of Dik, which is at most q. If disk j does not belongs
to Di, then the cost to assign Dik to j is ∞ (disk j cannot be in Ri).

Lemma 1. There exists a fractional assignment such that the max load of each
disk is at most β.

Proof. We can assign 1
|Di| fraction of subgroup Dik to each disk j ∈ Di. It is

easy to check that every subgroup Dik is completely assigned. The load on disk
j is given by ∑

i:j∈Di

∑
k

|Dik|
|Di|

=
∑

i:j∈Di

1
|Di|

∑
k

|Dik| =
∑

i:j∈Di

1 ≤ β

Improved Algorithms for Data Migration 169

Lemma 2. There is a way to choose Ri sets for each i = 1 . . .Δ and assign sub-
groups Dik such that for each disk in Ri the total size of subgroups Dik assigned
to the disk is at most β + q.

Proof. By Theorem 3, we can convert the fractional solution obtained in Lemma
1 to a solution such that each subgroup is completely assigned to one disk, and
the maximum load on a disk is at most β + q as maximum size of Dik is q.

Let ri be the disk in Ri that is assigned the small subgroup (a subgroup with
size strictly less than q). Note that if |Di| is a multiple of q, there is no disk ri.
We define Ri to be Ri \ri. We will need the following fact later in the algorithm.

Fact. For each disk j, at most β/q + 1 different large subgroups Dik (of size
exactly q) can be assigned to the disk j.

Step 3: Select G′
i ⊆ Di. We can find disjoint sets Gi ⊆ Di using the same

algorithm as in [4]. To deal with the remaining items i for which Gi = ∅ but
Ri = ∅, we find a disk gi. Note that if |Gi| = 0 then |Di| < β, and therefore,
|Ri| < β/q. We define G′

i to be Gi if Gi = ∅ and G′
i = gi otherwise.

Lemma 3. For each item i for which Gi = ∅ but Ri = ∅, we can find gi so that
for a disk j,

∑
i:j=gi

|Ri| ≤ 2β/q + 1.

Proof. We reduce the problem to the following scheduling problem. In this prob-
lem, each disk acts like a machine. For each item such that |Gi| = 0 we create
a job of size |Ri|. The cost of assigning job i to disk j is 1 iff j ∈ Ri, otherwise
it is infinite. Note that there is a fractional assignment such that the load to
each disk is at most β/q+1. (Assign each job fractionally (1

|Ri|) to each machine

(disk) in its Ri set. The load due to this job on the machine (disk) is 1. Since a
disk is in at most β/q+1 different R̄i sets, its fractional load is at most β/q+1.)
By applying the Shmoys-Tardos [19] scheduling algorithm (see Theorem 3), we
can find an assignment of jobs (items) to machines (disks) such that the total
cost is at most the number of items and the load on each machine (disk) is at
most 2β/q +1. (Note that the size of each job is at most β/q.) Let gi denote the
disk that item i is assigned to.

2.2 Performing Data Migrations

1. Send data item i from Si to G′
i. For this step, we first send items from Si

to a subset of G′
i. We have to carefully choose which disk in Si sends to a

disk in G′
i (see Lemma 4). For sets with |G′

i| > 1, note that those G′
i sets

are disjoint. Therefore, we can double the number of copies in every round
(cloning) once each set receives at least one copy.

2. Send item i from G′
i to Ri\G′

i. We can create a transfer graph with maximum
degree and multiplicity O(β/q).

3. Send item i from si to ri if ri has not received item i. This step can be done
in 3α/2 rounds.

170 S. Khuller, Y.-A. Kim, and A. Malekian

4. We now create a transfer graph from Ri to Di \Ri. We find an edge coloring
of the transfer graph and the number of colors used is an upper bound on
the number of rounds required to ensure that each disk in Di gets item i. In
Lemma 5 we derive an upper bound on the number of required colors.

We describe the details of each step in data migration.

Step 1: Sending item i from Si to G′
i. In the first step, we send data from Si

to G′
i. We claim that this can be done in 2OPT + O(β/q) rounds. We develop

a lowerbound on the optimal solution by solving the following linear program
L(m) for a given m.

L(m) :
∑

j

m∑
k=1

nijkxijk ≥ |G′
i| for all i (1)

0 ≤ xijk ≤ 1 (2)

where nijk = min(2m−k, |G′
i|) if disk j belongs to Si and nijk = 0 otherwise.

Intuitively, xijk indicates that at time k, disk j send item i to some disk in G′
i.

Let M be the minimum m such that L(m) has a feasible solution. Note that M
is a lowerbound for the optimal solution.

Lemma 4. We can perform migrations from Si to G′
i in 2 ·M +O(β/q) rounds.

Proof. Given a fractional solution x∗ to L(M), we can obtain an integral solution
x∗∗ such that for all i,

∑
j

∑
k x∗∗

ijk ≥ 	
∑

j

∑
k x∗

ijk
 (see [4] for details). For each
item i, we arbitrarily select min(

∑
j

∑
k x∗∗

ijk , |G′
i|) disks from G′

i. Let Hi denote
this subset. We create the following transfer graph from Si to Hi: create an edge
from a disk j ∈ Si to a disk Hi if x∗∗

ijk = 1. (Make sure every disk in Hi has an
incoming edge from a disk in Si.) Note the indegree of a disk in this transfer
graph is 2+β/q since a disk can belong to Hi for at most 2+β/q different items
i. (A disk can be gi for at most β/q + 1 different items and also may belong
to one Gi.) The outdegree is M and the multiplicity is 2β/q + 4. Therefore, we
can perform the migration from Si to Hi in M +O(β/q) rounds. For items with
|G′

i| = 1, we are done for this step. For other items, since sets G′
i(= Gi) are

disjoint, we can double the number of copies in each round until the number
of copies becomes |Gi|. After M rounds, the number of copies we can make for
item i is at least

2M |Hi| = 2M min(
∑

j

∑
k

x∗∗
ijk , |Gi|)

≥ min(2M−1 · 2
∑

j

∑
k

x∗∗
ijk, |Gi|)

≥ min(2M−1 · (
∑

j

∑
k

x∗∗
ijk + 1), |Gi|)

Improved Algorithms for Data Migration 171

≥ min(2M−1
∑

j

∑
k

x∗
ijk , |Gi|)

≥ min(
∑

j

∑
k

nijkx
∗
ijk , |Gi|) ≥ |Gi|.

The second inequality comes from the fact that
∑

j

∑
k x∗∗

ijk ≥ 1. Therefore
we can finish the first step in 2 ·M + O(β/q) rounds.

Step 2: Sending item i from G′
i to Ri. We now focus on sending item i from the

disks in G′
i to disks in Ri. We construct a transfer graph to send data from G′

i

to Ri sets so that each disk in Ri \ G′
i receives item i from one disk in G′

i. We
create edges as follows: Add directed edges from disks in Gi to disks in Ri first.
Recall that |Gi| = 	 |Di|

β
 and |Ri| = 	 |Di|
q
. Since Gi sets are disjoint, there is

a transfer graph where each disk in Gi has at most Θ(β/q) outgoing edges. For
items with Gi = ∅, we create edges from gi to all Ri. The outdegree of the disks
can be increased by at most 2β/q + 1. The indegree of a disk in Ri is at most
β/q + 1 and the multiplicity is 2β/q + 2. Therefore, this step can be done in
O(β/q) rounds.

Step 3: Sending item i from si to ri. We create a transfer graph where there
is an edge from si to ri if ri has not received item i in the previous steps. The
indegree of a disk j is at most βj since a disk j is selected as ri only if j ∈ Di

and the outdegree of disk j is at most α − βj . Using Theorem 2, this step can
be done in 3α/2 rounds.

Step 4: Sending item i from Ri to Di \ (Ri

⋃
G′

i). We now create a transfer
graph from Ri to Di \ (Ri

⋃
G′

i) such that there is an edge from disk a ∈ Ri to
disk b if the subgroup that b belongs to is assigned to a in Lemma 2. We find an
edge coloring of the transfer graph. The following lemma gives an upper bound
on the number of rounds required to ensure that each disk in Di gets item i.

Lemma 5. The number of colors we need to color the transfer graph is at most
3β + q.

Proof. First, we compute the maximum indegree and outdegree of each node.
The outdegree of a node is at most β + q due to the way we choose Ri (See
Lemma 2). The indegree of each node is at most β since in the transfer graph we
send items only to the disks in their corresponding destination sets. Multiplicity
of the graph is also at most β since we send data item i from disk j to disk k (or
vice versa) only if both disk j and k belong to Di. By Theorem 1, we see that
the maximum number of colors needed is at most 3β + q.

To wrap up, in the next theorem we show that the total number of rounds in
this algorithm is bounded by 6.5+o(1) times the optimal solution.

172 S. Khuller, Y.-A. Kim, and A. Malekian

Theorem 4. The total number of rounds required for the data migration is at
most 6.5 + o(1) times OPT .

Proof. The total number of rounds we need is 2M+3α/2+3β+O(β/q)+q. Since
M , α, and β are the lowerbounds on the optimal solution, chooosing q = Θ(

√
β)

gives the desired result.

3 External Disks

Until now we assumed that we had N disks, and the source and destination sets
were chosen from this set of disks and only essential transfers are performed. In
other words, if an item i is sent to disk j, then it must be that j ∈ Di (disk j
was in the destination set for item i), hence the total number of transfers done
is the least possible. In several situations, we may have access to idle disks with
available storage that we can make use of as temporary devices to enable a faster
completion of the transfers we are trying to schedule. In addition, we exploit the
fact that by performing a small number of non-essential transfers (this was also
used in [13, 10]), we can further reduce the total number of rounds required. We
show that indeed such techniques can considerably reduce the total number of
rounds required for performing the transfers from Si sets to Di sets.

We assume that each external disk has enough space to pack γ items. If we
are allowed to use �Δ

γ � external disks, the approximation ratio can be improved
to 3 + max(1.5, γ

2). For example, choosing γ = 3 gives a bound of 4.5.
Define β̄ =

∑Δ
i=1

|Di|
N . We can see that 2β̄ is a lowerbound on the optimal

number of rounds since in each round at most 	N
2
 data items can be transferred.

The high level description of the algorithm is as follows:

1. Assign γ items to each external disk. Send items to their assigned external
disks.

2. For each item i, choose disjoint Gi sets of size 	Di

β̄

.

3. Send item i to all disks in the Gi set.
4. Send item i from the Gi set to all the disks in Di. We will also make use of

the copy of item i on the external disk.

We now discuss the steps in detail.
First step can be done in at most max(α, γ) rounds by sending the items from

their primary sources to the external disks (for this step we will compute α as
before, with the change that we can ignore the βj term). The maximum degree
of each disk is at most max(α, γ). Since the graph is bipartite, transferring items
to their assigned external disks can be finished in max(α, γ) rounds.

We can easily choose disjoint set Gi as we are allowed to perform non-essential
transfers (i.e., a disk j can belong to Gi even if j is not in Di.) Hence we can
use a simple greedy method to choose Gi. Broadcasting items inside Gi can be
done in 2M rounds as described in Section 2.

Next step is to send the item to all the remaining disks in the Di sets. We
make a transfer graph as follows: assign to each disk in Gi at most β̄ disks in Di

Improved Algorithms for Data Migration 173

so that each disk in Di is assigned to at most one disk in the Gi set. The number
of unassigned disks from each Di set is at most β̄. Assign all of the remaining
disks from Di to the external disk containing that item. The outdegree of the
internal disks is at most β̄ since each disk belongs to at most one Gi set. The
indegree of each internal disk is at most β since a disk will receive an item only
if it is in its demand set. The multiplicity between two internal disks is at most
2. (Since each disk can belong to at most one Gi set.) So the total degree of each
internal disk is at most β + β̄. Each external disk has at most γ items and the
number of remaining disks for each item is at most β̄. So the outdegree of each
external disk is at most γβ̄ ≤ γ

2OPT .
So the maximum degree of each node in the whole graph is at most

max(β + β̄, γβ̄). and the maximum number of colors needed to color this
graph is 1

2 max(3, γ)OPT + max(2, γ). Adding up all these values the com-
plete transfer can be done in α + 2m′ + 3 + 1

2 max(3, γ)OPT + max(2, γ) ≤
(3 + 1

2 max(3, γ))OPT + 2γ + O(1).

4 Full Duplex Model

In this section we consider the full duplex communication model. In this model,
we assume that each disk can send and receive at most one item in each round.
In the half-duplex model, we assumed that at each round, a disk can either send
or receive one item (but not both at the same time). In the full duplex model
the communication pattern does not have to induce a matching since directed
cycles are allowed (the direction indicates the data transfer direction).

We develop a 4+ o(1) approximation algorithm for this model. In this model,
given a transfer graph G, we find an optimal migration schedule for G as follows:
Construct a bipartite graph by putting one copy of each disk in each partition.
We call the copy of vertex u in the first partition uA, and in the other partition
uB. We add an edge from uA to vB in the bipartite graph if and only if there
is a directed edge in the transfer graph from u to v. The bipartite graph can be
colored optimally in polynomial time and the number of colors is equal to the
maximum degree of the bipartite graph.

Note that β and M are still lower bounds on the optimal solution in the full-
duplex model. The algorithm is the same as in Section 2 except the procedure
to select primary sources si.

– For each item i, decide a primary source si so that α′ =
maxj=1...N (max(|{j|j = si}|, βj)) is minimized. Note that α′ is also a lower
bound for the optimal solution. We can find these primary sources as shown
in Lemma 6 by adapting the method used in [4].

We show how to find the primary sources si.

Lemma 6. By using network flow we can choose primary sources to minimize
maxj=1...N (max(|{j|j = si}|, βj))

174 S. Khuller, Y.-A. Kim, and A. Malekian

s t

Items Disks

1

1

α′

Fig. 2. Computing α′

Proof. Create two vertices s and t. (See Figure 4 for example.) Make two sets, one
for the items and one for the disks. Add edges from s to each node corresponding
to an item of unit capacity. Add a directed edge of infinite capacity between item
j and disk i if i ∈ Sj . Add edges of capacity α′ from each node in the set of disks
to t. Find the minimum α′ (initially α′ = β), so that we can find a feasible flow
of value Δ. For each item j, choose the disk as its primary source sj to which it
sends one unit of flow.

Theorem 5. There is a 4+o(1) approximation algorithm for data migration in
the full duplex model.

Proof. Step 1 (from Si to G′
i) and Step 2 (from G′

i to Ri) still take 2M +O(β/q)
rounds and O(β/q) rounds, respectively. For Step 3, if we construct a bipartite
graph, then the max degree is at most max(α′, β), which is the number of rounds
required for this step. For Step 4, the maximum degree of the bipartite graph is
β + q. Therefore, the total number of rounds we need is 2M + max(α′, β) + β +
O(β/q) + q. By choosing q = Θ(

√
β), we can obtain a 4 + o(1)-approximation

algorithm.

References

1. E. Anderson, J. Hall, J. Hartline, M. Hobbes, A. Karlin, J. Saia, R. Swaminathan
and J. Wilkes. An Experimental Study of Data Migration Algorithms. Workshop
on Algorithm Engineering, pages 145–158, London, UK, 2001. Springer-Verlag

2. G. Aggarwal, R. Motwani and A. Zhu. The load rebalancing problem. Symp. on
Parallel Algorithms and Architectures, pages 258–265, (2003).

3. I. D. Baev and R. Rajaraman. Approximation algorithms for data placement in
arbitrary networks. Proc. of ACM-SIAM SODA, pp. 661–670, 2001.

4. S. Khuller, Y.A. Kim and Y.C. Wan. Algorithms for Data Migration with Cloning,
Siam J. on Comput., Vol. 33, No. 2, pp. 448–461,Feb. 2004.

Improved Algorithms for Data Migration 175

5. J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. American
Elsevier, New York, 1977.

6. R. Gandhi and J. Mestre. Combinatorial algorithms for Data Migration to minimize
the average completion time. APPROX (2006) (to appear).

7. L. Golubchik, S. Khanna, S. Khuller, R. Thurimella and A. Zhu. Approximation
Algorithms for Data Placement on Parallel Disks. Proc. of ACM-SIAM SODA,
pages 661–670, Washington, D.C., USA, 2000. Society of Industrial and Applied
Mathematics.

8. L. Golubchik, S. Khuller, Y. Kim, S. Shargorodskaya and Y. C. Wan. Data mi-
gration on parallel disks. Proc. of European Symp. on Algorithms (2004). LNCS
3221, pages 689–701. Springer. To appear in Special Issue of Algorithmica from
ESA 2004.

9. S. Guha and K. Munagala. Improved algorithms for the data placement problem,
2002. Proc. of ACM-SIAM SODA, pages 106–107, San Fransisco, CA, USA, 2002.
Society of Industrial and Applied Mathematics.

10. J. Hall, J. Hartline, A. Karlin, J. Saia and J. Wilkes. On Algorithms for Efficient
Data Migration. Proc. of ACM-SIAM SODA, pp. 620–629, 2001.

11. S. Kashyap and S. Khuller. Algorithms for Non-Uniform Size Data Placement on
Parallel Disks. Conference on FST&TCS Conference, LNCS 2914, pp. 265–276,
2003. Full version to appear in Journal of Algorithms (2006).

12. S. Kashyap, S. Khuller, Y. C. Wan and L. Golubchik. Fast reconfiguration of data
placement in parallel disks. 2006 ALENEX Conference, Jan 2006.

13. S. Khuller, Y. Kim and Y. C. Wan. On Generalized Gossiping and Broadcasting.
ESA Conference. pages 373–384, Budapest, Hungary, 2003. Springer.

14. Y. Kim. Data Migration to minimize the average completion time. Proc. of ACM-
SIAM SODA, pp. 97–98, 2003.

15. A. Meyerson, K. Munagala, and S. A. Plotkin. Web caching using access statistics.
In Symposium on Discrete Algorithms, pages 354–363, 2001.

16. H. Shachnai and T. Tamir. On Two Class-constrained Versions of the Multiple
Knapsack Problem. Algorithmica, 29:442–467, 2001.

17. H. Shachnai and T. Tamir. Polynomial Time Approximation Schemes for Class-
constrained Packing Problems. Workshop on Approximation Algorithms, LNCS
1913, pp. 238–249, 2000.

18. C.E. Shannon. A Theorem on Colouring Lines of a Network. J. Math. Phys.,
28:148–151, 1949.

19. D.B. Shmoys and E. Tardos. An Aproximation Algorithm for the Generalized
Assignment Problem. Mathematical Programming, A 62, pp. 461–474, 1993.

20. V. G. Vizing. On an Estimate of the Chromatic Class of a p-graph (Russian).
Diskret. Analiz. 3:25–30, 1964.

Approximation Algorithms for Graph
Homomorphism Problems

Michael Langberg1,�, Yuval Rabani2,��, and Chaitanya Swamy3

1 Dept. of Computer Science, Caltech, Pasadena, CA 91125
mikel@cs.caltech.edu

2 Computer Science Dept., Technion — Israel Institute of Technology,
Haifa 32000, Israel

rabani@cs.technion.ac.il
3 Center for the Mathematics of Information, Caltech, Pasadena, CA 91125

cswamy@ist.caltech.edu

Abstract. We introduce the maximum graph homomorphism (MGH)
problem: given a graph G, and a target graph H , find a mapping ϕ :
VG → VH that maximizes the number of edges of G that are mapped to
edges of H . This problem encodes various fundamental NP-hardproblems
including Maxcut and Max-k-cut. We also consider the multiway uncut
problem. We are given a graph G and a set of terminals T ⊆ VG. We want
to partition VG into |T | parts, each containing exactly one terminal, so
as to maximize the number of edges in EG having both endpoints in the
same part. Multiway uncut can be viewed as a special case of prelabeled
MGH where one is also given a prelabeling ϕ′ : U → VH , U ⊆ VG, and
the output has to be an extension of ϕ′.

Both MGH and multiway uncut have a trivial 0.5-approximation algo-
rithm. We present a 0.8535-approximation algorithm for multiway uncut
based on a natural linear programming relaxation. This relaxation has
an integrality gap of 6

7 � 0.8571, showing that our guarantee is almost
tight. For maximum graph homomorphism, we show that a

(1
2 + ε0)-

approximation algorithm, for any constant ε0 > 0, implies an algorithm
for distinguishing between certain average-case instances of the subgraph
isomorphism problem that appear to be hard. Complementing this, we
give a

(1
2 + Ω(1

|H| log |H|)
)
-approximation algorithm.

1 Introduction

We introduce the maximum graph homomorphism (MGH) problem: given a
graph G = (VG, EG) and a target or “label” graph H = (VH , EH), find a map-
ping ϕ : VG �→ VH that maximizes the number of edges of G that are mapped
to edges of H . This problem is trivially NP-hard; for example, deciding if G
is k-colorable is equivalent to checking if the solution to MGH with graph G
and the target graph H being a k-clique, has value |EG|. Several fundamental
� Research supported in part by NSF grant CCF-0346991.

�� Supported in part by ISF 52/03, BSF 2002282, and the Fund for the Promotion of
Research at the Technion. Part of this work was done while visiting Caltech.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 176–187, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximation Algorithms for Graph Homomorphism Problems 177

NP-hardoptimization problems can be encoded easily as special cases of MGH.
For example, Maxcut is equivalent to MGH where the target graph H is a single
edge; similarly Max-k-cut is the problem where H is a k-clique. This also shows
that MGH is APX-hard even when H is fixed (i.e., not part of the input), that
is, there is some absolute constant ε0 > 0 such that it is NP-hardto approxi-
mate MGH better than a factor of 1− ε0. The maximum graph homomorphism
problem is an optimization version of the well-studied H-coloring problem [20],
which is the problem of deciding whether there exists a mapping ϕ of value equal
to |EG| (such a mapping is called a homomorphism).

We also consider a prelabeled version of the maximum graph homomorphism
problem (prelabeled MGH), where the input also includes a partial mapping
ϕ′ : U �→ VH where U ⊆ VG, and the output is restricted to extensions ϕ : VG �→
VH of ϕ′. This problem, too, includes some natural NP-hardproblems as special
cases. For example, consider the multiway uncut problem (the complement of
multiway cut): given a graph G and a set of terminals T ⊆ VG, partition VG

into |T | parts, each containing exactly one element of T , so as to maximize
the number of edges in EG whose both endpoints lie in the same part. This is
precisely prelabeled MGH where H consists of |T | disconnected self-loops, and
the prelabeling ϕ′ : T �→ VH is a bijection.

Our Results. We present a 0.8535-approximation algorithm for the multiway
uncut problem in Section 3. To the best of our knowledge, this is the first time
anyone has considered this problem. From an exact optimization point of view,
multiway uncut is equivalent to the complementary problem of multiway cut in-
troduced by Dahlhaus et al. [9], and the APX-hardness reduction for multiway
cut in [9] also shows that our problem is APX-hard. However, approximation
results for multiway cut [9, 5, 23] do not directly yield guarantees for the maxi-
mization objective of multiway uncut. Our algorithm is based on a natural linear
programming (LP) relaxation and rounding procedure that are motivated by the
work of Calinescu, Karloff and Rabani [5] on multiway cut, and Kleinberg and
Tardos [24] on the related uniform labeling problem.

In Section 4, we consider the maximum graph homomorphism (MGH) prob-
lem. MGH admits a simple 0.5-approximation algorithm: take any edge (i, j) of
H , run the randomized/greedy algorithm for Maxcut on G to obtain a cut of
value 1

2 |EG|, and map the two sides of the cut to i and j. (The problem is triv-
ial if H contains no edges, or self-loops.) This gives a solution of value at least
1
2 |EG|. Our work focuses on the question of improving upon the ratio of 0.5.

We show that in general, any
(1

2 +ε0)-approximation algorithm for a constant
ε0 > 0, would imply an algorithm for deciding certain average-case instances of
the subgraph isomorphism problem that appear to be hard. This suggests an
inherent difficulty in obtaining such an improvement. This result falls into the
line of research, initiated by Feige [14], of using average-case complexity assump-
tions to derive hardness of approximation results. The basis of our reduction is
the following key fact (that we prove): if H is a triangle-free graph, and G is a
random graph drawn from the distribution Gn,p where p = Θ

(ln |VH |
n

)
, then with

high probability, no mapping ϕ maps more than |EG|
2 (1 + ε) edges of G (the

178 M. Langberg, Y. Rabani, and C. Swamy

constant in Θ(.) depends on ε). So when G and H are drawn from a suitable
distribution on triangle-free graphs, this establishes a factor 2 gap between the
cases when G is a subgraph of H (so there is a mapping of value |EG|), and when
it is not. Thus, a

(1
2 +ε0

)
-approximation algorithm would allow us to distinguish

between these two cases.
Motivated by the known better bounds for some special cases of MGH (e.g.,

Maxcut [18]), we also study special families of label graphs H . We present a(1
2 + Ω(1

|VH | log |VH |)
)
-approximation algorithm for MGH, by using an algorithm

of Charikar and Wirth [6] for Maxcut that is based on rounding the semidefi-
nite program for Maxcut used by Goemans and Williamson [18]. This gives an
improvement over the approximation ratio of 0.5 for any fixed graph H . We
obtain better improvements for some structured classes of graphs H . For the
prelabeled problem, we show that an α-approximation algorithm for unlabeled
MGH with label graph H yields an α

1+α -approximation algorithm for prelabeled
MGH with graph H . Finally, we consider the problem on dense graphs G and
obtain a PTAS for any fixed H , and a quasi-PTAS when H is part of the input.

Related Work. We are not aware of any previous work on the maximum graph
homomorphism (or the prelabeled version) or the multiway uncut problems.

As mentioned earlier, the maximum graph homomorphism problem is an op-
timization version of the H-coloring problem, which is the problem of decid-
ing if there exists a mapping ϕ : VG �→ VH (called a homomorphism or H-
coloring) that maps each edge of G to an edge of H . Homomorphisms, and the
H-coloringproblem and its variants have been extensively studied from various
perspectives; see, e.g., [21] and the references therein. Hell and Nešetřil [20]
showed that H-coloringis in Pif H contains a self loop or is bipartite, and NP-
completeotherwise. Dyer and Greenhill [12] established a similar dichotomy for
the problem of counting the number of H-colorings, namely, that the problem
is either in Por is #P-complete. Various variants of the H-coloringproblem and
their counting versions have also been studied; see, e.g., [13, 11]. Cooper et al. [8]
considered the problem of sampling a random H-coloring.

Minimization versions of the H-coloringproblem have been considered in [19,
7, 1]. Here there is a cost for assigning a label to a node of G and/or weights
associated with the edges of H , and one seeks a mapping/homomorphism ϕ that
minimizes the sum of the labeling costs and the weights of the images of the edges
of G. (If the edge weights form a metric, then this is precisely the metric labeling
problem [24].) Cohen et al. [7] consider the setting where the weight of assigning
an edge e ∈ EG to an edge of H may even depend on e, and identify a class
of cost functions for which the problem is in P. Aggarwal et al. [1] consider the
problem with edge weights where H is a complete graph with self-loops at every
node, and present various approximation and inapproximability results. Gutin
et al. [19] consider the problem with only labeling costs, restricting ϕ to be a
homomorphism, and classify the polynomial-time solvable and NP-hardcases.

A closely related problem is the maximum common subgraph problem: given
two graphs G and H we want to find a subgraph of G with maximum number
of edges that is isomorphic to a subgraph of H . MGH can be reduced to the

Approximation Algorithms for Graph Homomorphism Problems 179

maximum common subgraph problem by replacing each node of H by an in-
dependent set of size |VG|, and each edge of H by the corresponding complete
bipartite graph. Kann [22] presented a B +1-approximation algorithm, where B
is the maximum degree in G and H . Notice that the reduction outlined above
does not preserve the degrees in the target graph H .

The complement of the multiway uncut problem, namely the multiway cut
problem, was introduced by Dahlhaus et al. [9]. They showed that multiway cut
is APX-hard, and gave a

(
2− 2

|T |
)
-approximation algorithm. Calinescu, Karloff

and Rabani [5] proposed a new LP relaxation for the problem and used this
to improve the factor to

(
1.5 − 1

|T |
)
. The current best factor is 1.3438 due to

Karger et al. [23]. Our LP-relaxation for multiway uncut is the same as the one
in [5] (but with a maximization objective), and our algorithm uses a rounding
procedure of Kleinberg and Tardos [24] for the uniform labeling problem (which
is a generalization of the multiway cut problem).

Basing hardness of approximation results on average-case complexity is an
evolving field of research which was initiated by the work of Feige [14]. Feige
gave the first inapproximability results for various NP-hardoptimization prob-
lems assuming the complexity of refuting random-3CNF formulas. Subsequently,
results of a similar nature (for other optimization problems, based on other hard-
ness assumptions) were obtained by Alekhnovich [2] and Demaine et al. [10].

2 Definitions and Preliminaries

Maximum Graph Homomorphism. The input to the maximum graph ho-
momorphism (MGH) problem consists of two graphs G = (VG, EG) and H =
(VH , EH). The objective is to find a mapping ϕ : VG �→ VH that maximizes the
number of edges of G that are mapped to edges of H . More formally, we want
to maximize |{(u, v) ∈ EG : (ϕ(u), ϕ(v)) ∈ EH}|. We will often refer to the
mapping ϕ as a labeling, ϕ(u) as the label of u, and H as the label graph or
target graph. Let OPT (G,H) denote the value of an optimal solution. Through-
out, n will denote |VG| and k will denote |VH |. We use variables u, v, w to denote
vertices in VG and i, j, � to denote vertices in VH .

We also consider a prelabeled version of maximum graph homomorphism
where some of the nodes of G are already labeled, and we want to label the
remaining vertices so as to maximize the objective function. More precisely, in
the prelabeled maximum graph homomorphism problem, in addition to the graphs
G and H , we are given a prelabeling ϕ′ : U �→ VH where U ⊆ VG, and the goal is
to find an extension ϕ of ϕ′ that maximizes |{(u, v) ∈ EG : (ϕ(u), ϕ(v)) ∈ EH}|.
In general, the label graph H may also contain self-loops. However, note that
if H has a self-loop, say at node i, then the unlabeled problem becomes trivial:
we can simply map every vertex of G to label i to obtain OPT (G,H) = |EG|.
Thus, the problem with self-loops is only interesting in the prelabeled setting.

The Multiway Uncut Problem. In the multiway uncut problem, we are
given a graph G = (V,E) and a set of k terminals T ⊆ V . We want to find a

180 M. Langberg, Y. Rabani, and C. Swamy

partition of V into k subsets V1, . . . , Vk such that each part Vi contains a distinct
terminal, so as to maximize the number of uncut edges, that is, the quantity∑k

i=1 |{(u, v) ∈ E : u, v ∈ Vi}|. Notice that the multiway uncut problem is a
special case of the prelabeled MGH problem, where the label graph H consists
of k disconnected self loops and the prelabeling is a bijection ϕ′ : T �→ VH .

3 The Multiway Uncut Problem

In this section, we consider the multiway uncut problem and present a 0.8535-
approximation algorithm based on a natural linear programming (LP) relax-
ation. The integrality gap of this relaxation is at least 6

7 � 0.8571, which shows
that our guarantee is almost tight. Since multiway uncut is a special case of the
prelabeled maximum graph homomorphism problem, we will use the terminol-
ogy of MGH for consistency: we have k labels i = 1, . . . , k, and the prelabeling
ϕ′ is given by ϕ′(ti) = i for the i-th terminal ti ∈ T . Note that we may assume
that there are no edges between two labeled vertices since such edges contribute
0 to the value of any solution. We consider the following LP relaxation. We use
u to index the vertices of G = (V,E), and i to index the labels.

max
∑

(u,v)∈E

∑
i

ci
uv (MU-LP)

s.t.
∑

i

xi
u = 1 for all u,

x
ϕ′(t)
t = 1 for all t ∈ T,

ci
uv = min(xi

u, x
i
v) for all (u, v) ∈ E (1)

xi
u, c

i
uv ≥ 0 for all u, v, i.

Here xi
u indicates if vertex u is assigned label i, and ci

uv indicates if both end-
points of edge (u, v) are assigned label i. The first constraint states that every
node must be assigned a label, and the second enforces that this labeling is an
extension of ϕ′ (i.e., the label of a terminal does not change). The term

∑
i c

i
uv

measures the similarity along edge (u, v). Although (1) is not written as a linear
constraint, it is easy to see that one can encode (1) using linear constraints.

One can show that the LP relaxation (MU-LP) is identical to the relaxation
introduced by Calinescu et al. [5] for the multiway cut problem, i.e., any solution
of value Val to (MU-LP) is a solution of value |E| −Val to the relaxation in [5].
For the multiway cut problem, Calinescu et al. showed that the integrality gap
of the relaxation is at most 1.5− 1

k , which was improved to 1.3438 [23], whereas
Freund and Karloff [16] showed that the integrality gap is at least 8

7+1/(k−1) .
Our result shows that the integrality gap of (MU-LP) (which is now less than

1) is at most 0.8535, that is, there is always an integer solution of value at least
0.8535 times the optimum of (MU-LP). This also holds in the weighted setting
(non-negative edge weights) where the goal is to maximize the weight of the
uncut edges. The integrality-gap example in [16] also yields an integrality gap of

Approximation Algorithms for Graph Homomorphism Problems 181

6k2−10k+4
7k2−13k+6 →

6
7 � 0.8571, as k →∞, for (MU-LP) (with weighted edges). Thus,

our guarantee is very close to the best possible using this LP relaxation.
A similar LP relaxation was used by Kleinberg and Tardos [24] for the uniform

labeling problem. We will use a randomized rounding procedure from [24], but
we will need a more refined analysis of this procedure than that in [24]. The
algorithm is simple: we return the better of the following two labelings.

1. The first labeling picks an arbitrary label i, and sets ϕ(u) = i for every
vertex u ∈ T . We call this the “trivial labeling”.

2. The second labeling is obtained via the randomized rounding procedure of
Kleinberg and Tardos, which we describe below for completeness. They also
show how to derandomize the rounding, so we could use this and obtain a
deterministic algorithm with the same performance guarantee. We consider
the randomized version for ease of exposition and analysis.
Let {x, c} be an optimal solution to (MU-LP). The rounding proceeds in
several rounds. Initially all vertices in V \ T are unassigned. In each round,
we independently pick a label i ∈ {1, . . . , k} uniformly at random, and a
threshold ρ uniformly in [0, 1]. For each unassigned vertex u ∈ V , we assign
u the label i (i.e., set ϕ(u) = i) if xi

u ≥ ρ. We repeat this until all the vertices
in V \ T are assigned. We call this the “LP labeling”.

Analysis. Let Cuv =
∑

i c
i
uv. We analyze the algorithm by considering a “hybrid

labeling”, where we choose the LP-labeling with probability λ and the trivial
labeling with probability 1−λ, for some λ ∈ [0, 1]. We will compare the expected
contribution of an edge (u, v) in the hybrid labeling against the LP-value Cuv.
Let E0 = {(u, v) ∈ E : u, v /∈ T } and E1 = {(u, v) ∈ E : u or v ∈ T }.
Note that E = E0 ∪ E1 since there are no edges with both endpoints in T . The
trivial labeling obtains a value of 1 for every edge in E0. We now analyze the
LP-labeling. For an edge (u, v), let Xuv denote the random variable that is 1 if
u and v are assigned the same label in the LP-labeling, and 0 otherwise. We will
use “u �→ i” and “u �→ ∗” as a shorthand to denote that “u is assigned label i”,
and “u is assigned some label” respectively. Let X i

u be a random variable that
is 1 if u �→ i in the LP-labeling, and 0 otherwise.

Fact 3.1. Suppose u is unassigned before a round. Then, Pr[u �→ i in the round]=
1
k · xi

u. Therefore Pr[u �→ ∗ in the round] = 1
k ·
∑

i x
i
u = 1

k .

Claim 3.2. Pr[X i
u = 1] = xi

u. Thus, for an edge (u, v) ∈ E1, E
[
Xuv

]
= Cuv.

Proof. Pr[X i
u = 1]=

∑∞
r=1

(
1−Pr[u �→ ∗ before round r]

)
·Pr[u �→ i in round r]=∑∞

r=1

(
1 − 1

k

)r−1 · xi
u

k = xi
u. For an edge (u, v) ∈ E1, where v ∈ T has label i, we

have E
[
Xuv

]
= Pr[X i

u] = xi
u = ci

uv = Cuv. ��

Lemma 3.3. For an edge (u, v) ∈ E0, we have E
[
Xuv

]
≥ Cuv

2−Cuv
.

Proof. We can lower bound E
[
Xuv

]
by the probability that both u and v are

assigned a label in the same round. Observe that if both u and v are unassigned

182 M. Langberg, Y. Rabani, and C. Swamy

before a given round, then (a) the probability that u and v are both assigned in
the round is 1

k

∑
i min(xi

u, x
i
v) = 1

k ·Cuv , and (b) the probability that u or v is as-
signed in the round is 1

k

∑k
i=1 max(xi

u, x
i
v) = 1

k ·(2−Cuv), since
∑

i

(
min(xi

u, x
i
v)+

max(xi
u, x

i
v)
)

= 2. Thus, Pr[u and v are assigned in the same round] is exactly
∞∑

r=1

(
1−Pr[u �→ ∗ or v �→ ∗ before round r]

)
·Pr[u �→ ∗ and v �→ ∗ in round r]

=
∞∑

r=1

(
1− 2− Cuv

k

)r−1
· Cuv

k
=

Cuv

2− Cuv
.

��

Fact 3.1 and Claim 3.2 were proved in [24], but for edges in E0 their analysis
proves the weaker bound E

[
Xuv

]
≥ 1−‖xu−xv‖1 = 2Cuv−1 which only yields

a 2
3 -approximation guarantee for the overall algorithm.

Theorem 3.4. The solution returned has value at least
(1

2+
√

2
4

)
·
(∑

(u,v)∈E Cuv

)
.

Thus the approximation ratio of the above algorithm is at least 1
2 +

√
2

4 � 0.8535.

Proof. We prove the stated bound for the expected value of the random hybrid
labeling; the theorem then follows. For an edge (u, v) ∈ E0, we get an expected
value of (at least) Cuv

2−Cuv
in the LP-labeling by Lemma 3.3, and 1 in the trivial

labeling. So the expected contribution of this edge in the hybrid labeling is at
least Cuv ·

(
λ

2−Cuv
+ 1−λ

Cuv

)
≥
(1

2 +
√

λ(1 − λ)
)
Cuv. The last inequality follows

since minC∈[0,1]
(

λ
2−C + 1−λ

C

)
≥ 1

2 +
√

λ(1 − λ) by simple calculus. For an edge
(u, v) ∈ E1, using Claim 3.2, the (expected) contribution in the hybrid labeling
is at least λCuv. Therefore the expected total value of the hybrid labeling is
at least min

(
λ, 1

2 +
√

λ(1 − λ)
)
·
(∑

(u,v)∈E Cuv

)
. Taking λ = 1

2 +
√

2
4 = 1

2 +√
λ(1 − λ) � 0.8535 maximizes this expression and yields a solution of value at

least 0.8535 ·
(∑

(u,v)∈E Cuv

)
. As mentioned earlier, the rounding procedure can

be derandomized to yield a deterministic algorithm with the same guarantee. ��

Extensions. We can also handle the weighted case where we have non-negative
weights on the edges and we want to maximize the weight of the uncut edges. The
algorithm remains unchanged and the analysis requires only notational changes.
One can also consider the problem where we have non-negative profits {pi

u} for
assigning label i to node u, and we want to maximize the sum of the profits and
the weight of the uncut edges. This problem is the complement of the uniform
labeling problem considered in [24]. We can reduce this to the no-profit setting
by adding an edge (u, i) with weight pi

u for every node u ∈ V and label i.

4 The Maximum Graph Homomorphism Problem

We now consider the maximum graph homomorphism (MGH) problem (with an
arbitrary label graph H). Recall that we are given graphs G and H , and the
goal is to find a mapping ϕ : VG �→ VH that maximizes the number of edges of G

Approximation Algorithms for Graph Homomorphism Problems 183

mapped to edges of H . In Section 4.1, we give a
(1

2 + Ω(1
k log k)

)
-approximation

algorithm (where k = |VH |) for this problem. In Section 4.2, we present some
evidence suggesting that obtaining a

(1
2 + Ω(1)

)
-approximation algorithm may

be inherently difficult. We argue that such an approximation algorithm would
yield an algorithm for distinguishing between certain average-case instances of
the subgraph isomorphism problem. In Section 4.3, we consider some extensions
and refinements. We show that any approximation guarantee for the unlabeled
problem yields a corresponding guarantee for prelabeled MGH. We also obtain
a quasi-PTAS for the problem on dense graphs G (i.e., |EG| = Ω(|VG|2)).

4.1 A
(1
2 + Ω(1

k log k
)
)
-Approximation Algorithm

We now present the
(1

2 + Ω(1
k log k)

)
-approximation algorithm. Recall that k =

|VH |. We assume that H contains at least one edge and has no self-loops (oth-
erwise the problem is trivial). We start with some simple observations. Observe
that any cut (U, VG \ U) of G yields a labeling ϕ of value equal to the size of
the cut, since we can consider any edge (i, j) ∈ EH and map all the nodes in
U to i, and all the nodes in VG \ U to j. Thus, since one can easily obtain a
cut of value at least |EG|

2 (e.g., by using the greedy, or randomized, algorithm
where we assign each vertex greedily, or independently and uniformly at random,
to one of the two parts), there is a trivial 0.5-approximation algorithm for the
maximum graph homomorphism problem. Conversely, for bipartite graphs H ,
one can show that MaxCut(G) = OPT (G,H).

Fact 4.1. Any cut of G yields a mapping ϕ of value equal to the size of the cut.
Thus, OPT (G,H) ≥ MaxCut(G) ≥ |EG|

2 .

Claim 4.2. If H is bipartite, the MGH problem on graphs G and H is equivalent
to the Maxcut problem on G, that is, MaxCut(G) = OPT (G,H).

We improve upon this factor of 0.5 for any fixed graph H , by using a result of
Charikar and Wirth [6]. They used the semidefinite program for Maxcut in [18],
along with the RPR2 rounding technique of [15] to obtain the following theorem.

Theorem 4.3 (Charikar and Wirth). Let G be a graph with non-negative
edge weights, having a cut of weight |EG|

(1
2 + δ

)
, where δ > 0. One can obtain a

cut of G with weight |EG|
(1

2 + cδ
log(1/δ)

)
in polynomial time, where c is a constant.

Notice that the algorithm mentioned in the above theorem always returns a cut of
value at least |EG|

2 . Our algorithm for MGH simply uses the algorithm mentioned
in Theorem 4.3 to obtain a cut of G; this induces a labeling of the same value
and the algorithm returns this labeling. The idea behind the algorithm is that if
OPT (G,H) is small compared to |EG|, then |EG|

2 would be strictly larger than
OPT(G,H)

2 . Otherwise, we will show that there exists a bipartite subgraph H ′ of
H that captures more than half the edges of G, which in turn implies that G

has a cut of value strictly larger than |EG|
2 . Thus, using Theorem 4.3 we obtain

a cut of G, and hence a labeling, of value strictly larger than |EG|
2 ≥ OPT (G,H)

2 .

184 M. Langberg, Y. Rabani, and C. Swamy

Theorem 4.4. There is a
(1

2+ c
k log k

)
-approximation algorithm for MGH, where

c > 0 is a constant independent of k.

Proof. Let G and H be the input graphs. If OPT (G,H) ≤ |EG|
(
1− 1

2k

)
, then our

algorithm returns a solution of value at least |EG|
2 ≥ OPT(G,H)

2(1−1/2k) ≥
OPT(G,H)

2

(
1 +

1
2k

)
. So suppose that OPT (G,H) ≥ |EG|

(
1− 1

2k

)
. Consider an optimal mapping

ϕ∗. For each edge (i, j) in H , let mij =
∣∣{(u, v) ∈ EG : {ϕ∗(u), ϕ∗(v)} = {i, j}

}∣∣.
Thus, OPT (G,H) =

∑
(i,j)∈EH

mij . We claim that there is a bipartite subgraph

H ′ of H such that OPT (G,H ′) ≥
∑

(i,j)∈H′ mij ≥ |EG|
2

(
1 + 1

4k

)
. Consider the

cut (UH , VH \ UH) where UH is a random subset of vertices of H of size k/2.
The probability that an edge is cut by such a partition is k2

4 /
(
k
2

)
= 1

2

(
1 + 1

k−1

)
.

Therefore, the expected weight of the cut edges is
(∑

(i,j)∈EH
mij

)
· 12
(
1+ 1

k−1

)
=

OPT(G,H)
2

(
1 + 1

k−1

)
≥ |EG|

2

(
1 + 1

4k

)
. Thus, there exists such a partition of at

least this value, and we can take H ′ to be the associated bipartite subgraph of
H . Now by Claim 4.2, G must have a cut of value at least |EG|

2

(
1 + 1

4k

)
. So

applying Theorem 4.3, our algorithm finds a cut, and hence a labeling, of value
at least |EG|

(1
2 + c

k log k

)
. The theorem follows since OPT (G,H) ≤ |EG|. ��

4.2 Connection to the Subgraph Isomorphism Problem

Given two graphs G and H , the subgraph isomorphism problem is the problem
of deciding whether G is a subgraph of H . The subgraph isomorphism problem
is a well-known NP-completeproblem. We show that a (1

2 + ε0)-approximation
algorithm for MGH, where ε0 > 0 is an absolute constant, implies an algorithm
for distinguishing between certain average-case instances of the subgraph iso-
morphism problem (this is defined precisely below). This hints at an inherent
difficulty in obtaining an approximation ratio better than 0.5 for MGH.

The main technical result of this section (Lemma 4.5) is as follows. For any
ε > 0, if H is a triangle-free graph, and G is a random graph drawn from the
distribution Gn,p, for a suitable p = p(ε) ∈ [0, 1] and large enough n, then
OPT (G,H) ≤ |EG|

2 (1 + ε) with high probability. If however G is a subgraph of
H , then OPT (G,H) = |EG|. The gap between these two cases motivates the
definition of a refutation problem for certain average-case instances of the sub-
graph isomorphism problem, which allows us to encode the difficulty of obtaining
a better than 0.5-approximation algorithm for MGH. Let n be the set of all
triangle-free graphs on n vertices. For p ∈ [0, 1], let n,p be the distribution over
G ∈ n obtained by choosing a random graph G ∈ Gn,p, and then considering
the edges of G in a random order and deleting any edge that is part of a triangle.
Refutation problem (with parameter c > 0). Find a polynomial time algo-
rithm A such that given a pair of random graphs G ∈ n,pG , H ∈ n,pH , where
pG = c ln n

n , pH ! pG, (a)A returns “yes” if H contains G as a subgraph, and (b)
A returns “no” on most instances, more precisely PrG,H [A(G,H) = “no”] ≥ 1

2 .
Intuitively, the refutation algorithm A refutes most tuples (G,H) as being

“no” instances of the subgraph isomorphism problem, but always announces

Approximation Algorithms for Graph Homomorphism Problems 185

“yes” when G is a subgraph of H . As mentioned earlier, with very high proba-
bility G will not be a subgraph of H , thus conditions (a) and (b) do not conflict.
We will show that a

(1
2 + ε0

)
-approximation algorithm for MGH yields such a

refutation algorithm; thus the non-existence of such an algorithm implies that
MGH cannot be approximated to a factor better than 0.5.

We mention a few remarks. First, one could also define the refutation problem
in terms of an approximation version of subgraph isomorphism by requiring
(a’): A always return “yes” if G contains a subgraph of size |EG|(1 − ε) that is
isomorphic to a subgraph of H . Such a modification was also considered by Feige
(see Hypothesis 2 in [14]). An algorithm satisfying (a’), (b) refutes average-case
instances of the maximum common subgraph problem [22], and is also a refutation
algorithm for the exact-version of the problem. Thus, the non-existence of an
algorithm satisfying (a’), (b) is a weaker hardness assumption (implying a (1

2+ε0)
inapproximability for MGH). Moreover, this version of the refutation problem
might be more robust than the exact-version. Second, we take pH ! pG to avoid
the case where pH � pG. In this setting, the problem is closely related to the
graph isomorphism problem on random graphs, which is known to be solvable on
average in polynomial time; see [4], and §6 of the survey [17] and its references.

Lemma 4.5. For any ε ∈ (0, 1), there exist constants n0(ε), c0(ε), such that if
G = (VG, EG) is a random graph in Gn,p, where n ≥ n0(ε), p = c ln k

n , c ≥
c0(e), and H = (VH , EH) is a simple triangle-free graph with k vertices, then
(i) OPT (G,H) < cn ln k

4 (1 + ε/2) with probability at least 1 − e−n ln k, and
(ii) OPT (G,H) < |EG|

2 (1 + ε) with probability at least 1− 2e−n lnk.

Proof. Set n0(ε) = 8
ε , c0(ε) = 2048

7ε2 . Let m = p
(
n
2

)
be the expected number of

edges in G. Fix a mapping ϕ : VG �→ VH . We will show that with very high prob-
ability, mapping ϕ has value at most m

2 (1+ε/2). Applying the union bound over
all mappings then yields that OPT (G,H) < m

2 (1 + ε/2) with high probability,
proving part (i). Since |EG| is strongly concentrated around its expectation, this
will also prove part (ii).

Given the mapping ϕ, consider the following graph H ′: H ′ also has n = |VG|
vertices, and we include an edge (u, v) in H ′ iff (ϕ(u), ϕ(v)) is an edge in H . It
is easy to see that H ′ is also triangle-free: a triangle (v1, v2, v3) in H ′ implies
that H has edges (ϕ(v1), ϕ(v2)), (ϕ(v2), ϕ(v3)), and (ϕ(v3), ϕ(v1)), and there-
fore contains a triangle. Since H ′ is triangle-free, by Turán’s Theorem [25] it
has at most n2

4 edges. Let X(ϕ) denote the (random) value of the mapping ϕ
for G. Observe that X(ϕ) is simply the number of edges of H ′ that are also
edges of G. For every pair u, v, (u, v) is in EG with probability p, so we have
E
[
X(ϕ)

]
= p · |EH′ | ≤ p · n2

4 = cn ln k
4 . Since X(ϕ) is the sum of indepen-

dent indicator random variables, using Chernoff bounds, we get Pr
[
X(ϕ) ≥

cn ln k
4 (1 + ε/2)

]
≤ e−(ε2cn ln k)/48 ≤ e−2n ln k. The number of mappings ϕ is kn.

So by the union bound, Pr
[
OPT (G,H) ≥ cn ln k

4 (1 + ε/2)
]

= Pr
[
∃ϕ, X(ϕ) ≥

cn ln k
4 (1 + ε/2)

]
≤ e−n lnk.

The expected number of edges in G is p
(
n
2

)
= cn ln k

2 (1 − 1
n) ≥ cn ln k

2 (1 −
ε
8). Again using Chernoff bounds, we get that Pr

[
|EG| ≤ cn ln k

2 (1 − ε/4)
]
≤

186 M. Langberg, Y. Rabani, and C. Swamy

e−(7ε2cn lnk)/2048 ≤ e−n ln k. So using part (i), with probability at least 1−2e−n ln k

it is the case that OPT (G,H) < cn lnk
4 (1 + ε/2) < |EG|

2 (1 + ε). ��
Theorem 4.6. For any ε0 > 0, a

(1
2 +ε0

)
-approximation algorithm A for MGH

yields an algorithm for the refutation problem with parameter c ≥ c0(ε0) = 2048
7ε2

0
.

Proof Sketch. Let G and H be the two input graphs. Let n be sufficiently large. If
we are in case (a), then OPT (G,H) = |EG|, so running A on (G,H) will produce
a solution of value at least |EG|

(1
2 + ε0

)
. Otherwise, we can use Lemma 4.5 to

show that that OPT (G,H) < |EG|
(1

2 + ε0
)

with high probability; thus, one
can use A to distinguish between the two cases. Let G by obtained by deleting
edges from G′ ∈ Gn,p. Lemma 4.5 shows that OPT (G,H) ≤ OPT (G′, H) <
cn ln n

4 (1 + ε0/2) and |E′
G| ≥ cn ln n

2 (1 − ε0/4), with high probability. Although
we delete edges from G′, with high probability, the number of triangles in G′

is a negligible fraction of |EG′ |. So we obtain that |EG| ≥ cn ln n
2 (1 − ε0/2) and

therefore we have OPT (G,H) < |EG|
(1

2 + ε0
)
. ��

4.3 Extensions and Refinements

Prelabeled MGH. Recall that in prelabeled MGH, we are given a prelabeling
ϕ′ : U �→ VH , U ⊆ VG and the output has to be an extension of ϕ′. We can
show that for any label graph H , an α-approximation algorithm for MGH on
instances (G,H) (α could depend on H) gives an α

1+α -approximation algorithm
for prelabeled MGH on instances (G,H).

Dense Graphs G. We obtain much better results when G is dense, i.e., when
|EG| = Ω(n2) (n = |VG|). One can adapt the techniques of Arora, Karger
and Karpinski [3] to obtain a solution ϕ of value OPT (G,H) − εn2 in time
O
(
(nk)log k/ε2

)
(although MGH does not directly fall into the problem-class de-

tailed in [3]). Since OPT (G,H) ≥ |EG|
2 = Ω(n2), we can obtain a quasi-PTAS

by setting ε suitably. This also yields a PTAS for any fixed graph H .

Special graphs H. When H if bipartite, by Claim 4.2 it follows that one can
obtain a 0.878-approximation algorithm for MGH using the Maxcut algorithm
of Goemans and Williamson [18]. One can also obtain an approximation ratio
better than 0.5 if H has a dense subgraph. Let ρH = maxU ρ(U), where ρ(U) =(
2|{(u, v) ∈ EH : u, v ∈ U}|

)
/|U |2. Let U∗ ⊆ VH be such that ρ(U∗) = ρH .

The randomized algorithm that maps each node of G to a node of U∗ chosen
uniformly at random, returns a solution of expected value ρ(U∗)|EG| and is thus
a ρH-approximation algorithm. This immediately implies an approximation ratio
of at least 2/3 if H contains a triangle.

References

[1] G. Aggarwal, T. Feder, R. Motwani, and A. Zhu. Channel assignment in wireless
networks and classification of minimum graph homomorphism. In ECCC: TR06-
040, 2006.

[2] M. Alekhnovich. More on average case vs approximation complexity. In Proceed-
ings, 44th FOCS, pages 298–307, 2003.

Approximation Algorithms for Graph Homomorphism Problems 187

[3] S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes
for dense instances of NP-hard problems. J. Comput. Syst. Sci., 58:193–210, 1999.

[4] L. Babai, P. Erdös, and S. Selkow. Random graph isomorphism. SICOMP, 9:628–
635, 1980.

[5] G. Calinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm
for multiway cut. Journal of Computer and System Sciences, 60:564–574, 2000.

[6] M. Charikar and A. Wirth. Maximizing quadratic programs: Extending
Grothendieck’s inequality. In Proceedings, 45th FOCS, pages 54–60, 2004.

[7] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. A maximal tractable class of
soft constraints. Journal of Artificial Intelligence Research, 22:1–22, 2004.

[8] C. Cooper, M. Dyer, and A. Frieze. On Markov chains for randomly H-coloring
a graph. Journal of Algorithms, 39:117–134, 2001.

[9] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis.
The complexity of multiterminal cuts. SICOMP, 23:864–894, 1994.

[10] E. D. Demaine, U. Feige, M. T. Hajiaghayi, and M. Salavatipour. Combination
can be hard: Approximability of the unique coverage problem. In Proceedings,
17th SODA, pages 162–171, 2006.

[11] J. Dı́az, M. J. Serna, and D. M. Thilikos. The complexity of restrictive H-coloring.
In Proceedings, 28th International Workshop (WG 2002), pages 126–137, 2002.

[12] M. E. Dyer and C. S. Greenhill. The complexity of counting graph homomor-
phisms. Random Structures and. Algorithms, 25:346–352, 2004.

[13] T. Feder and P. Hell. List homomorphisms to reflexive graphs. Journal of Com-
binatorial Theory, Series B, 72:236–250, 1998.

[14] U. Feige. Relations between average case complexity and approximation complex-
ity. In Proceedings, 34th STOC, pages 534–543, 2002.

[15] U. Feige and M. Langberg. The RPR2 rounding technique for semidefinite pro-
grams. In Proceedings, 28th ICALP, pages 213–224, 2001.

[16] A. Freund and H. Karloff. A lower bound of 8/
(
7+ 1

k−1

)
on the integrality ratio of

the Calinescu-Karloff-Rabani relaxation for multiway cut. Information Processing
Letters, 75:43–50, 2000.

[17] A. Frieze and Colin McDiarmid. Algorithmic theory of random graphs. Random
Structures and Algorithms, 10:5–42, 1997.

[18] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM, 42:1115–1145, 1995.

[19] G. Gutin, A. Rafiey, A. Yeo, and M. Tso. Level of repair analysis and minimum
cost homomorphisms of graphs. Discrete Applied Mathematics, 154:881–889, 2006.

[20] P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial
Theory, Series B, 48:92 – 110, 1990.

[21] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford Univ. Press, 2004.
[22] V. Kann. On the approximability of the maximum common subgraph problem.

In Proceedings, 9th STACS, pages 377–388, 1992.
[23] D. Karger, P. Klein, C. Stein, M. Thorup, and N. Young. Rounding algorithms for

a geometric embedding of minimum multiway cut. M. of OR, 29:436–461, 2004.
[24] J. Kleinberg and É. Tardos. Approximation algorithms for classification problems

with pairwise relationships: metric labeling and Markov random fields. Journal
of the ACM, 49:616–639, 2002.

[25] P. Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok, 48:436–452,
1941.

Improved Approximation Algorithm for the
One-Warehouse Multi-Retailer Problem

Retsef Levi and Maxim Sviridenko

IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598

1 Introduction

In this paper, we will consider a well-studied inventory model, called the one-
warehouse multi-retailer problem (OWMR) and its special case the joint re-
plenishment problem (JRP). As the name suggests, in this model there is one
warehouse that orders a particular commodity from a supplier, in order to serve
demand at N distinct retailers. We consider a discrete finite planning horizon of
T periods, and are given the demand dit required for each retailer i = 1, . . . , N
in each time period t = 1, . . . , T . There are two types of costs incurred: order-
ing costs (to model that there are fixed costs incurred each time the warehouse
replenishes its supply on hand from the supplier, as well as the analogous cost
for each retailer to be stocked from the warehouse) and holding costs (to model
the fact that maintaining inventory, at both the warehouse and the retail store,
incurs a cost). The aim of the model is to provide an optimization framework
to balance the fact that ordering too frequently is inefficient for ordering costs,
whereas ordering too rarely incurs excessive holding costs.

The details of this model are as follows. At the beginning of each period s,
each retailer i can place an order for any number of units from the warehouse, to
replenish its on-hand inventory. The order is assumed to arrive instantaneously
(this is without loss of generality), and can be used to satisfy demand in period
s, or in subsequent periods. Any such order placed by retailer i incurs a fixed
ordering cost Ki, that is independent of the size of the order and of the time
period in which the order is placed. However, all orders placed by the different
retailers in each period s must be satisfied only from the on-hand inventory at
the warehouse in that period. So in turn, at the beginning of each period r the
warehouse can place an order for any number of units from a supplier. This order
is again assumed to arrive instantaneously, and can be used to satisfy retailers
orders in period r, or in subsequent periods. Any such order of the warehouse in
period r incurs a fixed ordering cost K0

r , which also is independent of the size of
the order. All demands must be satisfied on time, i.e., any unit that is used by
retailer i to satisfy its demand in period t, dit, must be ordered by the warehouse
from the supplier in some period r, and then by retailer i from the warehouse
in some period s, where r ≤ s ≤ t. The goal is to find an ordering policy that
satisfies all demands on time with minimum total ordering and holding costs.
Throughout the paper, we will use �r, s
 (r ≤ s) to denote a pair of warehouse
and retailer orders in periods r and s, respectively. We note that while the

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 188–199, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improved Approximation Algorithm for the OWMR Problem 189

warehouse ordering cost K0
r is time-dependent, the retailer ordering cost Ki is

stationary over time.
The standard models for holding cost make two natural linearity assumptions:

(1) that the cost is proportional to the number of units of the commodity held,
and (2) that there is a per-unit cost hi

t associated with holding a unit of item
i from period t to t + 1. We use the more general holding cost structure that
has been introduced by Levi, Roundy and Shmoys for the JRP problem and has
been extended later to the OWMR problem [4, 5, 6]. While still maintaining (1),
relaxes (2) in a way that preserves the most useful properties of an optimal solu-
tion (as well as of an optimal solution to the natural LP relaxation), but captures
much more general phenomena, such as the notion of perishable goods (where
the holding cost becomes infinite, when the good is held too long). For each
demand point (i, t), we introduce a holding cost parameter hit

rs associated with
ordering one unit of the demand at retailer i for period t according to the pair
�r, s
. The parameters hit

rs are assumed to satisfy certain natural monotonicity
properties:

• Property 1: Non-negativity (hit
rs ≥ 0).

• Property 2: Monotonicity with respect to r. For each demand point (i, t) and
fixed retailer order in period s (s ≤ t), we assume that hit

rs is non-increasing
in r ∈ [1, s].

• Property 3: Monotonicity with respect to s. Here we assume that each
of the retailers has exactly one of the following properties. For each fixed
demand point (i, t) and warehouse order in period r (r ≤ t), hit

rs is either
non-increasing in s ∈ [r, t] (for all demand points (i, t), or it is non-decreasing
in s ∈ [r, t] (for all demand points (i, t). It is straightforward to see that in
an optimal policy, the warehouse does not hold inventory of J-retailers. (The
joint replenishment problem is the special case with only J-retailers.)

• Property 4: Dominance of r-Monotonicity. We also assume that if r ≤ r′

and s ≤ s′, then hit
rs ≥ hit

r′s′ , for each demand point (i, t), and regardless of
whether i is a J-retailer of a W -retailer.

• Property 5: Monge Property. For each demand point (i, t) with i ∈ IW and
any four periods r2 < r1 ≤ s2 < s1 ≤ t, the inequality, hit

r2,s1
+ hit

r1,s2
≥

hit
r2,s2

+ hit
r1,s1

is satisfied.

Previous work. Arkin, Joneja and Roundy [1] have shown that OWMR is NP-
hard even for the special case of the JRP, where the warehouse serves only as a
cross-docking point (i.e., no inventory is ever held at the warehouse). Federgrun
and Tzur [3] have proposed an interesting heuristic based on dynamic program-
ming. However, for the theoretical analysis of the worst-case performance of
their algorithm, they have assumed that the cost parameters and the demands
are bounded by uniform constants. Chan, Muriel, Shen, Shimchi-Levi and Teo [2]
have considered a variant of OWMR, in which the ordering costs are piecewise-
linear functions, and the holding cost is linear and additive. They considered the
class of zero-inventory ordering (ZIO) policies, in which the warehouse and re-
tailers order if and only if their current on hand inventory is 0. They established

190 R. Levi and M. Sviridenko

the effectiveness of these policies, showing that the cost of the optimal ZIO policy
is at most 4

3 times the cost of the optimal policy. In [2] and in a subsequent paper
by Shen, Simchi-Levi and Teo [7], they have proposed an LP-based algorithm
for approximating the best ZIO policy. However, the performance guarantee of
their algorithm is O(log(N + T)). For the problem we consider in this paper, it
is well known that ZIO policies are optimal.

In several recent results, Levi, Roundy and Shmoys have provided constant
approximation algorithms for a broad class of deterministic inventory models,
including the one-warehouse and multi-retailer problem and the joint replenish-
ment problem. They have provided a general primal-dual algorithmic framework
that solves the single-item lot-sizing problem, and provides a 2-approximation
for the JRP and assembly problem (which is yet another basic inventory model)
[4, 5]. However, the more complex cost structure of holding inventory in two
different “levels” appears so far to be an impediment in extending the primal-
dual approach to the OWMR problem. They have also provided an LP-based
rounding 2.39-approximation algorithm for the OWMR problem [6].

Our techniques and results. We use the same LP relaxation as Levi, Roundy
and Shmoys [6]. Like their algorithms, we round the fractional solution of the
LP in two phases. In the first phase we determine the warehouse orders; based
on that, we determine the retailer orders in the second phase, and this is done
separately for each retailer. Our algorithms are based on new dependent ran-
domized rounding techniques that better exploit the special “line” structure of
the inventory model that is induced by the notion of time. This enables us to
bound the average holding costs incurred by the algorithm. This is in contrast
to Levi, Roundy and Shmoys [6] who only bound the worst (most expensive)
holding costs incurred, using the dual of the corresponding LP relaxation. Our
techniques lead to conceptually simpler rounding algorithms with elegant worst-
case analysis that is entirely based on the primal solution.

We show that the solution produced by the randomized algorithms has ex-
pected cost, that is guaranteed to be at most 1.8 times the cost of an optimal
solution to the OWMR problem. We then show how to derandomize these al-
gorithms and this yields a deterministic 1.8-approximation algorithm for the
OWMR problem. When specialized to the JRP problem our LP is identical to
the one used in [4, 5]. Thus, our approach can be applied to the JRP problem and
improve on the primal-dual 2-approximation of Levi, Roundy and Shmoys [4, 5].

2 A Linear Program

The integer programming formulation and the corresponding LP relaxation are
based on the well- known fact that there exists an optimal solution to the OWMR
problem in which each demand dit is satisfied from a unique pair of orders �r, s
,
where again r ≤ s ≤ t (see [10] for details). That is, the warehouse orders the
entire demand dit in some period r ≤ t, and keeps it in inventory over the time
interval [r, s) (r ≤ s ≤ t). Then in period s, the entire demand dit is ordered from
the warehouse by retailer i and is kept in inventory (at the retailer’s premises)

Improved Approximation Algorithm for the OWMR Problem 191

until time t. We define Hit
rs := hit

rsdit to be the total cost of providing the demand
dit from the pair of orders �r, s
. This gives rise to the following LP formulation:

min
T∑

r=1

y0
rK

0
r +

N∑
i=1

T∑
s=1

yi
sK

i +
N∑

i=1

T∑
t=1

∑
r,s:r≤s≤t

xit
rsH

it
rs (1)

∑
r,s:r≤s≤t

xit
rs = 1, ∀i, t, (2)

∑
r:r≤s

xit
rs ≤ yi

s, ∀i, t, s ≤ t, (3)

∑
s:r≤s≤t

xit
rs ≤ y0

r , ∀i, t, r ≤ t, (4)

xit
rs, yi

r ≥ 0, ∀i, r, s, t, r ≤ s ≤ t. (5)

The variable xit
rs (for r ≤ s ≤ t) indicates whether demand point (i, t) (i.e.,

demand dit) was provided from the pair of orders in periods r (warehouse order)
and s (retailer i order). The variable yi

s (for each i = 1, .., N) indicates whether
retailer i placed an order in period s. Finally, the variable y0

r indicates whether
the warehouse placed an order in period r. Constraint (2) ensures that each pos-
itive demand point (i, t) is satisfied from some pair of warehouse-retailer orders
in periods �r, s
, no later than period t. Constraint (3) ensures that no demand
dit can be satisfied by a retailer order in period s ≤ t (and some warehouse order
in period r ≤ s), unless retailer i indeed has placed an order in period s. Lastly,
constraint (4) ensures that no demand point dit can be satisfied by a warehouse
order in period r (and some retailer order r ≤ s ≤ t), unless the warehouse has
placed an order in period r. It is straightforward to see that the corresponding
integer program provides a correct formulation to the OWMR problem. Hence,
the LP-relaxation provides a lower bound on the cost of any feasible solution to
the OWMR problem. For the rest of this paper we let (x̂, ŷ) and optLP be the
optimal solution and the value of (P), respectively.

We note that for each J-retailer i, it suffices to consider only the variables
xit

rs with r = s (the warehouse does not hold inventory of J-retailers). Hence,
for the all J-retailers, we can adapt accordingly the constraints (2), (3) and (4).
In particular, the modified constraints (3) and (4), imply that, in an optimal
solution, yi

s ≤ y0
s .

The Monge Property. Recall the Monge property of the holding cost, i.e., prop-
erty 5 of h. We say that a feasible solution (x, y) to (P) satisfies the Monge
property, if xit

rs > 0 (r ≤ s ≤ t) implies that xit
r̃,s̃ = 0 for any �r̃, s̃
 such that

r̃ < r and s̃ > s. Without loss of generality, we will assume that (x̂, ŷ) (the
optimal solution of (P)) satisfies the Monge property. We note that because of
the Monge property on the holding cost, any feasible solution to (P) can be
converted in polynomial time to one that satisfies the Monge property and has
no greater cost.

192 R. Levi and M. Sviridenko

3 The Random Shifts Algorithms

In this section, we will show how to round the optimal solution of (P), denoted
again by (x̂, ŷ), to a feasible solution to the OWMR problem with cost at most 1.8
times the optimal cost. We shall first describe two different randomized rounding
procedures that we call random shift algorithm with retailer two-sided push and
random shift algorithm with retailer one-sided push. Our rounding procedures
run in two phases. In the first phase, we determine the warehouse orders, using
a simple mechanism that we call random shift. In the second phase, we use
the output of the first rounding phase to determine the orders of each retailer.
This phase is done separately for each retailer. We shall show that the expected
cost of each one of the algorithms is guaranteed to be at most twice the cost
of an optimal policy for the OWMR problem. Moreover, the expected cost of
the cheapest among these algorithms is guaranteed to be at most 1.8 times the
optimal cost of the OWMR problem. Due to the lack of space we omit all the
proofs (for details see the full version of the paper).

Random shifts. The warehouse orders are placed using a simple randomized
procedure that is based on the respective values of the y0

r variables in the optimal
solution of (P), i.e., on the values ŷ0

1 , . . . , ŷ
0
T . For the description of the random

shift procedure, consider the interval (0,
∑T

r=1 ŷ0
r]. Each period m = 1, . . . , T is

then associated with the respective interval (
∑m−1

r=1 ŷ0
r ,
∑m

r=1 ŷ0
r] that is of length

ŷ0
m. The input for this procedure is a step parameter c ∈ (0, 1]. Given c, choose a

shift parameter α0 uniformly at random from (0, c]. Let W be the upper ceiling
of the total accumulated weight of fractional warehouse orders in the optimal LP
solution (x̂, ŷ) scaled by 1

c . That is, W = � 1
c

∑T
r=1 ŷ0

r�. It is clear that the interval
(0,

∑T
r=1 ŷ0

r] is contained in the interval [0, cW]. Within the interval [0, cW] focus
on the sequence of points 0, c, . . . , c(W − 1). The shift parameter α0 induces a
sequence of what we call warehouse shift points. Specifically, the set of warehouse
shift points is defined as {α0 + cw : w = 0, . . . ,W − 1}. This set is constructed
through a shift of length α0 to the right of the points 0, c, . . . , c(W − 1). Thus,
there are W shift points that are all located within the interval [0, cW]. Observe
that the sequence of warehouse shift points is a-priori random and is realized
with the shift parameter α0.

The warehouse shift points determine the periods in which warehouse orders
are placed. For each period m = 1, . . . , T , we place a warehouse order in that
period if there is at least one shift point within the interval (

∑m−1
r=1 ŷ0

r ,
∑m

r=1 ŷ0
r]

that is associated with it. That is, we place a warehouse order in period m, if
for some 0 ≤ w ≤W − 1 there exists a warehouse shift point α0 + cw that falls
within the interval (

∑m−1
r=1 ŷ0

r ,
∑m

r=1 ŷ0
r].

Lemma 1. Consider the random shift procedure described above with input length
parameter c ∈ (0, 1]. Then, for each period m = 1, . . . , T , the probability to place a
warehouse order in period m is at most 1

c ŷ
0
m. Thus, the total expected warehouse or-

dering cost of the random shift procedure, denoted byK0 is at most 1
c times the total

warehouse ordering costs in the optimal LP solution. That is, K0 ≤ 1
c

∑T
r=1 ŷ0

rK
0
r .

Improved Approximation Algorithm for the OWMR Problem 193

Let TW := {r1 < r2 < ... < rM} be the set of periods of the warehouse orders as
determined in the first phase of the algorithm. Note that once we decide upon the
warehouse orders, then the OWMR problem decomposes into N single-location,
single-item lot-sizing problems. These problems can be solved optimally using
dynamic programming (see [9] for details) to achieve the minimum overall re-
tailer ordering cost and holding cost under the assumption that warehouse orders
are placed at r1 < r2 < . . . < rM . The collection of the solutions to these single-
location problems provides a solution to the OWMR problem. However, as part
of the worst-case analysis, we next describe the second phase of the randomized
rounding procedures, in which we consider each retailer i separately, and de-
termine its orders. More specifically, we shall describe two different randomized
algorithms and analyze their worst-case expected performance. The correspond-
ing algorithms might not yield the optimal solution with respect to the warehouse
orders placed in phase one. Nevertheless, we shall show that, regardless of the
instance of the problem, the cheapest among the two algorithms will produce a
solution with expected cost at most 1.8 times the cost of an optimal solution for
the OWMR problem.

3.1 Random Shift Algorithm with Retailer Two-Sided Push
Algorithm

Throughout the rest of the paper, we shall refer to the random shift algo-
rithm with two-sided retailer push algorithm as Algorithm 1. As we have al-
ready mentioned, Algorithm 1 has two phases. The first phase is the random
shift procedure described above with step parameter c = 1. Consider again
TW := {r1 < r2 < ... < rM}, the set of warehouse orders placed in the first
phase of the algorithm.

Next we consider each retailer i separately (i = 1, . . . , N), and determine its
orders using what we call two-sided push procedure. First, we shall construct a
sequence of (random) retailer-i shift points in a way similar to how warehouse
shift points are constructed. Let Wi be the upper ceiling of the accumulated
fractional retailer orders in the LP solution. That is Wi = �

∑T
s=1 ŷi

s�. Similar to
the random warehouse shift procedure above, choose a retailer shift parameter
αi uniformly at random from (0, 1] and construct a sequence of Wi retailer-i
shift points {αi + cw : w = 0, . . . ,Wi − 1}. In contrast to the warehouse shift
points, the retailer-i shift points are used to determine only tentative retailer-i
orders. The reason is that placing retailer orders depends also on the output
of the first phase, in which warehouse orders are determined. Thus, the way
tentative retailer-i are determined is similar to how warehouse orders are deter-
mined. For each period m = 1, . . . , T , we say that there is a tentative retailer
order placed in period m, if there is a retailer-i shift point within the interval
(
∑m−1

s=1 ŷi
s,
∑m

s=1 ŷi
s]. The tentative orders are used to determine the permanent

retailer orders. The way this is done depends on whether retailer i is a J-retailer
or a W -retailer. Suppose that there is a tentative retailer i order placed in some
period m, then one of the following two cases applies:

194 R. Levi and M. Sviridenko

Case I: Retailer i is a J-retailer. Recall that, without loss of generality, for J-
retailers we restrict attention only to policies in which warehouse and retailer
orders are placed in the same periods. That is, permanent retailer orders in the
second phase must be placed in periods s ∈ TW , where again TW is the set of
periods of all warehouse orders placed in the first phase of the algorithm. Since
we place retailer orders only in periods s ∈ TW , if m /∈ TW we wish to push this
tentative retailer order. In particular, for each tentative retailer order, we place
up to two permanent retailer orders: one order is placed in the latest period
with warehouse order in TW prior to period m, if such order exists (i.e., ‘pushed’
earlier in time); a second order is placed in the earliest period with warehouse
order in TW after period m (i.e., ‘pushed’ later in time), if such order exists. In
other words, we place permanent retailer-i orders in max{r ∈ TW : r ≤ m} and
min{r ∈ TW : r ≥ m}.
Case II: Retailer i is a W -retailer. In this case we can place a permanent retailer
order in each period m for which there is a tentative order. However, we also place
a second permanent retailer order in the earliest period with warehouse in TW

(strictly) after m, if such warehouse order exists. That is, we place one permanent
order at m and possibly a second permanent order in min{r ∈ TW : r > m}.

The reason that we push tentative retailer orders both earlier and later in time
will be made clear in the following discussion. Intuitively, we place additional
retailer orders to guarantee that the holding costs incurred are not too high (see
also Lemmas 3 and 4 below).

Let Ti be the set of permanent retailer orders placed by Algorithm 1. We
claim that the sets TW and Ti (for i = 1, . . . , T) induce a feasible solution, in
which, each demand point (i, t), is satisfied by the cheapest pair of orders �r, s
,
such that r ∈ TW and s ∈ Ti. This is established is Lemma 3 below.

From Lemma 1 above it follows that the total expected warehouse ordering
cost of Algorithm 1 is bounded by

∑T
r=1 ŷ0

rK
0
r . Next we bound the total expected

retailer ordering costs, which is denoted by KI .

Lemma 2. The total expected retailer ordering costs of Algorithm 1 is at most
twice the total retailer ordering costs in (x̂, ŷ), the optimal solution of the LP.
That is, KI ≤ 2

∑N
i=1

∑T
s=1 ŷi

sK
i.

Finally, we wish to bound the total expected holding costs incurred by Algorithm
1, that is denoted by H. Each demand point (i, t) is considered separately (for
i = 1, . . . , N and t = 1, . . . , T), and its expected holding costs is bounded by the
holding cost that this demand point incurs in the optimal LP solution (x̂, ŷ). In
particular, focus on some demand point (i, t), and let Ĥ it = Ĥ be the random
holding costs that Algorithm 1 incurs in satisfying this demand point. (Since the
following discussion is focused on a fixed demand point, we simplify notation
and omit the subscript of it whenever possible.) We wish to bound E[Ĥ], the
expectation of Ĥ .

Service points. Consider demand point (i, t), and let Sit = S be set of all pairs
of warehouse and retailer orders, which fractionally serve (i, t) in the optimal
LP solution (x̂, ŷ). Specifically, let S = {�rm, sm
 : x̂it

rm,sm
> 0}. Without loss

Improved Approximation Algorithm for the OWMR Problem 195

of generality assume that S = {�rm, sm
 : m = 1, . . . , L}, where Hit
r1,s1

≤
Hit

r2,s2
≤ . . . ,≤ Hit

rL,sL
. That is, the order pairs �r1, s1
, . . . , �rL, sL
 are sorted

in an increasing order according to the holding costs they incur. However, since
the solution (x̂, ŷ) is assumed to have the Monge Property, we conclude that
�rm, sm
 ≥ �rm′ , sm′
, i.e., rm ≥ rm′ and sm ≥ sm′ , for each 1 ≤ m < m′ ≤ L.
Moreover, if i is a J-retailer, we have sm = rm, for each m = 1, . . . , L. To
simplify notation, we use Hm to denote Hit

rm,sm
, for each m = 1, . . . , L, assuming

H1 ≤ H2 ≤ . . . ≤ HL. Thus, the holding cost incurred by (i, t) in the optimal
LP solution (x̂, ŷ) can be expressed as

∑L
m=1 x̂it

rm,sm
Hm.

Next we show that the holding costs incurred by demand point (i, t) under
Algorithm 1 is, with probability 1, at most HL, that is, Ĥ ≤ HL.

Lemma 3. For each demand point (i, t), the holding cost it incurs under Al-
gorithm 1 is guaranteed to be at most HL. That is, Ĥ ≤ HL with probability
1.

Lemma 3 above implies that under Algorithm 1, demand point (i, t) is served
by a pair of orders �r′, s′
, such that rL ≤ r′ and sL ≤ s′. Thus, we can express
E[Ĥ] as ∑

r,s�: rL≤r, sL≤s

Hit
rsPr(Ĥ = Hit

rs), (6)

where Pr(Ĥ = Hit
rs) denotes the corresponding probability that under Algorithm

1 demand point (i, t) is served by pair of orders �r, s
.
Given (6) above, it is straightforward to derive an upper bound on the ex-

pected holding costs incurred by demand point (i, t) under Algorithm 1. Let
H0 = 0 and observe that

E[Ĥ] =
∑

r,s�: rL≤r, sL≤s

Hit
rsPr(Ĥ = Hit

rs) (7)

≤ H1Pr(H0 ≤ Ĥ ≤ H1) +
L∑

m=2

HmPr(Hm−1 < Ĥ ≤ Hm)

= H1Pr(Ĥ ≤ H1) +
L∑

m=2

Hm[Pr(Ĥ ≤ Hm)− Pr(Ĥ ≤ Hm−1)]

= HL +
L−1∑
m=1

Pr(Ĥ ≤ Hm)[Hm −Hm+1].

Recall that Pr(·) refers to the corresponding probability induced by Algorithm 1.
The inequality in (7) follows from the fact that, for each m = 1, . . . , L, we weight
the probability Pr(Hm−1 < Ĥ ≤ Hm) by Hm, which is the highest holding costs
within this range. The first equality follows from the fact that Pr(Ĥ < 0) = 0
and the identity Pr(Hm−1 < Ĥ ≤ Hm) = Pr(Ĥ ≤ Hm)− Pr(Ĥ ≤ Hm−1). The

196 R. Levi and M. Sviridenko

last equality follows from Lemma 3 in which we show that Pr(Ĥ ≤ HL) = 1.
Moreover, observe that the term

∑L−1
m=1 Pr(Ĥ ≤ Hm)[Hm − Hm+1] above is

non-positive, since Hm −Hm+1 ≤ 0. This implies that if we consider (7) above,
but, for each m = 1, . . . , L − 1, replace Pr(Ĥ ≤ Hm) with a (non-negative)
lower bound on that probability, then the upper bound developed in (7) is still
maintained.

Next we shall establish lower bounds on the corresponding probabilities
Pr(Ĥ ≤ Hm).

Lemma 4. For each m = 1, . . . , L − 1, the probability that the holding costs
incurred by (i, t) under Algorithm 1 are lower than Hm is at least (

∑m
u=1 x̂it

ru,su
)2.

That is, Pr(Ĥ ≤ Hm) ≥ (
∑m

u=1 x̂it
ru,su

)2.

Lemma 4 and (7) above imply that

E[Ĥ] ≤ H1(x̂it
r1,s1

)2 +
L∑

m=2

Hm

[
(

m∑
u=1

x̂it
ru,su

)2 − (
m−1∑
u=1

x̂it
ru,su

)2
]

(8)

=
L∑

m=1

Hm

[
(

m∑
u=1

x̂it
ru,su

)2 − (
m−1∑
u=1

x̂it
ru,su

)2
]
.

The inequality follows because, for each m = 1, . . . , L − 1, we replace Pr(Ĥ ≤
Hm) by the lower bound established in Lemma 4 above. Moreover, in Lemma
3 we have already observed that Pr(Ĥ ≤ HL) = 1 and Constraint (2) implies
that (

∑L
u=1 x̂it

ru,su
)2 = 1.

To conclude the analysis, we next introduce the density holding cost func-
tion H̄it(α) = H̄(α). This function is defined for each demand point and based
on the optimal LP solution (x̂, ŷ). For a given value of α ∈ (0, 1], let m(α)
be the index such that α ∈ (

∑m(α)−1
u=1 x̂it

ru,su
,
∑m(α)

u=1 x̂it
ru,su

]. Then we define
H̄(α) = Hm(α). The function H̄(α) is a step function with steps at the points
0, x̂it

r1,s1
, . . . ,

∑L−1
u=1 x̂it

ru,su
and step heights H1, . . . , HL, respectively. Moreover,

the integral of H̄(α) over (0, 1] is equal to the holding costs incurred by (i, t)
in the LP optimal solution (x̂, ŷ). That is,

∫ 1
0 H̄(α)dα =

∑L
u=1 x̂it

ru,su
Hu. We

note that Shmoys, Tardos and Aardal [8] have used a similar function to H̄(α)
in their seminal paper that provides the first constant approximation algorithm
for the classical metric facility location problem. Next we shall describe another
application of this function.

Specifically, Inequality (8) and the properties of the function H̄(α) imply

E[Ĥ] ≤
L∑

m=1

Hm

[
(

m∑
u=1

x̂it
ru,su

)2 − (
m−1∑
u=1

x̂it
ru,su

)2
]

(9)

= 2
∫ 1

0
αH̄(α)dα ≤ 2

∫ 1

0
H̄(α)dα ≤ 2

L∑
u=1

x̂it
ru,su

Hu.

Improved Approximation Algorithm for the OWMR Problem 197

The second equality follows from the properties of H̄ , being a step function. The
second inequality follows from the fact that we integrate over [0, 1]. This implies
the following lemma.

Lemma 5. Let H denotes the total expected holding costs incurred by Algorithm
1. Then these costs are at most twice the total holding costs incurred in the
optimal LP solution (x̂, ŷ). That is, H ≤ 2

∑T
t=1

∑
r,s:r≤s≤t x̂

it
rsH

it
rs.

3.2 Random Shift Algorithm with One-Sided Shift

Next we describe the second algorithm that we refer to as Algorithm 2. In this
algorithm, we shall place the warehouse orders more frequently, incurring more
warehouse ordering costs, in order to save some of the retailer ordering costs
and holding costs incurred. In the first phase of Algorithm 2, we determine the
warehouse orders by applying the random shift procedure described above with
some step parameter c ∈ (0, 0.5]. Let TW be again the set of periods of the ware-
house orders placed by the algorithm. From Lemma 1 above, we conclude that
the total expected warehouse ordering costs of Algorithm 2 is at most 1

c times
the warehouse ordering costs in the LP solution. That is, K0 ≤ 1

c

∑T
r=1 ŷ0

rK
0
r .

In the second phase of the algorithm we determine the retailer orders, and this
is again done separately for each retailer. First we generate retailer-i shift points
in a way similar to what described above for Algorithm 1 but with a different
length parameter. Let Wi be the upper ceiling of the accumulated fractional
retailer orders in the LP solution scaled by 1

1−c . That is Wi = � 1
1−c

∑T
s=1 ŷi

s�.
Similar to Algorithm 1 above, choose a retailer shift parameter αi uniformly
at random from (0, 1 − c] and construct the sequence of retailer-i shift points,
{αi + (1 − c)w : w = 0, . . . ,Wi − 1}. We again use the retailer shift points to
determine tentative retailer orders. For each period m = 1, . . . , T , we say that
there is a tentative retailer order placed in period m, if there is a retailer shift
point that falls within the interval (

∑m−1
s=1 ŷi

s,
∑m

s=1 ŷi
s]. The permanent retailer

orders are again placed according to whether retailer i is a J-retailer or a W -
retailer. Suppose that there is a tentative retailer i order placed in some period
m, then one of the following two cases applies:

1. Retailer i is a J-retailer. In this case we simply push the tentative order to
the earliest period in TW later than in time, if such order exists. That is, we
place the permanent order in min{r ∈ TW : r ≥ m}.

2. Retailer i is a W -retailer. In this case we can simply place a permanent
retailer order in period m.

The next Lemma bounds the total expected retailer ordering costs incurred
by Algorithm 2. The proof is similar to that of Lemma 2.

Lemma 6. Let KI be the overall expected retailer ordering costs incurred by Al-
gorithm 2. Then these costs are at most 1

1−c times the total retailer ordering costs
incurred in the LP optimal solution (x̂, ŷ). That is, KI ≤ 1

1−c

∑N
i=1

∑T
s=1 ŷi

sK
i

198 R. Levi and M. Sviridenko

For each i = 1, . . . , N , let Ti be again the set of periods of permanent retailer-i
orders placed by the algorithm. It is readily verified that together with TW this
induces a feasible solution to the OWMR, in which each demand point is served
from the cheapest possible pair of orders (see Lemma 7 below).

Finally, we again bound the total expected holding costs incurred by Algo-
rithm 2. Similar to the analysis of Algorithm 1, we shall consider each demand
point separately, and bound the expected holding costs it incurs under Algorithm
2.

Let Ĥ be again the holding cost demand point (i, t) incurs in the solution
obtained by Algorithm 2. First we show that the holding cost incurred by demand
point (i, t) under Algorithm 2 is, with probability 1, at most HL, that is, Ĥ ≤ HL.

Lemma 7. For each demand point (i, t), the holding cost it incurs under Algo-
rithm 2 is at most HL. That is, Ĥ ≤ HL with probability 1.

Lemma 7 above implies that Inequality (7) is valid (but with the respective
probabilities defined with respect to Algorithm 2). Similar to the analysis of
algorithm 1, the next step will be to develop lower bounds on Pr(Ĥ ≤ Hm),
which is now defined with respect to Algorithm 2.

Lemma 8. Let Pr(Ĥ ≤ Hm) denote the probability that demand point (i, t) is
satisfied from a pair of orders �r, s
 with cost at most Hm. Then

Pr(Ĥ ≤ Hm) ≥ max{0,
∑m

u=1 x̂it
ru,su

− c

1− c
}.

Lemma 8 and Inequality (7) imply that

E[Ĥ] ≤ 1
1− c

L∑
u=m(c)

Hux̂
it
ru,su

≤ 1
1− c

L∑
u=1

x̂it
ru,su

Hu.

We have established the following lemma.

Lemma 9. Let H denote the overall expected holding costs incurred by Algo-
rithm 2 with a step parameter c ∈ (0, 0.5]. Then H is at most 1

1−c times the
holding costs incurred by the optimal LP solution (x̂, ŷ). That is,
H ≤ 1

1−c

∑N
i=1

∑T
t=1

∑
r,s:r≤s≤t x̂

it
rsH

it
rs.

Lemmas 6 and 9 imply the following theorem.

Theorem 1. The overall expected costs incurred by Algorithm 2 with a step
parameter c ∈ (0, 0.5] is at most

1
c

T∑
r=1

ŷ0
rK

0
r +

1
1− c

N∑
i=1

T∑
s=1

ŷi
sK

i +
1

1− c

N∑
i=1

T∑
t=1

∑
r,s:r≤s≤t

x̂it
rsH

it
rs.

It is readily verified that for c = 0.5 Algorithm 2 is a randomized 2-approximation
for the OWMR problem.

Improved Approximation Algorithm for the OWMR Problem 199

An Improved Approximation Algorithm. Next we use both Algorithm 1 and
Algorithm 2 together and show that taking the algorithm with the minimum
expected cost among them yields an improved worst-case guarantee of 1.8. First,
choose the step parameter of Algorithm 2 to be c = 1/3. Using the fact that
min{a, b} ≤ λa + (1 − λ)b, for each 0 ≤ λ ≤ 1, we apply Lemmas 1, 2, 5 and
Theorem 1 (with c = 1/3) and take λ = 3/5 to conclude that the best out of
two solutions has expected value at most 1.8 the optimal expected cost.

Theorem 2. There exists a randomized 1.8-approximation algorithm for the
OWMR problem and its special case the JRP problem.

We note that the algorithm can be derandomized (see the full version for details).

References

1. E. Arkin, D. Joneja, and R. Roundy. Computational complexity of uncapacitated
multi-echelon production planning problems. Operations Research Letters, 8:61–66,
1989.

2. A. Chan, A. Muriel, Z.-J. Shen, D. Simchi-Levi, and C.-P. Teo. Effectiveness of
zero inventory ordering policies for an one-warehouse multi-retailer problem with
piecewise linear cost structures. Management Science, 48:1446–1460, 2000.

3. A. Federgrun and M. Tzur. Time-partitioning heuristics: Application to one ware-
house, multi-item, multi-retailer lot-sizing problems. Naval Research Logistics,
46:463–486, 1999.

4. R. Levi, R. O. Roundy, and D. B. Shmoys. Primal-dual algorithms for determin-
istic inventory problems. Technical Report TR1042, ORIE Department, Cornell
University, 2004. Submitted.

5. R. Levi, R. O. Roundy, and D. B. Shmoys. Primal-dual algorithms for deterministic
inventory problems. In Proceedings of the 36th Annual ACM Symposium on Theory
of Computing, pages 353–362, 2004.

6. R. Levi, D. B. Shmoys, and R. O. Roundy. A constant approximation algorithm
for the one-warehouse multi-retailer problem. In Proceedings of the 15th Annual
SIAM-ACM Symposium on Discrete Algorithms, pages 365–374, 2005.

7. Z. J. Shen, D. Simchi-Levi, and C. P. Teo. Approximation algorithms for the
single-warehouse multi-retailer problem with piecewise linear cost structures. url:
citeseer.nj.nec.com/439759.html.

8. D. B. Shmoys, E. Tardos, , and K. I. Aardal. Approximation algorithms for facility
location problems. In Proceedings of the 29th Annual ACM Symposium on Theory
of Computing, pages 265–274, 1997.

9. H. M. Wagner and T. M. Whitin. Dynamic version of the economic lot sizing
model. Management Science, 5:89–96, 1958.

10. P. H. Zipkin. Foundations of inventory management. The McGraw-Hill Companies,
Inc, 2000.

Hardness of Preemptive Finite Capacity
Dial-a-Ride

Inge Li Gørtz�

Technical University of Denmark
ilg@imm.dtu.dk

Abstract. In the Finite Capacity Dial-a-Ride problem the input is a
metric space, a set of objects {di}, each specifying a source si and
a destination ti, and an integer k—the capacity of the vehicle used
for making the deliveries. The goal is to compute a shortest tour for
the vehicle in which all objects can be delivered from their sources to
their destinations while ensuring that the vehicle carries at most k ob-
jects at any point in time. In the preemptive version an object may
be dropped at intermediate locations and picked up later and deliv-
ered. Let N be the number of nodes in the input graph. Charikar and
Raghavachari [FOCS ’98] gave a min{O(log N), O(k)}-approximation al-
gorithm for the preemptive version of the problem. In this paper we
show that the preemptive Finite Capacity Dial-a-Ride problem has no
min{O(log1/4−ε N), k1−ε}-approximation algorithm for any ε > 0 un-
less all problems in NP can be solved by randomized algorithms with
expected running time O(npolylogn).

1 Introduction

Vehicle routing and delivery problems have been widely studied in Computer Sci-
ence and Operations Research. These problems occur in many practical settings
such as transportation of goods or passengers and robotics (see Christofedes [5]
and Golden and Assad [10]). Many of these problems are NP-hard and there has
been a great deal of research in finding and analyzing heuristics to solve these
problems. One such problem is the Finite Capacity Dial-a-Ride problem—or
Dial-a-Ride for short—which is defined as follows. The input is a metric space,
a set of objects, where each object di specifies a source si and a destination ti,
and an integer k—the capacity of the vehicle used for making the deliveries.
The goal is to compute a shortest tour for the vehicle in which all objects can
be delivered to their destinations (from their sources) while ensuring that the
vehicle carries at most k objects at any point in time. There are two variants
of the problem: the non-preemptive case, in which an object once loaded on the
vehicle stays on it until delivered to its destination, and the preemptive case
in which an object may be dropped at intermediate locations and then picked

� This work was performed while the author was a Ph.D. student at the IT University
of Copenhagen.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 200–211, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Hardness of Preemptive Finite Capacity Dial-a-Ride 201

up later by the vehicle and delivered. The Dial-a-Ride problem generalizes the
Traveling Salesman problem (TSP) even for k = 1 and is thus NP-hard.

Let N denote the number of nodes in the input graph, i.e., the number of
points that are either sources or destinations. In this paper we show that the pre-
emptive Dial-a-Ride problem has no min{O(log1/4−ε N), k1−ε}-approximation
algorithm for any ε > 0 unless NP ⊆ ZPTIME(npolylogn)1. To our knowledge, the
TSP lower bound—which is a small constant—was the best known so far.

The Dial-a-Ride problem has several practical applications such as transporta-
tion of elderly and/or disabled persons and courier services. In practice, multi-
vehicle systems, where there are more than one vehicle, are more common. Since
single-vehicle Dial-a-Ride is a special case of the multi-vehicle Dial-a-Ride prob-
lem, the hardness results in this paper holds for these problems a well.

Previous and Related Results. Guan [12] proved that the preemptive case is
NP-hard for trees when k ≥ 2. Frederickson and Guan [8] showed that the
unit-capacity non-preemptive case is NP-hard on trees. For this case Freder-
ickson et al. [9] gave an 1.8-approximation algorithm on general graphs. The
first non-trivial approximation algorithms for the Dial-a-Ride problem for gen-
eral k were given by Charikar and Raghavachari [4]. For the preemptive case
they gave a 2-approximation algorithm for trees. Using the results on probabilis-
tic approximation of metric spaces by tree metrics [7] this gives an O(log N)-
approximation for arbitrary metrics. For the non-preemptive case they gave an
O(
√

k)-approximation algorithm for special instances on height-balanced trees.
As above this implies an O(

√
k logN)-approximation for arbitrary metrics. For

points on a line they note that they have a 2-approximation. They also show that
the ratio of the cost of the optimal non-preemptive solution to the cost of the
optimal preemptive solution can be as large as Ω(k2/3). As noted by Charikar
and Raghavachari an O(k)-approximation algorithm can be obtained by taking
the O(1)-approximation algorithm for the unit-capacity case. We note that there
is a simple 3N

k -approximation algorithm (due to [14] for k = N).
Several papers have presented exact exponential time algorithms and heuris-

tic algorithms for the Dial-a-Ride problem. For a description of many of these
approaches see [6]. A related problem is the k-delivery TSP where all objects
are identical and can be delivered to any of the destination points. Charikar
et al. [3] gave a 5-approximation algorithm for both the preemptive and the non-
preemptive problem. Haimovich and Rinnooy Kan [13] gave a 3-approximation
for the problem when all objects initially are located at one central depot.

Our Results and Techniques. Our results rely on the hardness results for the
two network design problems Buy-at-Bulk and SumFiber-ChooseRoute(SFCR)
(defined in the next section). Andrews [1] and Andrews and Zhang [2] showed
that there is no O(log1/4−ε N)-approximation algorithm for uniform Buy-at-
Bulk and SFCR, respectively, for any ε > 0 unless NP ⊆ ZPTIME(npolylogn). The
1 ZPTIME(npolylogn) is the class of problems solvable by a randomized algorithm that

always returns the right answer and has expected running time O(npolylogn), where
n is the size of the input.

202 I. Li Gørtz

result for SFCR uses a network constructed from an interactive 2-prover system
for Max3Sat. They show that if the Max3Sat formula φ is satisfiable then the
optimal solution to the SFCR instance has small cost, and if φ is unsatisfiable
then it has high cost. More precisely, the cost if φ is unsatisfiable is a factor of
γ more than if φ is satisfiable for γ = O(log1/4−ε N). Hence if there were an
α-approximation for SFCR with α < γ, then we would be able to determine
if φ was satisfiable. Using almost the same construction we show that Buy-at-
Bulk with cost function h(x) = �x

k � has no O(log1/4−ε N)-approximation for
any ε > 0 unless NP ⊆ ZPTIME(npolylogn), when k is between log11/(8ε)−9/2 n =
Ω(log1/4+(7ε)/11 N) and O(2log2 n/ logn). Here n is the size of φ. By changing
some of the parameters in the construction we are able to show that the problem
is not approximable within a factor of k1−ε for any ε > 0 when k < log1/4 N .

We then show the same hardness results for the preemptive Dial-a-Ride prob-
lem by showing a relation between this problem and the Buy-at-Bulk problem
with cost function h(x) in the network constructed from the 2-prover system.
This is the main technical contribution of this paper. Due to lack of space many
proofs are omitted. They can be found in the full version of the paper [11].

2 Definitions

Uniform Buy-at-Bulk. Given an undirected network N , with lengths le on the
edges and a set {(si, ti)} of source-destination pairs. Each pair (si, ti) has an
associated demand δi. There is a cost function f on the edges, which is a function
of the amount of demand xe using edge e. Function f is subadditive2, and f(0) =
0. The goal is to route all demands δi from their source si to their destination ti
minimizing the total cost. The demands are unsplittable, i.e., demand δi must
follow a single path from si to ti. The total cost of the solution is

∑
e f(xe)le.

SumFiber-ChooseRoute (SFCR). Here we are given N , le, {(si, ti)}, and δi as
in Buy-at-Bulk. Each demand requires bandwidth equivalent to one wavelength.
Each fiber can carry k wavelengths, and the cost of deploying x fibers on edge
e is x · le. The problem is to specify a path from si to ti for all demands δi,
and a wavelength for the demand λi, minimizing the total cost. Let fe(λ) be the
number of demands assigned to wavelength λ that are routed through edge e.
Then maxλ fe(λ) is the number of fibers needed on edge e. Thus the total cost
of the solution is

∑
e le maxλ fe(λ).

Interactive Proof Systems. A Raz-verifier is an interactive two-prover system.
An interactive two-prover system for Max3Sat(5) consists of a polynomial
time verifier with access to a source of randomness and two computationally
unbounded provers. The verifier sends a polynomial size query to each prover
and receives a polynomial size answer. The provers try to convince the verifier
that the formula is satisfiable. The provers cannot communicate with each other

2 f(x + y) ≤ f(x) + f(y).

Hardness of Preemptive Finite Capacity Dial-a-Ride 203

and are restricted to see only the queries addressed to them. Based on the ran-
dom bits and the answers to the queries the verifier decides whether or not to
accept the input. The verifier accepts with probability 1 if φ is satisfiable. If φ is
unsatisfiable then regardless of how the provers answer the verifier accepts with
a very low probability, η, called the error probability.

Proof System Parameters. Let R be the random bits, Qi the random query sent
to prover i, and Ai the answer returned by prover i. We will use lowercase letters
to denote specific values of these strings. Each random string r uniquely identifies
a pair of queries q0 and q1. Each query may have many different answers. We
say a ∈ q if a is an answer to query q. We assume that the verifier appends
the name of the prover to the query and the provers append the query name
to its answer string. This way, an interaction is uniquely identified by the triple
(r, a0, a1). If the verifier accepts the answers a0 and a1 from the provers we
say that (r, a0, a1) is an accepting interaction. Note that two different random
strings might result in the same prover-0 query (or prover-1 query), but in that
case they will result in different prover-1 (prover-0) queries. Let m(Qi) denote
the number of distinct possible values of Qi. By padding random bits, we can
assume, m(Q0) ≤ m(Q1) < 2m(Q0). We can ensure that the Raz verifier has
the following properties (here |x| denotes the number of bits in the string x):
|R| = O(log2 n), |Qi| = O(log2 n), |Ai| = O(log2 n), and η = 2−Ω(log n). For each
i and for any q ∈ {0, 1}|Qi|: Pr[Qi = q] ∈ {0, 1/m(Qi)}.

3 Relation Between Buy-at-Bulk and Dial-a-Ride

The following lemma shows a relation between Buy-at-Bulk and Dial-a-Ride.

Lemma 1. Let OPTB be the value of an optimal solution to a Buy-at-Bulk
instance B with source destination pairs S in graph G and cost function h(x) =
�x

k �, and let OPTD be the value an optimal solution to the Dial-a-Ride instance
D with the same source-destination pairs S in G. Then OPTB ≤ OPTD.

Proof. We will abuse notation and let OPTi stand for both the value of the
optimal solution and the solution itself. We can turn OPTD into a solution to
instance B as follows: Route a demand δi from its source si to its destination ti
by the same edges as object δi passes in OPTD. It is straightforward to verify
that this is a valid solution and that the cost is no larger than OPTD. ��
Since the optimal solution to B might be disconnected, there is in general no
way to turn OPTB into a solution to D at a cost bounded in terms of OPTB.
However, on the network used to construct the hardness result for Buy-at-Bulk
we will show that in the case were the Max3Sat instance φ is satisfiable it is
possible to turn the solution to B into a solution to D at cost at most 7 ·OPTB.

4 The Network

In this section we describe the network that is used to show hardness of SFCR
in [2]. The network is constructed randomly from an interactive proof system

204 I. Li Gørtz

sr tr′

sr′

trsr′′ tr′′

Fig. 1. The basic network N0. For each of the three random strings r, r′ and r′′, four
canonical paths corresponding to four accepting interactions, are shown (r solid, r′

dashed, and r′′ dotted). The long thick edges are the answer edges.

for Max3Sat. The idea is for each demand to define a set of canonical paths on
which the demand can be carried. These canonical paths correspond to accepting
interactions and are short paths directly connecting the source and destination.

We first construct a basic network N0, which is used as the base case in the
random construction. Given an instance φ, first construct the interactive two-
prover system. This is then turned into an instance of SFCR as follows. For each
possible answer a there is an answer edge (also denoted by a). For each random
string r there is a source node sr, a destination node tr, and a demand dr of
one to be routed from sr to tr. For each accepting interaction (r, a0, a1) there is
a canonical path p. This path starts at node sr, passes through a0 and a1 and
ends at tr. To make this possible we place edges between sr and a0, between a0
and a1, and between a1 and tr. The edge between a0 and a1 is referred to as a
center edge, and the edge between sr and a0, and between a1 and tr as a demand
edge. For each query q the answer edges a ∈ q are grouped together (see Fig. 1).
Answer edges have length h > 1 and the other edges have length 1.

Before defining the final network, we define a random network N1 in terms
of N0 and two parameters X and Z. The network essentially replicates N0 in
the vertical direction XZ times. Each answer edge a0 (resp. a1) of N0 has XZ
copies, denoted by a0,x,z (a1,x,z) where 0 ≤ x < X and 0 ≤ z < Z. For each
random string r, create X demands dr,x and X source and destination nodes, sr,x

and tr,x, where 0 ≤ x < X . Each of the X demands dr,x routes one unit of flow
from sr,x to tr,x. For each accepting interaction (r, a0, a1), the demand dr,x has a
canonical path that starts at sr,x, passes through a0,x′,z′ and a1,x′′,z′′ and ends at
tr,x. The answer edges a0,x′,z′ and a1,x′′,z′′ are chosen randomly. More precisely,
x′ and x′′ are chosen uniformly at random from the range {0, 1, . . . , X − 1} and
z′ and z′′ are chosen uniformly at random from the range {0, 1, . . . , Z − 1}. To
make the canonical paths feasible, N1 has center edges connecting a0,x′,z′ and
a1,x′′,z′′ , and edges connecting sr,x to a0,x′,z′ , and a1,x′′,z′′ to tr,x.

The final network N2 is essentially a concatenation of N1 in the horizontal
direction Y times for some parameter Y , where each level is constructed ran-
domly and independently. Each answer edge is indexed by a0,x,z,y (resp. a1,x,z,y)
where y ∈ {0, 1, . . . , Y − 1}. As in N1, X demands dr,x, 0 ≤ x < X , are created
for each random string r. For each accepting interaction (r, a0, a1), the demand
dr,x has a canonical path starting at sr,x followed by answer edges a0,x,z,0 and
a1,x,z,0 chosen uniformly at random at level y = 0. At each subsequent level y,
the answer edges are chosen uniformly at random until the path ends at tr,x.

Hardness of Preemptive Finite Capacity Dial-a-Ride 205

The center edges and demand edges are defined by the canonical paths. Each
canonical path also requires an edge between each consecutive pair of levels.

5 Hardness of Buy-at-Bulk with Cost Function �x
k
�

In this section we use the network N2 to show hardness of Buy-at-Bulk with cost
function �x

k �. The results are obtained by changing some of the parameters in the
network compared to paper by Andrews and Zhang [2], but otherwise the proofs
in this section are similar to the ones in the [2]. We use the following parameters
to show hardness with dependence on N .
• � = logα n for some constant α. • σ = log

α
4 n

• Z = 2|r|

k min{m(Q0),m(Q1)} • Y =
√

� = log
α
2 n

• X = (26+|r|+|a0|+|a1|Y Z)2l+1 = 2O(logα+2 n) • h = 2|r|

(m(Q0)+m(Q1))Z

• k = log
α
4 +4 n • η = 1

σ2 log n

The only parameter changed compared to [2] is h. To show hardness with
dependence on k we allow k to be smaller than logα/4+4 n. To make the proofs
go through we change Z and h as follows. Let c > 1 be a constant such that
k = logα/4+4 n/c and set

• Z = 2|r|

ck min{m(Q0),m(Q1)} = 2|r|

log
α
4 +4 n·min{m(Q0),m(Q1)} • h = 2|r|

c(m(Q0)+m(Q1))Z

The next two lemmas hold for both definitions of Z and h. An answer edge is
said to be bought if any demand is routed through it.

Lemma 2. If φ is satisfiable, then the Buy-at-Bulk instance has a solution of total
cost at most 2|r|(2Y + 1)X + 2(m(Q0) + m(Q1))hXY Z.

Proof. Since φ is satisfiable there are two provers that always cause the verifier
to accept. We route the demand on answer edge a if and only if for these two
provers a is the answer to query q. For each string r there must be some accepting
interaction (r, a0, a1) for which both a0 and a1 have been bought. Each of the
demands dr,x, for 0 ≤ x < X , has one canonical path that corresponds to
(r, a0, a1). The demand dr,x is routed along this path. There are 2Y + 1 length
one edges on this path and thus the total number of edges of length one needed
is at most 2|r|(2Y + 1)X . It is possible to show that the expected cost of an
answer edges is two. The details are omitted due to lack of space. The expected
total cost of the answer edges is therefore 2XZY (m(Q0) + m(Q1))h. The total
solution has expected cost 2|r|(2Y + 1)X + 2(m(Q0) + m(Q1))hXY Z, and the
cost of the optimal solution must therefore have cost no higher than that. ��
The second lemma gives a lower bound on the cost of the solution when φ is
unsatisfiable. The proof is omitted due to lack of space.

Lemma 3. With probability 2
3 − o(1), if the instance φ of 3SAT is unsatisfiable

then the cost of any solution to our instance of Buy-at-Bulk is at least

min{σh

10
(m(Q0) + m(Q1))XY Z,

Y 2

4k
(
(X2|r|)(1 − 77

375
− o(1))−X

)
}.

206 I. Li Gørtz

Combining Lemma 2 and 3 we get the following hardness result for Buy-at-Bulk
with cost function h(x) = �x

k �. The proof is omitted due to lack of space.

Corollary 1. For any ε > 0, there is no min{O(log
1
4−ε N), k1−ε}-approximation

algorithm for Buy-at-Bulk with cost function h(x) = �x
k � unless all problems in NP

can be solved by a randomized algorithm with expected running time O(npolylog n).

6 Routing in the Network

Let B be the instance of Buy-at-Bulk constructed in Section 5, and let D be
an instance of preemptive Dial-a-Ride with the same source-destination pairs in
the same network. Let SOLB denote the solution used to give the bound on the
cost of the optimal solution in Lemma 2, and let OPTD be the optimal solution
to D. In this section we show how to construct a solution to D of cost at most
7 · SOLB when φ is satisfiable.

Let N f
2 be the network induced by the edges bought in SOLB. Recall that in

SOLB all demands are routed on canonical paths. For each demand d, let pd be
the canonical path which d is routed on in SOLB . We say that edge e ∈ N f

2 is
used by an object d if e is on the path pd. Let ue be all the objects using edge e.

6.1 The Tour When N f
2 Is Connected

We will first explain how to construct the tour when N f
2 is connected. We will

say that the tour is using an edge in the forward direction if it uses it in the same
direction as the demands routed on this edge and backwards otherwise. Assume
that any edge in N f

2 is used by at most k objects (we show later how to get rid
of this assumption). We will ensure that the tour has the following properties:

(i) The tour only uses edges from N f
2 .

(ii) An object d will only be in the vehicle when the vehicle is on an edge e ∈ pd.
(iii) When the vehicle goes forward on an edge it is either empty or carries all

objects using that edge.

The algorithm to construct the tour has two kinds of phases—a delivery phase
and a pickup phase—which are intermixed. In a delivery phase we are in the
process of delivering a certain object. In a pickup phase the vehicle is on its way
to pick up the next object to be delivered. The vehicle is always empty in a
pickup phase. The algorithm calls the following two procedures.

Deliver(d,s): Follow pd. For each edge on pd there are two cases:
1. All objects from ue are present at u: Pick up all the objects and traverse

e. At node v drop off all objects not going in the same direction as d.
2. One or more objects from ue are not present at u: Drop off d at node

u, and go to pick up these objects as follows. Let d′ be such an object.
Follow pd′ backwards from e until encountering d′. Pick up d′ and deliver
d′ at node u (not sd′) by recursively calling Deliver(d′,u).

Hardness of Preemptive Finite Capacity Dial-a-Ride 207

Route(d): First deliver d by calling Deliver(d,sd) (this is the delivery phase
for object d). Then follow the route constructed during this call to Deliver
backwards until dd is reached (this is a pickup phase). Whenever encoun-
tering an undelivered object d′ on the way, pick it up and deliver it to its
destination by recursively calling Route(d′).

Algorithm. The algorithm starts at a node sr,x for some r and x, pick up dr,x

and call Route(dr,x). Below we will show that when the vehicle returns to dr,x

all objects are delivered.

Analysis of the Algorithm. It is easy to verify that the tour made by the algo-
rithm satisfies property (i), (ii), and (iii). We will denote the route constructed
during the delivery phase for object d by rd.

Lemma 4. For any object d, the route rd, has the following properties:

(iv) rd only goes backwards on an edge e to fetch ”missing” objects. If d′ is such
an object then e ∈ pd′ .

(v) If rd goes backwards on edge e it returns to the right endpoint of e through
e.

(vi) When route rd traverses an edge e in the forward direction the vehicle
contains all objects using e.

Proof. Property (iv) and (vi) follows immediately from the description of the
algorithm. It remains to prove property (v). All canonical paths go through all
levels of the network in increasing order. Therefore an object missing at the left
endpoint of some edge at level i can be fetched at a level smaller than i or at i
if the edge is not the first edge on level i. It is thus possible to fetch all objects
missing at a certain node, since there are no cyclic dependencies. ��

Lemma 4 gives us the following two corollaries.

Corollary 2. For any object d, the route rd traverses each edge in N f
2 at most

once in each direction.

Corollary 3. For any two objects d1 and d2 the routes rd1 and rd2 are disjoint.

Lemma 5. All objects are delivered to their destination.

Proof. By contradiction. Recall, we assumed N f
2 is connected. Assume some

subset of objects S are not delivered. Consider an object d ∈ S. If d is at a node
u = sd then it was left at u during the delivery phase of some object d′. But then
it would have been picked up and delivered to its destination when the vehicle
traversed rd′ backwards. Thus d must still be at its source sd. Since d is still at
sd the path pd does not share any edges with any path pd′ where d′ is a delivered
object. To see this assume d shared an edge e with a delivered object d′. Due
to property (ii) the vehicle crossed e containing d′, since d′ is delivered. Due to
property (vi) of Lemma 4 d must have been in the vehicle when it crossed e,
and thus d would no longer be at sd. Since SOLB are using canonical paths for

208 I. Li Gørtz

each object, the graph N f
2 has the property that if two canonical paths pd and

pd′′ meet at some vertex then they must share an edge adjacent to that vertex.
Therefore pd cannot share any vertices with any path pd′ where d′ is a delivered
object. This is true for all objects d ∈ S, contradicting that N f

2 is connected. ��

Lemma 6. When N f
2 is connected the tour has length at most 4 · SOLB .

Proof. Let l(rd) denote the length of the route rd. The total length of the parts
of the tour constructed during delivery phases is

∑
d∈D l(rd).

Now consider the parts of the tour constructed during a pickup phase. Here
we are going backwards on the route rd for some object d. During this pickup
phase we stop each time we meet an object d′ and deliver it by calling Route(d′).
Due to Corollary 3 the part of the tour constructed during the call to Route(d′)
is disjoint from rd, since it only contains edges on rd′ . The route rd is thus
traversed at most once during the pickup phases. Thus the total length of the
parts of the tour constructed during delivery phases is at most

∑
d∈D l(rd).

Adding together the total length of the tours constructed during the delivery
phases and the pickup phases, we get that the total length of the tour is at most
2 ·
∑

d∈D l(rd). Using Corollary 2 and Corollary 3 we get that the tour uses each
edge in N f

2 at most 4 times, and thus the cost of the tour is at most 4 ·SOLB. ��

Edges used by more than k Objects. We assumed that any edge in N f
2 is used

by at most k objects. We can get rid of this assumption by a minor modification
of the algorithm. Let Se be the set of objects using edge e. Then the solution
SOLB paid �Se

k � · le for this edge. As before, when we want to traverse e we
go backwards and pick up all objects in Se. We then go forward and back on e
carrying as many objects from Se as possible each time until all objects from Se

are on the right endpoint of e. The number of times we traverse e is �Se

k �, and
thus Lemma 6 still holds.

6.2 N c
2 Connected and N f

2 Disconnected

Let N c
2 be the graph induced by the canonical paths (N2 can contain answer

edges that are not part of any canonical path). If N c
2 is connected but N f

2 is
disconnected we can add edges from N c

2 to N f
2 to connect it. We can do this

by adding edges of total length equal to the number of connected components
minus one times the length of a canonical path in N c

2 .
First we note that since N c

2 consists of the union of canonical paths, then
for any component C in N f

2 there must be another component C′ in N f
2 such

that some object d routed in C has a canonical path p that intersect with a
canonical path p′ for an object d′ routed in C′. We connect C and C′ by adding
the following edges: All edges on p from sd to the intersecting edge e (including
e), and all edges on p′ from e to td′ . We call these added edges a connecting path
from C′ to C. Since N c

2 is connected we can make N f
2 connected by adding c−1

connecting paths, where c is the number of connected components in N f
2 . We

Hardness of Preemptive Finite Capacity Dial-a-Ride 209

add these connecting paths in such a way that all components can be reached
from one component—called the start component—using a path that when going
from component C to a component C′ uses a connecting path from C to C′ (not
from C′ to C). Since the length of a connecting path is the same as the length
of a canonical path the total length is c−1 times the length of a canonical path.
Since each connected component consists of at least one canonical path the total
length of the connecting paths is at most the same as the sum of all edges in
N f

2 , i.e., SOLB.

Constructing the Tour. Start in the start component Cs in N f
2 and deliver the

objects in this component as described in the previous section. Whenever the
vehicle gets to a node dd which is the starting point of a connecting path from
this component to another component C, it follows this connecting path to C
and delivers the objects in C the same way. When all objects in a component are
delivered the vehicle returns to the starting point in this component and from
there to the previous component C′ if such a component exists. It then carries
on delivering the objects in C′.

Lemma 7. When N c
2 is connected the tour has length at most 6 · SOLB.

Proof. If N f
2 is connected it follows from Lemma 6. If N f

2 is disconnected we
use the approach described above. To deliver the objects in a single component
we use no more time than in the previous section. By Lemma 6 the contribution
from these parts of the tour is at most 4 · SOLB in total. To get to the next
component and back again we use a connecting path and the sum of the edges
used to get to and from connected components is thus at most 2 · SOLB. ��

6.3 N c
2 Disconnected

If N c
2 is disconnected we connect it by adding edges of length one between a

source node in one component and a source node in another component . We
call these edges component edges. We add the minimum number of component
edges, i.e., l − 1 where l is the number of connected components. This can be
seen as constructing a tree on the components.

Since we add the component edges between disjoint components in N c
2 , which

are also disjoint components in N2, we do not introduce any new cycles in N2.
Therefore the component edges cannot decrease the cost of the optimal solution
to the Buy-at-Bulk instance or to the Dial-a-Ride instance: Let C1 and C2 be
two components connected by a component edge e. If some object d with source
sd in C1 is using e, then it has to use it again to get back to C1, since sd ∈ C1
and the only connection between C1 and C2 is e.

Constructing the Tour. The vehicle first delivers the objects in a component C
in N c

2 as described in the previous section. When it gets to the source node in the
component that has a component edge to a source node in another component
C′, it goes to C′ and delivers the objects in C′ the same way. When all objects

210 I. Li Gørtz

in a component are delivered it returns to the starting point of this component
and follows the component edge back to the previous component C if such a
component exists. It then carries on delivering the objects in component C.

Lemma 8. The optimal solution to D has cost at most 7 ·OPTB.

Proof. The cost of delivering the objects in the original components of N2 is at
most 6 · SOLB due to Lemma 7. The total length of the new edges is l− 1 which
is less than 1/2 · SOLB, since each connected component has a canonical path of
at least three. The new edges are used twice: once in each direction. ��

7 Hardness of Preemptive Dial-a-Ride

From Lemma 8 and Lemma 2 we get,

Lemma 9. If φ is satisfiable, then the Dial-a-Ride instance has a solution of
total cost 7 · 2|r|(2Y + 1)X + 2(m(Q0) + m(Q1))hXY Z.

We can now use Lemma 1, Lemma 3, and Lemma 9 to show hardness of the
Dial-a-Ride problem.

Lemma 10. Let γ = log
α
4 −5 n. If there exists a γ-approximation algorithm

for the Finite Capacity Dial-a-Ride problem, then there exists a randomized
O(npolylog n) time algorithm for 3SAT.

Proof. For any 3SAT instance φ we construct the network N2 from the two-
prover system and then apply a γ-approximation algorithm A for Dial-a-Ride.

If the 3SAT instance φ is satisfiable then by Lemma 9 and our choice of h
there is a solution to our instance of Dial-a-Ride of cost at most 7 · 2|r|(2Y +
1)X+2(m(Q0)+m(Q1))hXY Z = 7 ·2|r|(4Y +1)X . Hence, the γ-approximation
algorithm returns a solution of cost at most γ · 7 · 2|r|(4Y + 1)X , and we declare
φ satisfiable. If φ is unsatisfiable then by Lemma 1, Lemma 3 and our choice
of h, with probability 2/3− o(1), any solution have cost at least the minimum
of Ω(σ2|r|XY) and Ω(�

kX2|r|). Both these expressions are strictly larger than
γ · 7 · 2|r|(4Y + 1)X .

The construction of the network takes time O(npolylog n) since N2 has size
O(npolylog n). Hence we have described a randomized O(npolylog n) time algo-
rithm for 3SAT that has one-sided error probability at most 1/3 + o(1). It is
possible to convert this into a randomized algorithm that never makes an error
and has expected running time O(npolylog n). ��

In the Dial-a-Ride instance N is the number of sources and destinations. We
have 2|r|X sources and 2|r|X destinations, and thus N = 2 ·2|r|X = 2O(logα+2 n).
For any constant ε > 0, if we set α = 11

2ε − 2 then γ = Ω(log1/4−ε N). This gives
us the following corollary.

Corollary 4. There is no O(log
1
4−ε N)-approximation algorithm to the preemp-

tive Finite Capacity Dial-a-Ride problem on general graphs for any constant
ε > 0 unless NP ⊆ ZPTIME(npolylogn).

Hardness of Preemptive Finite Capacity Dial-a-Ride 211

In the above construction we had k = logα/4+4 n. The proofs hold for larger k too,
but since Z should be a positive integer we require k ≤ 2|r|/min(m(Q0),m(Q1)).
To get a hardness result for small k we chang the variables Z and h as described
in Section 5. Using Lemma 1 and Lemma 3, we get

Lemma 11. Let k < log
1
4 N . Then there is no k1−ε-approximation algorithm

to the preemptive Finite Capacity Dial-a-Ride problem on general graphs for any
constant ε > 0 unless NP ⊆ ZPTIME(npolylogn).

The proof is omitted due to lack of space. To summarize we have shown,

Theorem 1. There is no min{O(log
1
4−ε N), k1−ε}-approximation algorithm to

the preemptive Finite Capacity Dial-a-Ride problem on general graphs for any
constant ε > 0 unless NP ⊆ ZPTIME(npolylogn).

Acknowledgments. The author wants to thank Moses Charikar and Matthew
Andrews for many helpful and useful discussions.

References

1. M. Andrews. Hardness of buy-at-bulk network design. In 45th Annual IEEE
Symposium on Foundations of Computer Science, pages 115–124, October 2004.

2. M. Andrews and L. Zhang. Bounds on fiber minimization in optical networks with
fixed fiber capacity. In IEEE INFOCOM, 2005.

3. M. Charikar, S. Khuller, and B. Raghavachari. Algorithms for capacitated vehicle
routing. SICOMP: SIAM Journal on Computing, 31(3):665–682, 2002.

4. M. Charikar and B. Raghavachari. The finite capacity dial-a-ride problem. In
IEEE Symposium on Foundations of Computer Science, pages 458–467, 1998.

5. N. Christofedes. Vehicle routing. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy
Kan, and D. B. Shmoys, editors, The Traveling Salesman Problem, pages 431–448.
John Wiley & Sons, 1985.

6. G. Desaulniers, J. Desrosiers, A. Erdmann, M. M. Solomon, and F. Soumis. VRP
with pickup and delivery. In P. Toth and D. Vigo, editors, The vehicle routing
problem, pages 225–242. Society for Industrial and Applied Mathematics, 2001.

7. J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbi-
trary metrics by tree metrics. J. Comput. System Sci., 69(3):385–497, 2004.

8. G. N. Frederickson and D. J. Guan. Non-preemptive ensemble motion planning on
a tree. Journal of Algorithms, 15(1):29–60, 1993.

9. G. N. Frederickson, M. S. Hecht, and C. E. Kim. Approximation algorithms for
some routing problems. SIAM Journal on Computing, 7(2):178–193, 1978, May.

10. B. L. Golden and A. A. Assad. Vehicle Routing: Methods and Studies. Studies in
Management Science and Systems, 16. Elsevier, 1991.

11. I. L. Gørtz. Hardness of preemptive finite capacity dial-a-ride. IMADA Preprints
2006 No. 4, University of Southern Denmark, 2006.

12. D. J. Guan. Routing a vehicle of capacity greater than one. Discrete Applied
Mathematics, 81(1-3), 1998.

13. M. Haimovich and A. H. G. Rinnooy Kan. Bounds and heuristics for capacitated
routing problems. Mathematics of Operations Research, 10(4):527–542, 1985.

14. H. N. Psaraftis. An exact algorithm for the single vehicle many-to-many dial-a-ride
problem with time windows. Transportation Science, 17(3):351–357, 1983.

Minimum Vehicle Routing with a Common
Deadline

Viswanath Nagarajan� and R. Ravi��

Tepper School of Business, Carnegie Mellon University, Pittsburgh PA 15213
{viswa, ravi}@cmu.edu

Abstract. In this paper, we study the following vehicle routing prob-
lem: given n vertices in a metric space, a specified root vertex r (the
depot), and a length bound D, find a minimum cardinality set of r-paths
that covers all vertices, such that each path has length at most D. This
problem is NP-complete, even when the underlying metric is induced by
a weighted star. We present a 4-approximation for this problem on tree
metrics. On general metrics, we obtain an O(log D) approximation algo-
rithm, and also an (O(log 1

ε
), 1 + ε) bicriteria approximation. All these

algorithms have running times that are almost linear in the input size.
On instances that have an optimal solution with one r-path, we show
how to obtain in polynomial time, a solution using at most 14 r-paths.

We also consider a linear relaxation for this problem that can be solved
approximately using techniques of Carr & Vempala [7]. We obtain upper
bounds on the integrality gap of this relaxation both in tree metrics and
in general.

1 Introduction

A common version of vehicle routing problems involves locations that demand
service, and a single depot that has to send vehicles to satisfy these demands. It
may be important to service all demands before a deadline, so several vehicles may
need to be deployed. In this context, meeting demands are hard constraints which
must be satisfied, while the objective is to minimize the number of vehicles used.

Vehicle routing problems are extensively studied in the Operations Research
literature [10, 11, 13, 15, 16]. Most of these papers focus on developing heuristic
solutions or solving the problems optimally. The methods used in these papers
include branch and bound, cutting plane algorithms, local search, and genetic
algorithms. There has been considerably less work on these problems in the ap-
proximation algorithms literature, perhaps due to the inapproximability of nat-
ural formulations of these problem. The version that we study is more tractable
from the point of view of obtaining approximation guarantees.

Approximation guarantees for the problem we consider have been studied in
Li et al. [9], and Bazgan et al. [5]. Li et al. [9] suggested a tour-splitting heuristic
� Supported by NSF ITR grant CCR-0122581. (The ALADDIN project)

�� Supported in part by NSF grants CCF-0430751 and ITR grant CCR-0122581. (The
ALADDIN project)

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 212–223, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Minimum Vehicle Routing with a Common Deadline 213

which has a performance guarantee which depends on some values in the input
instance, but does not yield any worst case approximation bounds. Bazgan et al.
[5] suggested algorithms achieving provable worst case bounds under a differen-
tial approximation measure. However, bounds in this measure do not imply any
bounds in the standard approximation measure. In this paper, we study standard
approximation algorithms for the common deadline vehicle routing problem.

There has been some interesting recent work [3, 6] on approximating the re-
lated orienteering problem. In this problem, there is a single vehicle, and the goal
is to find a bounded length path from the depot, that maximizes the number of
vertices covered. Improving on work by Blum et al. [6], Bansal et al. [3] presented
a 3-approximation algorithm for orienteering on general metrics. Bansal et al.
[3] also considered extensions where vertices can only be covered in individual
time windows, giving poly-logarithmic approximations for this case. Improved
algorithms for special classes of metrics were obtained in [2, 4].

Problem definition: We model locations as points in a metric space (V, d), with
|V | = n. Here d is a function d : V ×V → Z+ that is symmetric and satisfies the
triangle inequality. We assume throughout that all distances are integral. The
input to the minimum vehicle routing problem consists of a metric space (V, d),
one designated root vertex r ∈ V , and a length bound D. The root corresponds
to the depot, and the length bound D represents the common deadline of the
demand locations. The objective is to find a minimum cardinality set of paths
originating from r, that covers all vertices in V . In addition, all these paths are
required to have length at most D. Paths originating from r are called r-paths.
We also refer to the minimum vehicle routing problem as rooted vehicle routing.

A related problem is the unrooted vehicle routing problem. In this problem,
there is no designated root, and vehicles can start at any vertex. The goal here is
to find a minimum cardinality set of paths that cover all the vertices. The paths
are again required to have length at most the length bound D. This problem has
been studied recently in Arkin et al. [1] as minimum path cover, and they gave
a 3-approximation algorithm for it.

Our results: For minimum vehicle routing on a tree metric, we obtain a 4-
approximation algorithm in Section 2. We note that the problem isNP-complete
even in this special case. For minimum vehicle routing on general metrics, we ob-
tain an O(log D)-approximation algorithm, and a bi-criteria result in Section 3.
We also consider an integer programming formulation of this problem. We show
that the integrality gap of its linear relaxation is upper bounded by a constant
in the case of tree metrics (Section 2.1), and by O(min{logn, logD}) in case of
general metrics (Section 3.1). Determining a tight bound on the integrality gap
of this relaxation is still open. We consider the following promise problem in
Section 4: given an instance of minimum vehicle routing, where the optimal so-
lution uses just a single vehicle, find a solution using a small number of vehicles.
We show how the minimum excess path problem [6] can be used to obtain (in
polynomial time) a solution to this promise problem having at most 14 vehicles.

214 V. Nagarajan and R. Ravi

Due to lack of space, we omit some proofs in this version of the paper. The
interested reader may refer to [14] for the proofs missing here.

2 Minimum Vehicle Routing on a Tree

In this section, we consider the special case of minimum vehicle routing, when
the metric space T = (V, d) is induced by a tree. Even in the special case of a
star, the problem remains NP-complete (reduction from 3-partition). Here we
present a 4-approximation for minimum vehicle routing on trees.

We assume without loss of generality, that the tree is binary, and rooted at r.
This can be ensured by splitting high degree vertices, and adding edges of zero
length. Suppose the input consists of tree T = (V, d), root r ∈ V , and length
bound D. Algorithm minTVR for minimum vehicle routing on trees is as follows.

1. Initialize T ′ = T .
2. While (T ′ = {r}) do

(a) Pick a deepest vertex v ∈ T ′ s.t. the subtree T ′
v below v can not be

covered by just one r-path, of length at most D. If no such v exists, add
an r-path covering T ′, and exit loop.

(b) Let w1 and w2 be the two children of v. For i = 1, 2, set Wi to be the
minimum length r-path traversing subtree T ′

wi
.

(c) Add r-paths W1 and W2.
(d) T ′ = T ′ \ T ′

v.

Note that it is easy to find the minimum length r-path covering all the vertices
of a tree - the longest r to leaf path is traversed once, and all other edges are
traversed 2 times. See Figure 1b for the structure of an r-path on a tree. Thus
the condition in step 2a can be checked efficiently.

Theorem 1. Algorithm minTVR obtains a 4-approximation to the minimum
vehicle routing problem on trees.

Proof: It is not hard to see that algorithm minTVR can be implemented in a
single depth-first search of the tree; so the time complexity is linear in the input
size. Suppose we are given an instance of minimum vehicle routing on a tree
T = (V, d), with root r ∈ V .

A heavy cluster is a set of vertices C ⊆ V such that the induced subgraph
T [C] is connected, and the vertices in C can not all be covered by a single
r-path of length at most D. Note that the subtrees T ′

v seen in step 2a of the
algorithm are heavy clusters. Suppose, in its entire execution, the algorithm finds
k heavy clusters C1, · · ·Ck (these vertex sets will be disjoint). Then algorithm
minTVR uses at most 2k+1 r-paths to cover all the vertices. From the definition
of vertex v (in step 2a), each r-path Wi added in step 2c (corresponding to the
children of v), has length at most D. So the algorithm indeed produces a feasible
solution. The following lemma shows that the optimal solution requires at least
k+1
2 vehicles, and thus proves Theorem 1.

Minimum Vehicle Routing with a Common Deadline 215

Lemma 1. If there are k disjoint heavy clusters C1, · · ·Ck ⊆ V in the tree T ,
the minimum number of r-paths of length at most D required to cover

⋃k
i=1 Ci

is more than 	k+1
2
.

Proof: The proof of this lemma is by induction on k. For k = 1, the lemma is
trivially true. Suppose k > 1, and assume that the lemma holds for all values up
to k − 1. Suppose the minimum number of r-paths required to cover all these
clusters, OPT ≤ 	k+1

2
. Note that OPT can not be smaller than 	(k + 1)/2
:
taking any k − 1 of these k clusters, we get a contradiction to the induction
hypothesis with k−1 clusters! Similarly, k can not be even because in that case,
	k+1

2
 = 	 (k−1)+1
2
. So we may assume that k is odd, and OPT = (k + 1)/2.

Every cluster Ci forms a connected subgraph of T . It will be convenient to
think of the lengths associated with Ci in the following parts - the path from r
to the highest vertex in Ci, and the internal part of Ci (see Figure 1a).

Now consider the bipartite graph H = (Γ, C, E) where Γ = {t1, · · · , t(k+1)/2}
is the set of r-paths in the optimal cover (note that |Γ | = OPT = (k+1)/2), and
C = {C1, · · · , Ck} is the set of the k heavy clusters. There is an edge (tj , Ci) ∈ E
iff path tj visits some vertex of cluster Ci. A set of edges M is said to be a 1-2-
matching from C to Γ , if the number of edges of M incident on a vertex of C is
exactly 1, and the number of edges of M incident on a vertex of Γ is at most 2.
In other words, it is a perfect matching of C in the graph H ′ obtained from H
by duplicating all the vertices in Γ and the edges in E.

(a) Lengths associated with a heavy cluster

r

Ci

r

(b) An r-path on a tree

Thick line : r-Ci path

Solid lines : internal part of Ci

Fig. 1. Structures of a heavy cluster and an r-path

We claim that H must have a 1-2-matching from C to Γ . Suppose not - then by
Hall’s Theorem, we get a set S ⊆ C such that S has fewer than |S|/2 neighbors in
Γ . Note that S = C, as C has OPT > |C|

2 neighbors. This implies that the clusters

216 V. Nagarajan and R. Ravi

in S are visited completely by fewer than |S|/2 r-paths, which contradicts the
induction hypothesis with clusters S (|S| < k). Let π : C → Γ be a 1-2-matching
in H . Since there are (k + 1)/2 vertices in Γ , and only k vertices in C, there is
one vertex in Γ which is matched to only one cluster. Let this vertex be t(k+1)/2.

Let l1, l2, · · · , l(k+1)/2 denote the lengths of the paths in Γ . Clearly each li ≤
D. Assign a capacity to each edge e ∈ T , equal to ne(t(k+1)/2)+2

∑(k−1)/2
j=1 ne(tj),

where ne(tj) is the number of times e is traversed in path tj . Note that the total
weighted capacity over all edges is exactly 2

∑(k−1)/2
j=1 lj + l(k+1)/2 ≤ kD. As

observed before, every r-path on T has a unique path from r to some leaf which
is traversed only once, and all other edges on the r-path are traversed 2 times
each (see Figure 1b). Let P denote this r to leaf path in the r-path t(k+1)/2.
Note that the capacity of every edge e ∈ T \ P is at least twice the number of
paths of Γ containing e.

We will now charge each edge an amount at most its capacity, and show that
the total charge over all edges is larger than kD, which would be a contradiction.
For cluster Ci, charge an amount equal to the path from r to Ci: each edge on this
path is charged one unit against the capacity on that edge attributed to r-path
π(Ci). So far no edge has a charge more than its capacity - as edges of r-path
t(k+1)/2 are charged against only once, and other r-paths were doubled. Now we
will show that we can further charge an additional amount corresponding to a
path on the internal part of each cluster C1, · · · , Ck.

Consider an edge e /∈ P which is on the internal part of some cluster Ci. Let
m denote the number of clusters (Ci not included) that appear below e in tree
T . If m = 0, this edge has never been charged so far, and thus has at least 2
units of residual capacity. If 0 < m ≤ k − 1, by induction on the set of clusters
below e, there are at least (m + 2)/2 r-paths using e. i.e. e has a capacity of at
least m + 2. But we have charged e exactly m times so far. So, again we have at
least 2 units of residual capacity. For an edge e ∈ P on the internal part of Ci,
a similar argument shows that there is at least 1 unit of residual capacity. The
total charge can now be written as follows:

k∑
i=1

[
d(r, Ci) + 2 · d((internal part of Ci) \ P) + d((internal part of Ci) ∩ P)

]
The i-th term above corresponds to an r-path covering Ci : where the edges
charged just 1 are all on the path P . Since each Ci is a heavy cluster, this is
more than D. So the total charge is more than kD, the total capacity! Thus
OPT > (k + 1)/2, and the lemma is proved. �

We note that the lower bound in Lemma 1 does not hold in general metrics. In
fact, even if we require the distance between the heavy clusters C1, · · · , Ck to be
‘large’, there are instances in which ∪k

i=1Ci can be covered using k
log D r-paths.

2.1 An LP Relaxation

We consider the following integer programming formulation for the minimum ve-
hicle routing problem, which is valid even for general metrics. For every r-path T ,

Minimum Vehicle Routing with a Common Deadline 217

having length at mostD, there is a binary variablexT . The constraints require that
every vertex be covered by at least one such path. The LP relaxation is obtained
by dropping the integrality on the variables and is as follows.

min
∑

T xT

s.t.
(LP)

∑
T :v∈T xT ≥ 1 ∀v ∈ V \ r

xT ≥ 0 ∀T : r-path of length at most D

Although this LP has an exponential number of variables, it can be approx-
imately solved in polynomial time using the framework of Carr & Vempala [7].
The dual separation problem is orienteering, for which there is a 3-approximation
algorithm [3]. This implies that we can solve LP within a factor of 3 in polyno-
mial time, via the ellispoid method. In this section, we show that the integrality
gap of LP on tree metrics is at most a constant.

We may assume, without loss of generality that the tree is binary. Recall the
definition of a heavy cluster from Theorem 1. Then, similar to Lemma 1, we
have the following lemma.

Lemma 2. If C1, · · · , Ck are k disjoint heavy clusters in the tree, the optimal
value of LP is at least k

32 .

Proof: The dual of LP is the following.

max
∑

v∈V \r pv

s.t.∑
v∈T pv ≤ 1 ∀T : r-path of length at most D

pv ≥ 0 ∀v ∈ V \ r

We will construct an appropriate dual solution which has value at least k
32 . Then

the lemma would follow by weak duality. The proof also uses the following claim,
which we state without a proof.

Claim 1. For any edge weighted tree H with root s and a weight function w, it
is possible to distribute a total profit of 1 among the leaves of H such that the
profit contained in any rooted subtree F of H is at most w(F)

w(H) .

First, we preprocess the set of clusters. The internal part of a cluster Ci is the
subtree that Ci induces (see Figure 1a). The internal part of Ci is divided into
two parts: the edges that lie on the r-path to some other cluster constitute the
through part of Ci (length denoted by ti); all other edges constitute the local
part of Ci (length denoted by li). A leaf cluster is one that has no cluster below
it in the tree. Note that leaf clusters have zero through length. It is clear that
the number of clusters with a branching in their through part is at most the
number of leaf clusters. Thus the number of clusters with no branching in their
through part is m ≥ k/2. In the rest of the proof we restrict our attention to
only these m clusters. For a cluster Ci with no branching in its through part,
one r-path that covers it is as follows: take the path from r to Ci, the through

218 V. Nagarajan and R. Ravi

part, and twice the local part. This r-path has length d(r, Ci) + ti + 2li which
is more than D, as Ci is a heavy cluster. We divide these m clusters into two
sets : A consisting of clusters with li ≥ ti/2, and B consisting of clusters with
li < ti/2. We consider the following two cases.

t′1
t′2

a1
a2

a

C1
C2

C ′
2C ′

1

r

a + a2 + 2 · t′2 > D

a + a1 + 2 · t′1 > D

Clusters C ′
1 and C ′

2 are in B.

Fig. 2. r-path Π in case 2

Case 1: |A| ≥ m/4. In this case, we only consider clusters in A. The dual solution
is as follows: for each such cluster Ci ∈ A, we shrink the through part to a root
and distribute a total profit of 1/4 among the vertices in its local part using
Claim 1. Let Π be any r-path with profit more than 1 w.r.t. this dual solution.
Let αi denote the fraction of the local part of Ci in Π . From Claim 1, we have
1
4

∑
αi > 1. Let Cm denote the cluster of minimum local length visited by Π .

Then we have len(Π) ≥ d(r, Cm)+
∑

αi · li > d(r, Cm)+4lm ≥ d(r, Cm)+2lm +
dm > D. So the profit in any r-path of length at most D is at most 1.

Case 2: |B| ≥ 3m/4. Note that the number of clusters appearing immediately
below a branching in the tree is at most twice the number of leaf-clusters. But
the number of leaf clusters is at most |A| ≤ m/4. Thus, ignoring clusters of B
appearing just after a branching, leaves us with at least m/4 clusters. The dual
solution here assigns a profit of 1/4 to each remaining cluster, in the same manner
as in case 1. Let Π be any r-path with profit more than 1 w.r.t. this dual solution.
Suppose clusters C1, C2 ∈ B appear as leaves in Π . Since we ignore clusters of
B just after any branching, there are clusters C′

1, C
′
2 ∈ B above C1 and C2 (but

before any branching) as in Figure 2. We have D < d(r, C′
j) + t′j + 2l′j = a +

aj + t′j + 2l′j ≤ a + aj + 2t′j for j = 1, 2. So len(Π) ≥ a + a1 + t′1 + a2 + t′2 ≥
a + 2 min{a1 + t′1, a2 + t′2} > D. Thus we may assume that Π has at most one

Minimum Vehicle Routing with a Common Deadline 219

cluster of B that is a leaf in it. Ignoring the profit from this cluster, we are left with
a profit of at least 3/4 from clusters whose through parts are contained in Π . By
an argument similar to case 1, we can show that in this case also len(Π) > D.

In both cases above, we have a feasible dual solution of value m
16 ≥

k
32 . �

Algorithm minTV R (Section 2) finds k∗ disjoint heavy clusters such that there
is an integral solution of value at most 2k∗. Using Lemma 2 on these k∗ clusters,
we obtain that the integrality gap of LP is O(1).

3 Minimum Vehicle Routing on General Metrics

In this section, we present an approximation algorithm achieving a guarantee of
O(log D) for minimum vehicle routing on general metrics. Using orienteering as
a subproblem in a greedy algorithm, one can obtain an O(log n) approximation
algorithm for minimum vehicle routing.1 However, due to the large running time
of the orienteering algorithm, this approach yields an algorithm with a running
time of O(n12). The algorithm that we present here is simpler and has a running
time of O(n2 ·logn·logD). This algorithm uses an algorithm for unrooted vehicle
routing, which is obtained from Arkin et al. [1].

The basic idea of the algorithm for rooted vehicle routing is that, if an r-path
visits some points a “large” distance from the root, it resembles an unrooted
path (with smaller length) over just those vertices. More concretely, we divide
the vertices of the graph into lg D parts, roughly according to their distance from
the root, and solve an unrooted vehicle routing in each part (with appropriate
path length). We state (without proof) the following theorem.

Theorem 2. There is an O(log D)-approximation algorithm for the minimum
vehicle routing problem on general metrics, that runs in O(n2 · lg n · lgD) time.

As a consequence of this Theorem, we also obtain a bi-criteria approximation
algorithm for minimum vehicle routing. In particular, if we are allowed to violate
the deadline D by a small factor ε, we can cover all the vertices using O(log 1

ε) ·
OPT r-paths. Here OPT is the minimum number of r-paths of length at most D,
required to cover all vertices. This result can be compared to the tour-splitting
heuristic discussed in Li et al. [9]. The best guarantee one can obtain using
tour-splitting is an (O(1

ε), 1 + ε) bi-criteria approximation.

Corollary 3. For every 0 < ε < 1, there is an (O(log 1
ε), 1 + ε) bi-criteria

approximation algorithm for minimum vehicle routing.

We note that the above bicriteria approximation is also obtained independently
by Khuller et al. [12].

3.1 Integrality Gap of the Linear Relaxation

We consider the LP relaxation LP for minimum vehicle routing introduced in
Section 2.1, and show that its integrality gap is at most O(log D) in general
1 Even though we use a constant factor approximation for orienteering, the greedy

framework only gives an O(log n) guarantee.

220 V. Nagarajan and R. Ravi

metrics. We first show that a similar linear program for unrooted vehicle routing
has a constant integrality gap. Then in a manner similar to the algorithm of
Section 3, we obtain the result for rooted vehicle routing. We state (without
proofs) the following theorems.

Theorem 4. The LP relaxation for unrooted vehicle routing on general metrics
has an integrality gap of at most 49/3.

Corollary 5. The LP relaxation for rooted vehicle routing on general metrics
has an integrality gap of at most O(log D

D−dmax+1), where dmax is the maximum
distance of any vertex from the root.

Note also that a trivial randomized rounding (as in set cover) shows that the
integrality gap of LP is at most logn. So LP has an integrality gap at most
O(min{logD, logn}). It will be interesting to know if the integrality gap of LP
is bounded above by a constant, irrespective of the metric.

4 The OPT = 1 Promise Problem

In this section, we look at the problem of finding a small set of r-paths covering
all the vertices, given a promise that there exists a single r-path that covers all
vertices. Note that even testing whether all vertices can be covered by one path
is NP-complete. So unless P=NP, it is not possible to find in polynomial time,
a path that covers V , even if we know that there exists one. Here we present an
algorithm that finds a cover using at most 14 r-paths.

This algorithm is based on guessing the structure of the optimal path, and
approximating it. First we need a definition from Blum et al. [6]. For an s-t path
P , we define the excess of path P to be ε(P) = d(P)−d(s, t), where d(P) denotes
the length of path P , and d(s, t) is the shortest path distance between s and t.
Given vertices s and t, and a target k, the minimum excess path problem is to
find an s-t path of minimum possible excess that contains at least k vertices.
Blum et al. [6] gave a 2 + δ approximation algorithm for minimum excess path,
for any fixed δ > 0.2

We divide the vertex set into roughly lg D blocks as follows:

Vj =

⎧⎨⎩
{v : D − 1 < d(r, v) ≤ D} j = 0
{v : D − 2j < d(r, v) ≤ D − 2j−1} 1 ≤ j ≤ 	lgD

{v : 0 < d(r, v) ≤ D − 2�lg D�} j = 	lg D
+ 1

Note that if an r-path visits a vertex in Vj+2 after a vertex in Vj , its length
would be more than D − 2j + d(Vj+2, Vj) > D − 2j + 2j = D. So the optimal
path visits vertices of Vj strictly after all vertices of Vj+2. Thus we can split
the optimal path O into two paths O1 and O2 such that O1 visits the vertices
2 We note that a 2-approximation to minimum excess path would imply a 2 approxima-

tion to the OPT = 1 promise problem considered here. However, no such algorithm
is currently known.

Minimum Vehicle Routing with a Common Deadline 221

in even numbered blocks, and O2 visits vertices in odd numbered blocks. So O1
(O2) is obtained by restricting O to vertices from even (odd) numbered blocks,
and short-cutting over the other vertices. O1 is monotone across even blocks,
and O2 is monotone across odd blocks. This suggests that we can approximate
these paths using a dynamic program.

4.1 Approximating Path O1

We know that O1 is monotone over the even blocks V0, V2, · · · . Let lj denote
the length of the part of O1 in Vj (which is contiguous), and dj the shortest
path distance between the first and last vertices of Vj in O1. Let εj = lj − dj

denote the excess in block Vj . Also, let Δ denote the total length of edges going
from one block (say Vj) to the next (Vj−2) in path O1. Then the length of O1 is∑

j:even(dj + εj) + Δ ≤ D. We will denote
∑

j:even εj by ε.
In this Section, we show a weaker approximation guarantee of covering O1

with 16 r-paths. A block Vj with εj > ε
6 is called heavy. Clearly there are

at most 5 heavy blocks, and these can be guessed (there are at most log5 D
possibilities). Consider the non-heavy blocks: each has excess εj ≤ ε/6. So the
set of non-heavy blocks can be partitioned (in a greedy fashion) into 6 groups
such that each group is contiguous and has a total excess of at most ε

3 . Since
these groups are contiguous, they can also be guessed (there are at most log5 D
possibilities). We now describe two algorithms: one that covers heavy blocks,
and the other for the groups of non-heavy blocks defined above.

Algorithm TS: Each heavy block is covered separately using a tour splitting
algorithm TS, which works as follows. Suppose Vj is the heavy block to be
covered.

1. Compute an approximate minimum Hamilton path H on Vj .
2. Split H into 3 pieces σ1, σ2, σ3, such that each has length at most d(H)

3 .
3. Output the r-paths {(r ·σi) : 1 ≤ i ≤ 3}. Here, r ·σi is the path obtained by

concatenating an edge from r to path σi.

To verify that each of the paths output has length at most D, note that the
minimum Hamilton path on Vj has length at most 2j . This is because every
vertex in Vj is distant at least D − 2j from r, and O1 (of length ≤ D) when
restricted to r ∪ Vj is a Hamilton path along with an edge from r. Christofides’
heuristic [8] achieves an approximation guarantee of 3/2 for the Hamilton path
problem. Using this, d(H) ≤ 3

2 ·2j , and d(σi) ≤ 2j−1 (i = 1, 2, 3). Thus d(r ·σi) ≤
D − 2j−1 + 2j−1 = D.

Algorithm EXS: Every group in the partition of non-heavy blocks is covered
separately, using a dynamic program EXS. Let W1, · · · ,Wq denote the blocks
in the group to be covered, in increasing order of distance from r. Let ε′j be
the excess of block Wj (1 ≤ j ≤ q). For every block Wj and a pair of vertices
uj, vj ∈ Wj , we use the minimum excess algorithm to compute a uj-vj path in
Wj , covering at least |Wj | vertices (i.e. all of Wj). Let A[uj, vj , j] denote the

222 V. Nagarajan and R. Ravi

length of this path. The following dynamic program finds the best way to piece
such paths together to obtain a single monotone path covering

⋃q
j=1 Wj .

PATH [v1, 1] = min{d(r, u1) + A[u1, v1, 1] : u1 ∈W1}, v1 ∈W1

PATH [vj, j] = min
{

PATH [vj−1, j − 1] + d(vj−1, uj) + A[uj, vj , j] :
vj−1 ∈Wj−1, uj ∈Wj

}
,

vj ∈Wj & 2 ≤ j ≤ q

Finally we output the path corresponding to min{PATH [∗, q]}.
Suppose u∗

j , v
∗
j ∈ Wj denote the entry and exit points of O1, for each block

Wj , 1 ≤ j ≤ q. This dynamic program will consider a path corresponding to
these points. The length of such a path would be at most d(r, u∗

1) + d(u∗
1, v

∗
1) +∑q

j=2(d(v∗j−1, u
∗
j)+d(u∗

j , v
∗
j))+3

∑q
j=1 ε′j. This follows since there is a u∗

j -v
∗
j path

(namely O1 ∩Wj) covering Wj of excess ε′j, and the minimum excess algorithm
is a 3-approximation. But from the way a group is constructed,

∑q
j=1 ε′j ≤ ε

3 . So
the length of this path is at most the length of O1, which is at most D.

To summarize, the overall algorithm for approximating O1 is as follows.

1. Guess the heavy blocks b1, · · · , b5 (repetitions allowed).
2. Guess the partition of non-heavy blocks into groups G1, · · · , G6.
3. For each block bl (l = 1, · · · , 5), use algorithm TS to cover it.
4. For each group Gt (1 ≤ t ≤ 6), use algorithm EXS to cover it.
5. Over all the guesses, return the solution of minimum size which is feasible.

We now argue the performance guarantee of this algorithm. Suppose there
are 0 ≤ h ≤ 5 heavy blocks. Then the total excess of the remaining blocks is
at most ε − h

6 ε. So the number of groups of non-heavy blocks will be at most
6− h. Now, the total number of paths used by this algorithm would be at most
6 − h + 3h ≤ 16. With some more work, we can approximate O1 using at most
7 r-paths (see [14]). Since O2 can also be approximated by the same algorithm,
we obtain the following.

Theorem 6. Given an instance of minimum vehicle routing on general metrics,
having an optimal solution that uses just one vehicle, there is a polynomial time
algorithm that obtains a solution using at most 14 vehicles.

Acknowledgements

We thank Shuchi Chawla for helpful discussions.

References

1. Esther M. Arkin, Refael Hassin, and Asaf Levin. Approximations for Minimum
and Min-max Vehicle Routing Problems. Journal of Algorithms, 2005.

2. Esther M. Arkin, Joseph S. B. Mitchell, and Giri Narasimhan. Resource-
constrained Geometric Network Optimization. SCG ’98: Proceedings of the Four-
teenth Annual Symposium on Computational Geometry, pages 307–316, 1998.

Minimum Vehicle Routing with a Common Deadline 223

3. Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Adam Meyerson. Approximation
Algorithms for Deadline-TSP and Vehicle Routing with Time Windows. Proceed-
ings of the Thirty-sixth Annual ACM Symposium on Theory of Computing, pages
166–174, 2004.

4. Reuven Bar-Yehuda, Guy Even, and Shimon (Moni) Shahar. On Approximating
a Geometric Prize-Collecting Traveling Salesman Problem with Time Windows.
Proc. of ESA, pages 55–66, 2003.

5. C. Bazgan, R. Hassin, and J. Monnot. Approximation Algorithms for Some Vehicle
Routing Problems. Discrete Applied Mathematics, 146:27–42, 2005.

6. Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, Adam Meyerson,
and Maria Minkoff. Approximation Algorithms for Orienteering and Discounted-
Reward TSP. Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science, pages 46–55, 2003.

7. B. Carr and S. Vempala. Randomized meta-rounding. 32nd ACM Symposium on
the Theory of Computing, pages 58–62, 2000.

8. N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. GSIA, CMU-Report 388, 1977.

9. C.L.Li, D. Simchi-Levi, and M. Desrochers. On the distance constrained vehicle
routing problem. Operations Research, 40:790–799, 1992.

10. M. Desrochers, J.Desrosiers, and M. Solomon. A New Optimization Algorithm for
the Vehicle Routing Problem with Time Windows. Operation Research, 40:342–
354, 1992.

11. M. Kantor and M. Rosenwein. The Orienteering Problem with Time Windows.
Journal of the Operational Research Society, 43:629–635, 1992.

12. Samir Khuller, Azarakhsh Malekian, and Julian Mestre. To Fill or not to Fill: The
Gas Station Problem. Manuscript, 2006.

13. A. Kohen, A. R. Kan, and H. Trienekens. Vehicle Routing with Time Windows.
Operations Research, 36:266–273, 1987.

14. Viswanath Nagarajan and R. Ravi. Minimum Vehicle Routing with a Common
Deadline. https://server1.tepper.cmu.edu/gsiadoc/WP/2006-E53.pdf, 2006.

15. M. Savelsbergh. Local Search for Routing Problems with Time Windows. Annals
of Operations Research, 4:285–305, 1985.

16. K. C. Tan, L. H. Lee, K. Q. Zhu, and K. Ou. Heuristic Methods for Vehicle Routing
Problems with Time Windows. Artificial Intelligence in Engineering, pages 281–
295, 2001.

Stochastic Combinatorial Optimization with
Controllable Risk Aversion Level�

(Extended Abstract)

Anthony Man–Cho So1, Jiawei Zhang2, and Yinyu Ye3

1 Department of Computer Science, Stanford University, Stanford, CA 94305, USA
manchoso@cs.stanford.edu

2 Department of Information, Operations, and Management Sciences, Stern School of
Business, New York University, New York, NY 10012, USA

jzhang@stern.nyu.edu
3 Department of Management Science and Engineering and, by courtesy, Electrical

Engineering, Stanford University, Stanford, CA 94305, USA
yinyu-ye@stanford.edu

Abstract. Due to their wide applicability and versatile modeling power,
stochastic programming problems have received a lot of attention in
many communities. In particular, there has been substantial recent in-
terest in 2–stage stochastic combinatorial optimization problems. Two
objectives have been considered in recent work: one sought to minimize
the expected cost, and the other sought to minimize the worst–case cost.
These two objectives represent two extremes in handling risk — the first
trusts the average, and the second is obsessed with the worst case. In
this paper, we interpolate between these two extremes by introducing an
one–parameter family of functionals. These functionals arise naturally
from a change of the underlying probability measure and incorporate
an intuitive notion of risk. Although such a family has been used in
the mathematical finance [11] and stochastic programming [13] litera-
ture before, its use in the context of approximation algorithms seems
new. We show that under standard assumptions, our risk–adjusted ob-
jective can be efficiently treated by the Sample Average Approximation
(SAA) method [9]. In particular, our result generalizes a recent sam-
pling theorem by Charikar et al. [2], and it shows that it is possible to
incorporate some degree of robustness even when the underlying proba-
bility distribution can only be accessed in a black–box fashion. We also
show that when combined with known techniques (e.g. [4, 14]), our re-
sult yields new approximation algorithms for many 2–stage stochastic
combinatorial optimization problems under the risk–adjusted setting.

1 Introduction

A fundamental challenge that faces all decision–makers is the need to cope with
an uncertain environment while trying to achieve some predetermined objectives.
� This research is supported in part by The Boeing Company.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 224–235, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Stochastic Combinatorial Optimization 225

One certainly does not need to go far to encounter such situations — for example,
an office clerk trying to get to work as fast as possible while avoiding possibly
congested roads; a customer in the supermarket trying to checkout while avoiding
lines that may take a long time, and so on. From a decision–maker’s perspective,
it is then natural to ask whether one can determine the optimal decision given
one’s assessment of the uncertain environment. This is a motivating question
in the field of stochastic optimization. To keep our discussion focused, we shall
consider the class of 2–stage stochastic programs with recourse [1, 3], particularly
in the context of combinatorial optimization problems. Roughly speaking, in the
2–stage recourse model, one commits to some initial (i.e. first stage) action x
based on one’s knowledge of the underlying probability distribution. The actions
in the second stage cannot be determined in advance, since they depend on the
actions of the first stage as well as the uncertain parameters of the problem.
However, once those parameters are realized (according to the distribution), a
recourse (i.e. second stage) action r can be taken so that, together with the first
stage actions, all the requirements of the problem are satisfied. Naturally, one
would seek for the action (x, r) that minimizes the “total cost”. However, since
the outcome is random, such an objective can have many possible interpretations.
In this paper, we shall consider the problem of risk minimization. Specifically,
let X be the set of permissible actions, and let (Ω,B,P) be the underlying
probability space. In accordance with the convention in the literature, we shall
assume that the probability distribution is specified via one of the following
models:

(a) Scenario Model: The set of scenarios S and their associated probabilities
are explicitly given. Hence, under this model, an algorithm is allowed to
take time polynomial in |S|.

(b) Black–Box Model: The distribution of the scenarios is given as a black
box. An algorithm can use this black box to draw independent samples
from the distribution of scenarios.

We are interested in solving problems of the form:

min
x∈X

{g(x) ≡ c(x) + Φ(q(x, ω))} (1)

where c : X → R+ is a (deterministic) cost function, q : X ×Ω → R+ is another
cost function that depends both on the decision x ∈ X and some uncertain
parameter ω ∈ Ω, and Φ : L2(Ω,B,P) → R is some risk measure. We shall
refer to Problem (1) as a risk–adjusted 2–stage stochastic program with recourse.
Two typical examples of Φ are the expectation operator and the max operator.
The former gives rise to a risk–neutral objective, while the latter gives rise to
an extremely risk–averse objective. Both of these risk measures have been stud-
ied in recent works on approximation algorithms for stochastic combinatorial
optimization problems (see, e.g., [2, 4, 5, 6, 7, 8, 12, 14]). For the case where Φ is
the expectation operator, it turns out that under the black–box model, one can
obtain a near–optimal solution to Problem (1) with high probability by the so–
called Sample Average Approximation (SAA) method [9]. Roughly speaking, the

226 A.M.–C. So, J. Zhang, and Y. Ye

SAA method works as follows. Let ω1, . . . , ωN be N i.i.d. samples drawn from
the underlying distribution, and consider the sampled problem:

min
x∈X

1
N

N∑
i=1

(
c(x) + q(x, ωi)

)
(2)

Under some mild assumptions, it has been shown [9] that the optimal value of
(2) is a good approximation to that of (1) with high probability, and that the
number of samples N can be bounded. Unfortunately, the bound on N depends
on the maximum variance V (over all x ∈ X) of the random variables q(x, ω),
which need not be polynomially bounded. However, in a recent breakthrough,
Shmoys and Swamy [14] have been able to circumvent this problem for a large
class of 2–stage stochastic linear programs. Specifically, by bounding the relative
factor by which the second stage actions are more expensive than the first stage
actions by a parameter λ (called the inflation factor), they are able to show that
an adaptation of the ellipsoid method will yield an (1 + ε)–approximation with
the number of samples (i.e. black–box accesses) bounded by a polynomial of the
input size, λ and 1/ε. Subsequently, Charikar et al. [2] have established a similar
but more general result using the SAA method. We should mention, however,
that both of these results assume that the objective function is linear. Thus, in
general, they do not apply to Problem (1).

On another front, motivated by robustness concerns, Dhamdhere et al. [4]
have recently considered the case where Φ is the max operator and developed
approximation algorithms for various 2–stage stochastic combinatorial optimiza-
tion problems with recourse under that setting. Their framework works under
the scenario model. In fact, since only the worst case matters, it is not even nec-
essary to specify any probabilities in their framework. However, such a model
can be too pessimistic. Also, as the worst–case scenario may occur only with
an exponentially small probability, it seems unlikely that sampling techniques
would apply to such problems.

From the above discussion, a natural question arises whether we can incor-
porate a certain degree of robustness (possibly with some other risk measures
Φ) in the problem while still being able to solve it in polynomial time under the
black–box model. If so, can we also develop approximation algorithms for some
well–studied combinatorial optimization problems under the new robust setting?

Our Contribution. In this paper, we answer both of the above questions in
the affirmative. Using techniques from the mathematical finance literature [11],
we provide a unified framework for treating the aforementioned risk–adjusted
stochastic optimization problems. Specifically, we use an one–parameter family
of functionals {ϕα}0≤α<1 to capture the degree of risk aversion, and we consider
the problem minx∈X {c(x) + ϕα(q(x, ω))}. As we shall see, such a family arises
naturally from a change of the underlying probability measure P and possesses
many nice properties. In particular, it includes Φ = E as a special case and
Φ = max as a limiting case. Thus, our framework provides a generalization of
those in previous works. Moreover, our framework works under the most general

Stochastic Combinatorial Optimization 227

black–box model, and we show that as long as one does not insist on considering
the worst–case scenario, one can use sampling techniques to obtain near–optimal
solutions to the problems discussed above efficiently. Our sampling theorem and
its analysis can be viewed as a generalization of those by Charikar et al. [2].
Consequently, our result extends the class of problems that can be efficiently
treated by the SAA method. Finally, by combining with techniques developed in
earlier works [4, 6, 12, 14], we obtain new approximation algorithms for a large
class of 2–stage stochastic combinatorial optimization problems under the new
robust setting.

2 Motivation: Risk Aversion as Change of Probability
Measure

We begin with the setup and some notations. Let (Ω,B,P) be a probability
space, and let L2(Ω,B,P) be the Hilbert space of square–integrable random
variables with inner product 〈·, ·〉 given by 〈U, V 〉 =

∫
Ω

UV dP. We shall assume
that the second stage cost function q satisfies the following: (i) q(x, ·) is measur-
able w.r.t. B for each x ∈ X , (ii) q is continuous w.r.t. x, and (iii) E[q(x, ω)] <∞
for each x ∈ X . To motivate our approach, let us investigate how the following
problems capture risk:

min
x∈X

{c(x) + E [q(x, ω)]} (3)

min
x∈X

{
c(x) + sup

ω∈Ω
q(x, ω)

}
(4)

Problem (3) is a standard stochastic optimization problem, in which a first stage
decision x∗ ∈ X is sought so that the sum of the first stage cost c(x∗) and the
expected second stage cost E [q(x∗, ω)] is minimized. In particular, we do not
consider any single scenario as particularly important, and hence we simply
weigh them by their respective probabilities. On the other hand, Problem (4)
is a pessimist’s version of the problem, in which one considers the worst–case
second stage cost over all scenarios. Thus, for each x ∈ X , we consider the
scenario ωx that gives the maximum second stage cost as most important, and
we put a weight of 1 on ωx and 0 on all ω = ωx, regardless of what their
respective probabilities are. These observations suggest the following approach
for capturing risk. For each x ∈ X , let fx : Ω → R+ be a measurable weighing
function such that: ∫

Ω

fx(ω) dP(ω) = 1

Now, consider the problem:

min
x∈X

{c(x) + E [fx(ω)q(x, ω)]} (5)

Observe that Problem (5) captures both Problems (3) and (4) as special cases.
Indeed, if we set fx ≡ 1, then we recover Problem (3). On the other hand,

228 A.M.–C. So, J. Zhang, and Y. Ye

suppose that Ω is finite, with P(ω) > 0 for all ω ∈ Ω. Consider a fixed x ∈ X ,
and let ω′ = argmaxω∈Ω q(x, ω). Then, by setting fx(ω′) = 1

P(ω′) and fx(ω) = 0
for all ω = ω′, we recover Problem (4).

From the above discussion, we see that one way of addressing risk is by chang-
ing the underlying probability measure P using a weighing function. Indeed, the
new probability measure is given by:

Qx(ω) ≡ fx(ω)P(ω) (6)

and we may write EP [fx(ω)q(x, ω)] = EQx [q(x, ω)]. Alternatively, we can specify
the probability measure Qx directly without using weighing functions. As long as
the new measure Qx is absolutely continuous w.r.t. P for each x ∈ X (i.e. P(ω) =
0 implies that Qx(ω) = 0), there will be a corresponding weighing function fx

given precisely by (6). Thus, in this context, we see that fx is simply the Radon–
Nikodym derivative of Qx w.r.t. P.

Note that in the above formulation, we are allowed to choose a different
weighing function fx for each x ∈ X . Clearly, there are many possible choices for
fx. However, our goal is to choose the fx’s so that Problem (5) is computationally
tractable. Towards that end, let us consider the following strategy. Let α ∈ [0, 1)
be a given parameter (the risk–aversion level), and define:

Q =
{
f ∈ L2(Ω,B,P) : 0 ≤ f(ω) ≤ 1

1− α
for all ω ∈ Ω, 〈f, 1〉 = 1

}
(7)

For each x ∈ X , we take fx to be the optimal solution to the following optimiza-
tion problem:

fx = arg max
f∈Q

EP [f(ω)q(x, ω)] (8)

Note that such an fx always exists (i.e. the maximum is always attained), since
the functional f �→ 〈f, q(x, ·)〉 is continuous, and the set Q is compact (in the
weak∗–topology) by the Banach–Alaoglu theorem (cf. p. 120 of [10]). Intuitively,
the function fx boosts the weights of those scenarios ω that have high second
stage costs q(x, ω) by a factor of at most (1− α)−1, and zeroes out the weights
of those scenarios that have low second stage costs. Note also that when α = 0,
we have fx ≡ 1; and as α ↗ 1, fx tends to a delta function at the scenario ω
that has the highest cost q(x, ω). Thus, the definition of fx in (8) captures the
intuitive notion of risk as discussed earlier. We then define ϕα by ϕα(q(x, ω)) ≡
EP [fx(ω)q(x, ω)], where fx is given by (8).

At this point, it may seem that we need to perform the non–trivial task of
computing fx for many x ∈ X . However, it turns out that this can be circum-
vented by the following representation theorem of Rockafellar and Uryasev [11].
Such a theorem forms the basis for our sampling approach.

Fact 1. (Rockafellar and Uryasev [11]) Let α ∈ (0, 1), and for x ∈ X and β ∈ R,
define:

Fα(x, β) = β +
1

1− α
EP

[
(q(x, ω)− β)+

]

Stochastic Combinatorial Optimization 229

Then, Fα(x, ·) is finite and convex, with ϕα(q(x, ω)) = minβ Fα(x, β). In par-
ticular, if q is convex w.r.t. x, then ϕα is convex w.r.t. x as well. Indeed, Fα is
jointly convex in (x, β).

The power of the above representation theorem lies in the fact that it reduces
the risk–adjusted stochastic optimization problem:

min
x∈X

{c(x) + ϕα(q(x, ω))} (9)

to the well–studied problem of minimizing the expectation of a certain random
function. Thus, it seems plausible that the machineries developed for solving
the latter can be applied to Problem (9) as well. Moreover, when c, q are convex
w.r.t. x and X is convex, Problem (9) is a convex optimization problem and hence
can be solved (up to any prescribed accuracy) in polynomial time. In Section
3, we will show how the SAA method can be applied to obtain a near–optimal
solution to (9).

3 Sampling Theorem for Risk–Adjusted Stochastic
Optimization Problems

In this section, we show that for any fixed α ∈ [0, 1), it suffices to have only a
polynomial number of samples in order for the Sample Average Approximation
(SAA) method [9] to yield a near–optimal solution to Problem (9). Our result
and analysis generalize those in [2]. To begin, let X be a finite set, and let us
assume that the functions c : X → R and q : X × Ω → R satisfy the following
properties:

(a) (Non–Negativity) The functions c and q are non–negative for every first
stage action x ∈ X and every scenario ω ∈ Ω.

(b) (Empty First Stage) There exists a first stage action φ ∈ X such that
c(φ) = 0 and q(x, ω) ≤ q(φ, ω) for every x ∈ X and ω ∈ Ω.

(c) (Bounded Inflation Factor) There exists an λ ≥ 1 such that q(φ, ω) −
q(x, ω) ≤ λc(x) for every x ∈ X and ω ∈ Ω.

We remark that the assumptions above are the same as those in [2] and capture
those considered in recent work (see, e.g., [6, 8, 12, 14]). Now, let gα(x) = c(x) +
ϕα(q(x, ω)). By Fact 1, we have minx∈X gα(x) = min(x,β)∈X×R g′α(x, β), where
g′α(x, β) ≡ c(x) + EP [q′(x, β, ω)], and

q′(x, β, ω) ≡ β +
1

1− α
(q(x, ω) − β)+

Let (x∗, β∗) ∈ X×[0,∞) be an exact minimizer of g′α, and set Z∗ = g′α(x∗, β∗). It
is easy to show that β∗ ∈ [0, Z∗]. Furthermore, we have the following observation:

230 A.M.–C. So, J. Zhang, and Y. Ye

Lemma 1. Let α ∈ [0, 1), and let c, q and q′ be as above.

(a) Let κ ≥ 1 be fixed. For every x ∈ X, ω ∈ Ω and β ∈ [0, κZ∗], we have:

q′(x, β, ω) ≤ q′(φ, β, ω) ≤ max
{
q′(φ, 0, ω), q′(φ, κZ∗, ω)

}
(b) For every x ∈ X, ω ∈ Ω and β ∈ [0,∞), we have:

q′(φ, β, ω) − q′(x, β, ω) ≤ λc(x)
1− α

Before we proceed, let us first make a definition and state the version of the
Chernoff bound that we will be using.

Definition 1. We say that x∗ ∈ X is an exact (resp. γ–approximate) minimizer
of a function f if we have f(x∗) ≤ f(x) (resp. f(x∗) ≤ γf(x)) for all x ∈ X.

Lemma 2. (Chernoff Bound) Let V1, . . . , Vn be independent random variables
with Vi ∈ [0, 1] for i = 1, . . . , n. Set V =

∑n
i=1 Vi. Then, for any ε > 0, we have

P
(∣∣V − E [V]

∣∣ > εn
)
≤ 2e−ε2n.

Here is our main sampling theorem.

Theorem 1. Let g′α(x, β) = c(x) + EP [q′(x, β, ω)], where c and q′ satisfy the
assumptions above, and α ∈ [0, 1) is the risk–aversion level. Let ε ∈ (0, 1/3] and
δ ∈ (0, 1/2) be given. Set:

λα =
λ

1− α
; η = max

{
1,

α

1− α

}
and define:

ĝN
α (x, β) = c(x) + β +

1
N(1− α)

N∑
i=1

(
q(x, ωi)− β

)+
to be the SAA of g′α, where ω1, . . . , ωN are N i.i.d. samples from the underlying
distribution, and

N = Θ

(
λ2

α

ε4(1− α)2
log

(
η

ε
· |X | · 1

δ

))
Let κ ≥ 1 be fixed, and suppose that (x̄, β̄) ∈ X × [0, κZ∗] is an exact minimizer
of ĝN

α over the domain X × [0, κZ∗]. Then, with probability at least 1 − 2δ, the
solution (x̄, β̄) is an (1 + Θ(εκ))–approximate minimizer of g′α.

Remarks:

(a) Note that (x̄, β̄) needs not be a global minimizer of ĝN
α over X × [0,∞),

since such a global minimizer may have β > κZ∗. In particular, the optimal
solutions to the problems:

min
(x,β)∈X×[0,∞)

ĝN
α (x, β) (10)

and min
(x,β)∈[0,κZ∗]

ĝN
α (x, β) (11)

Stochastic Combinatorial Optimization 231

could be different. From a practitioner’s point of view, it may be easier to
solve (10) than (11), because in many applications, it is difficult to estimate
Z∗ without actually solving the problem. However, it can be shown (see
Theorem 2) that by repeating the sampling sufficiently many times, we can
obtain a sample average approximation ĝN

α whose exact minimizers (x̄∗, β̄∗)
over X × [0,∞) satisfy β̄∗ ≤ (1 + ε)Z∗ with high probability. Thus, we can
still apply the theorem even though we are solving Problem (10).

(b) Note that this theorem does not follow from a direct application of Theorem
3 of [2] for two reasons. First, the domain of our optimization problem
is X × [0, κZ∗], which is compact but not finite. However, this can be
circumvented by using a suitably chosen grid on [0, κZ∗]. A second, and
perhaps more serious, problem is that there may not exist an β0 ∈ [0, κZ∗]
such that q′(x, β, ω) ≤ q′(φ, β0, ω) for all x ∈ X and ω ∈ Ω. Such an
assumption is crucial in the analysis in [2]. On the other hand, we have the
weaker statement of Lemma 1(a), and that turns out to be sufficient for
establishing our theorem.

Proof. Let (x∗, β∗) be an exact minimizer of g′α. Then, we have Z∗ = g′α(x∗, β∗).
Our proof consists of the following three steps.

Step 1: Isolate the high–cost scenarios and bound their total probability mass.
We divide the scenarios into two classes. We say that a scenario ω is high if
q(φ, ω) exceeds some threshold M ; otherwise, we say that ω is low. Let p =
P(ω : ω is high), and define:

l̂Nα (x, β) =
1
N

∑
i: ωi low

q′(x, β, ωi); ĥN
α (x, β) =

1
N

∑
i: ωi high

q′(x, β, ωi)

Then, it is clear that ĝN
α (x, β) = c(x)+ l̂Nα (x, β)+ ĥN

α (x, β). Similarly, we define:

l′α(x, β) = EP

[
q′(x, β, ω) · 1{ω is low}

]
= (1 − p) · EP [q′(x, β, ω) |ω is low]

h′
α(x, β) = EP

[
q′(x, β, ω) · 1{ω is high}

]
= p · EP [q′(x, β, ω) |ω is high]

whence g′α(x, β) = c(x) + l′α(x, β) + h′
α(x, β). Now, using the arguments of [2],

one can show that p ≤ ε
λα(1−ε) . In particular, by the Chernoff bound (cf. Lemma

2), we have the following lemma:

Lemma 3. Let Nh be the number of high scenarios in the samples w1, . . . , wN .
Then, with probability at least 1− δ, we have Nh/N ≤ 2ε/λα.

Step 2: Establish the quality of the scenario partition.
We claim that each of the following events occurs with probability at least 1− δ:

A1 =
{∣∣l′α(x, β)− l̂Nα (x, β)

∣∣ ≤ 2εκZ∗ for every (x, β) ∈ X × [0, κZ∗]
}

A2 =
{
ĥN

α (φ, β)− ĥN
α (x, β) ≤ 2εc(x) for every (x, β) ∈ X × [0,∞)

}
A3 = {h′

α(φ, β) − h′
α(x, β) ≤ 2εc(x) for every (x, β) ∈ X × [0,∞)}

A crucial observation needed in the proof and in the sequel is the following:

232 A.M.–C. So, J. Zhang, and Y. Ye

Lemma 4. For each x ∈ X and ω ∈ Ω, the function q′(x, ·, ω) is η–Lipschitz
(i.e.

∣∣q′(x, β1, ω)− q′(x, β2, ω)
∣∣ ≤ η

∣∣β1 − β2
∣∣), where η = max

{
1, α

1−α

}
.

Due to space limitations, we defer the proofs to the full version of the paper.

Step 3: Establish the approximation guarantee.
With probability at least 1 − 2δ, we may assume that all of the above events
occur. Then, for any (x, β) ∈ X × [0, κZ∗], we have:

l′α(x, β) ≤ l̂Nα (x, β) + 2εκZ∗ (Event A1)
h′

α(x, β) ≤ h′
α(φ, β) (Lemma 1(a))

0 ≤ ĥN
α (x, β) + 2εc(x)− ĥN

α (φ, β) (Event A2)

Upon summing the above inequalities, we obtain:

g′α(x, β) − ĝN
α (x, β) ≤ 2εκZ∗ + 2εc(x) + h′

α(φ, β)− ĥN
α (φ, β) (12)

By a similar maneuver, we can also obtain:

ĝN
α (x, β) − g′α(x, β) ≤ 2εκZ∗ + 2εc(x) + ĥN

α (φ, β) − h′
α(φ, β) (13)

Now, let (x̄, β̄) ∈ X × [0, κZ∗] be an exact minimizer of ĝN
α over [0, κZ∗]. Upon

instantiating (x, β) by (x̄, β̄) in (12) and by (x∗, β∗) in (13) and summing, we
have:

g′α(x̄, β̄)− g′α(x∗, β∗) + ĝN
α (x∗, β∗)− ĝN

α (x̄, β̄)

≤ 4εκZ∗ + 2εc(x̄) + 2εc(x∗) + h′
α(φ, β̄)− h′

α(φ, β∗) + ĥN
α (φ, β∗)− ĥN

α (φ, β̄)

Using Lemma 4 and the fact that p ≤ ε
λα(1−ε) , we bound:

∣∣h′
α(φ, β̄)− h′

α(φ, β∗)
∣∣ ≤ p · η

∣∣β̄ − β∗∣∣ ≤ εηκZ∗

λα(1− ε)
≤ 2εκZ∗

where the last inequality follows from the facts that α ∈ [0, 1), ε ∈ (0, 1/2] and
λ ≥ 1. Similarly, together with Lemma 3, we have:∣∣∣ĥN

α (φ, β∗)− ĥN
α (φ, β̄)

∣∣∣ ≤ Nh

N
· η
∣∣β∗ − β̄

∣∣ ≤ 2εηκZ∗

λα
≤ 2εκZ∗

Since we have ĝN
α (x̄, β̄) ≤ ĝN

α (x∗, β∗), we conclude that:

(1− 2ε)g′α(x̄, β̄) ≤ g′α(x̄, β̄)− 2εc(x̄)
≤ g′α(x∗, β∗) + 2εc(x∗) + 4εκZ∗ + 4εκZ∗

≤ (1 + 10εκ)Z∗

It follows that g′α(x̄, β̄) ≤ (1 + Θ(εκ))Z∗ as desired. ��
The next theorem shows that by repeating the sampling sufficiently many times,
we can obtain an SAA ĝN

α whose exact minimizers (x̄∗, β̄∗) over X×[0,∞) satisfy
β̄∗ ≤ (1+ε)Z∗ with high probability. Due to space limitations, we defer its proof
to the full version of the paper.

Stochastic Combinatorial Optimization 233

Theorem 2. Let α ∈ [0, 1), ε ∈ (0, 1/3] and δ ∈ (0, 1/3) be given, and let

k = Θ

((
1 +

1
ε

)
log

1
δ

)
; N = Θ

(
λ2

α

ε4(1− α)2
log

(
η

ε
· |X | · 1

δ
· k
))

Consider a collection ĝ1,N
α , . . . , ĝk,N

α of independent SAAs of g′α, where each ĝi,N
α

uses N i.i.d. samples of the scenarios. For i = 1, 2, . . . , k, let (x̄i, β̄i) be an exact
minimizer of ĝi,N

α over X × [0,∞). Set v = arg mini ĝi,N
α (x̄i, β̄i). Then, with

probability at least 1 − 3δ, the solution (x̄v, β̄v) satisfies β̄v ≤ (1 + ε)Z∗ and is
an (1 + Θ(ε))–minimizer of g′α.

Note that in Theorems 1 and 2, we assume that the problem of minimizing ĝN
α

can be solved exactly. In many cases of interest, however, we can only get an
approximate minimizer of ĝN

α . The following theorem shows that we can still
guarantee a near–optimal solution in this case. Again, its proof can be found in
the full version of the paper.

Theorem 3. Let α ∈ [0, 1), ε ∈ (0, 1/3] and δ ∈ (0, 1/5) be given. Let k =
Θ((1 + ε−1) log δ−1), k′ = Θ((1 + ε−1) log(kδ−1)), and set:

N = Θ

(
λ2

α

ε4(1− α)2
log

(
η

ε
· |X | · 1

δ
· kk′

))

Consider a collection
{
ĝ
(i,j),N
α

}i=k,j=k′

i=1,j=1
of independent SAAs of g′α, where each

ĝ
(i,j),N
α uses N i.i.d. samples of the scenarios. Then, with probability at least 1−

5δ, one can find a pair of indices (u, v) such that any γ–approximate minimizer
of ĝ

(u,v),N
α is an (1 + Θ(ε))γ–minimizer of g′α.

As we shall see, Theorems 2 and 3 will allow us to obtain efficient approximation
algorithms for a large class of risk–adjusted stochastic combinatorial optimiza-
tion problems under the black–box model. Thus, we are able to generalize the
recent results of [2, 4, 14].

4 Applications

In this section, we consider two stochastic combinatorial optimization problems
that are special cases of Problem (9) and develop approximation algorithms for
them. Due to space limitations, we refer those readers who are interested in
more applications to the full version of the paper. Our techniques rely heavily
on the following easily–checked properties of ϕα: for random variables Z1, Z2 ∈
L2(Ω,B,P) and any α ∈ [0, 1), we have (i) (Translation Invariance) ϕα(c+Z1) =
c+ϕα(Z1) for any constant c; (ii) (Positive Homogeneity) ϕα(cZ1) = cϕα(Z1) for
any constant c > 0; (iii) (Monotonicity) if Z1 ≤ Z2 a.e., then ϕα(Z1) ≤ ϕα(Z2).
We shall assume that the cost functions satisfy the properties in Section 3. In
view of Theorems 2 and 3, we shall also assume that, for each of the problems
under consideration, there is only a polynomial number of scenarios.

234 A.M.–C. So, J. Zhang, and Y. Ye

4.1 Covering Problems

The 2–stage stochastic set cover problem is defined as follows. We are given a
universe U of elements e1, . . . , en and a collection of subsets of U , say S1, . . . , Sm.
There is a probability distribution over scenarios, and each scenario specifies a
subset A ⊂ U of elements to be covered by the sets S1, . . . , Sm. Each set Si has
an a priori weight wI

i and an a posteriori weight wII
i . In the first stage, one selects

some of these sets, incurring a cost of wI
S for choosing set S. Then, a scenario

A ⊂ U is drawn according to the underlying distribution, and additional sets
may then be selected, thus incurring their a posteriori costs. Following [14], we
formulate the 2–stage problem as follows:

minimize
∑
S

wI
SxS + ϕα(q(x,A)) subject to xS ∈ {0, 1} ∀S

where q(x,A) = min{
∑

S wII
S rA,S : rA ∈ F(x,A)}, and

F(x,A) =

{
rA :

∑
S:e∈S

rA,S ≥ 1−
∑

S:e∈S

xS ∀ e ∈ A; rA,S ∈ {0, 1} ∀S

}

By relaxing the binary constraints, we obtain a convex program that can be
solved (up to any prescribed accuracy) in polynomial time. Now, using the prop-
erties of ϕα and the arguments in [14], one can show the following: if there exists
a deterministic algorithm that finds an integer solution whose cost, for each sce-
nario, is at most ρ times the cost of the solution of the relaxed problem, then
one can obtain an 2ρ–approximation algorithm for the risk–adjusted stochas-
tic covering problem. In particular, for the risk–adjusted stochastic vertex cover
problem, we obtain an 4–approximation algorithm.

4.2 Facility Location Problem

In the 2–stage stochastic facility location problem, we are given a set of facilities
F and a set of clients D. Each scenario A ∈ {1, 2, . . . , N} specifies a subset
DA ⊆ D of clients to be served. The connection cost between client j and facility
i is cij , and we assume that the cij ’s satisfy the triangle inequality. Facility i has
a first–stage opening cost of f0

i and a recourse cost of fA
i in scenario A. The goal

is to open a subset of facilities in F and assign each client to an open facility. In
the full version of the paper, we show how to adapt an algorithm by Shmoys et
al. [15] to obtain an 8–approximation algorithm for the risk–adjusted version of
this problem.

5 Conclusion and Future Work

In this paper, we have motivated the use of a risk measure to capture robustness
in stochastic combinatorial optimization problems. By generalizing the sampling
theorem in [2], we have shown that the risk–adjusted objective can be efficiently

Stochastic Combinatorial Optimization 235

treated by the SAA method. Furthermore, we have exhibited approximation al-
gorithms for various stochastic combinatorial optimization problems under the
risk–adjusted setting. Our work opens up several interesting directions for fu-
ture research. For instance, it would be interesting to develop approximation
algorithms for other stochastic combinatorial optimization problems under our
risk–adjusted setting. Also, there are other risk measures that can be used to
capture robustness (see [13]). Can theorems similar to those established in this
paper be proven for those risk measures?

References

1. E. M. L. Beale, On Minimizing a Convex Function Subject to Linear Inequalities,
J. Royal Stat. Soc., Ser. B (Methodological) 17(2):173–184, 1955.

2. M. Charikar, C. Chekuri, M. Pál, Sampling Bounds for Stochastic Optimization,
Proc. 9th RANDOM, pp. 257–269, 2005.

3. G. B. Dantzig, Linear Programming under Uncertainty, Manag. Sci. 1(3/4):197–
206, 1955.

4. K. Dhamdhere, V. Goyal, R. Ravi, M. Singh, How to Pay, Come What May: Ap-
proximation Algorithms for Demand–Robust Covering Problems, Proc. 46th FOCS,
pp. 367–378, 2005.

5. S. Dye, L. Stougie, A. Tomasgard, The Stochastic Single Resource Service–
Provision Problem, Naval Research Logistics 50(8):869–887, 2003.

6. A. Gupta, M. Pál, R. Ravi, A. Sinha, Boosted Sampling: Approximation Algorithms
for Stochastic Optimization, Proc. 36th STOC, pp. 417–426, 2004.

7. A. Gupta, R. Ravi, A. Sinha, An Edge in Time Saves Nine: LP Rounding Approxi-
mation Algorithms for Stochastic Network Design, Proc. 45th FOCS, pp. 218–227,
2004.

8. N. Immorlica, D. Karger, M. Minkoff, V. Mirrokni, On the Costs and Benefits
of Procrastination: Approximation Algorithms for Stochastic Combinatorial Opti-
mization Problems, Proc. 15th SODA, pp. 691–700, 2004.

9. A. J. Kleywegt, A. Shapiro, T. Homem–De–Mello, The Sample Average Approxi-
mation Method for Stochastic Discrete Optimization, SIAM J. Opt. 12(2):479–502,
2001.

10. P. D. Lax, Functional Analysis, Wiley–Interscience, 2002.
11. R. T. Rockafellar, S. Uryasev, Conditional Value–at–Risk for General Loss Distri-

butions, J. Banking and Finance 26:1443–1471, 2002.
12. R. Ravi, A. Sinha, Hedging Uncertainty: Approximation Algorithms for Stochastic

Optimization Problems, Proc. 10th IPCO, pp. 101–115, 2004.
13. A. Ruszczyński, A. Shapiro, Optimization of Risk Measures, in Probabilistic and

Randomized Methods for Design under Uncertainty (G. Calafiore and F. Dabbene
eds.), Springer–Verlag, 2005.

14. D. B. Shmoys, C. Swamy, Stochastic Optimization is (Almost) as Easy as Deter-
ministic Optimization, Proc. 45th FOCS, pp. 228–237, 2004.

15. D. B. Shmoys, É. Tardos and K. I. Aardal, Approximation Algorithms for Facility
Location Problems, Proc. 29th STOC, pp. 265–274, 1997.

Approximating Minimum Power Covers of
Intersecting Families and Directed Connectivity

Problems

Zeev Nutov

The Open University of Israel, 108 Ravutski Str., Raanana 43107, Israel
nutov@openu.ac.il

Abstract. Given a (directed) graph with costs on the edges, the power
of a node is the maximum cost of an edge leaving it, and the power
of the graph is the sum of the powers of its nodes. Motivated by ap-
plications for wireless networks, we consider fundamental directed con-
nectivity network design problems under the power minimization crite-
ria: the k-outconnected and the k-connected spanning subgraph prob-
lems. For k = 1 these problems are at least as hard as the Set-Cover
problem and thus have an Ω(ln |V |) approximation threshold, while for
arbitrary k a polylogarithmic approximation algorithm is unlikely. We
give an O(ln |V |)-approximation algorithm for any constant k. In fact,
our results are based on a much more general O(ln |V |)-approximation
algorithm for the problem of finding a min-power edge-cover of an in-
tersecting set-family; a set-family F on a groundset V is intersecting if
X ∩Y, X ∪Y ∈ F for any intersecting X, Y ∈ F , and an edge set I covers
F if for every X ∈ F there is an edge in I entering X.

1 Introduction and Preliminaries

1.1 The Problem, Motivation, and Previous Work

Wireless networks are an important subject of study due to their extensive ap-
plications. A large research effort focused on performing network tasks while
minimizing the power consumption of the radio transmitters of the network. In
wired networks, one wants to find a subgraph of the minimum cost instead of the
minimum power. This is the main difference between the optimization problems
for wired versus wireless networks. In wireless networks, a range (power) assign-
ment to radio transmitters determines the resulting communication network. We
consider finding a power assignment to the nodes of a network such that the re-
sulting communication network satisfies prescribed connectivity properties, and
such that the total power is minimized. For motivation and applications to wire-
less networks (which is the same as of their min-cost variant for wired networks),
see, e.g., [1, 2, 10, 16].

Let G = (V,E) be a (possibly undirected) graph with cost ce on the edges. For
v ∈ V , the power p(v) = pc(v) of v in G (w.r.t. c) is the maximum cost of an edge
leaving v in G (or zero, if no such edge exists). The power p(G) =

∑
v∈V p(v)

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 236–247, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximating Minimum Power Covers of Intersecting Families 237

of G is the sum of powers of its nodes. Note that p(G) differs from the ordinary
cost c(G) =

∑
e∈E c(e) of G even for unit costs; for unit costs, if G is undirected

then c(G) = |E| and p(G) = |V |. For example, if E is a perfect matching on
V then p(G) = 2c(G). If G is a clique then p(G) is roughly c(G)/

√
|E|/2. For

directed graphs, the ratio between the power and the cost can be equal to the
maximum outdegree of a node in G, e.g., for stars with unit costs. The following
statement shows that these are the extremal cases for general edge costs.

Proposition 1 ([10]). c(G)/
√
|E|/2 ≤ p(G) ≤ 2c(G) for any undirected graph

G = (V,E), and if G is a forest then c(G) ≤ p(G) ≤ 2c(G). For any directed
graph G holds: c(G)/dmax(G) ≤ p(G) ≤ c(G), where dmax(G) is the maximum
outdegree of a node in G.

A simple connectivity requirement is when there should be a path from a spec-
ified node r to any other node. In this case, the min-cost variant is just the
Min-Cost Directed Tree problem which is solvable in polynomial time while the
Min-Power Directed Tree problem is at least as hard as the Set-Cover problem;
combined with the result of [22] this implies an Ω(lnn)-approximation thresh-
old for this problem (namely, it cannot be approximated within C lnn for some
universal constant C < 1, unless P=NP).

An important network property is fault-tolerance. A graph is k-outconnected
from r if it has k internally disjoint rv-paths for any v ∈ V . When the paths
are required only to be edge-disjoint, the graph is k-edge outconnected from r.
A graph is k-connected (resp., k-edge-connected) if it is k-outconnected (resp.,
k-edge-outconnected) from every node. We consider the following generalization
of the problems from [2] (where the case k = 1 was considerd):
Min-Power k-Outconnected Subgraph (MPk-OS):
Instance: A graph G = (V, E) with costs on the edges, r ∈ V , and an integer k.
Objective: Find a min-power k-outconnected from r spanning subgraph G of G.
Min-Power k-Connected Subgraph (MPk-CS):
Instance: A graph G = (V, E) with costs on the edges and an integer k.
Objective: Find a min-power k-connected spanning subgraph G of G.

When G is required to be k-edge-outconnected or k-edge-connected, we get
the Min-Power k-Edge Outconnected Subgraph (MPk-EOS) and the Min-Power
k-Edge Connected Subgraph (MPk-ECS) problems, respectively (for undirected
graphs they are equivalent).

Min-cost versions of these problems were studied extensively for both directed
and undirected graphs, see, e.g., [4, 7, 8, 6, 14, 3, 23, 11, 17, 18], and surveys in
[5, 13, 19]. For directed graphs the min-cost versions of MPk-OS and MPk-EOS
are polynomially solvable, see [4] and [7], respectively; more efficient algorithms
are given in [8, 6]. The min-cost k-edge connected subgraph problem admits a
2-approximation algorithm for both directed and undirected graphs [14]. For the
min-cost k-(node-)connected subgraph problem the best known approximation
ratios are: O(ln2 k ·min{ n

n−k ,
√

k
ln k}) for both directed and undirected graphs [17],

and O(ln k) for undirected graphs with n ≥ 2k2 [3].

238 Z. Nutov

For undirected graphs, the best known approximation ratio for MPk-ECS is
O(min{k,

√
n}) [10], and for MPk-CS is O(lnn) + α [16], where α is the best

known approximation ratio for the min-cost case. Directed min-power connec-
tivity problems are usually much harder to approximate, and the methods used in
[10, 16] do not seem to work for the directed case. For example, for k = 1 undi-
rected MPk-CS/MPk-ECS admits an easy 2-approximation algorithm by just
taking the min-cost spanning tree (the 2-approximation follows from Proposi-
tion 1), while its directed variant is ”Set-Cover hard”.

The problems MPk-OS and MPk-CS that we study are closely related to the
undirected Node Weighted Steiner Forest problem considered by Klein and Ravi
[15]; one difference is that in our problems the ”weight” of a node v is not fixed
but depends on the chosen edges leaving v. The Klein-Ravi algorithm [15] uses
the set-cover greedy approach [12]. At each step a ”spider” (a subtree having at
most one node of degree more than 2) is chosen that maximizes the ratio of the
number of terminal pairs the spider connects over its weight. They prove that
greedily adding spiders yields a 2H(n)-approximation algorithm (H(n) denotes
the nth Harmonic number). The approximation ratio was improved by Guha
and Khuller [9] to 1.5H(n) using slight generalizations of spiders. For MPk-CS
with k = 1, [2] defined spider as a rooted subtree having at most one node of
outdegree more than 2.

1.2 Our Result and Its Comparison to Previous Work

Henceforth we consider mainly directed graphs, so, unless stated otherwise,
”graph” means ”directed graph”. Suppose that G has a subgraph G0 = (V,E0)
of power zero which is k0-outconnected from r, and the goal is to augment G0
by a min-power edge-set F ⊆ E −E0 so that the resulting graph G = G0 + F is
k-outconnected from r. Formally:

Min-Power (k0, k)-Outconnectivity Augmentation (MP(k0, k)-OA):
Instance: A graph G0 = (V,E0) which is k0-outconnected from r, an edge set I

on V with costs {ce : e ∈ I}, and an integer k > k0.
Objective: Find min-power F ⊆ I so that G = G0 +F is k-outconnected from r.

In a similar way we define the augmentation versions of MPk-EOS, MPk-CS and
MPk-ECS, respectively:

Min-Power (k0, k)-Edge-Outconnectivity Augmentation(MP(k0, k)-EOA)
Min-Power (k0, k)-Connectivity Augmentation (MP(k0, k)-CA);
Min-Power (k0, k)-Edge-Connectivity Augmentation (MP(k0, k)-ECA)

In [2], approximation algorithms are given for k0 = 0 and k = 1: a 2H(n)-
approximation for the Min-Power Directed Tree problem and a (2H(n) + 1)-
approximation for the Min-Power Strongly Connected Subgraph problem. As
was mentioned, each one of these problems generalizes the Set-Cover problem
(c.f., [2]), and thus the results in [2] are essentially tight up to a constant factor.
For arbitrary k0, k we prove:

Approximating Minimum Power Covers of Intersecting Families 239

Theorem 1. There exist approximation algorithms with approximation ratios:

(i) 2(k − k0)H(n) = O(k lnn) for directed MP(k0, k)-OA and MP(k0, k)-EOA;
(ii) (2(k − k0)H(n) + k) = O(k lnn) for directed MP(k0, k)-ECA;
(iii) k(2(k − k0)H(n) + k) = O(k2 lnn) for directed MP(k0, k)-CA.

The approximation ratios in Theorem 1 are O(lnn) for any fixed k, which is tight
(up to a constant factor) if k is ”small” (usually, k ≤ 3 in practical networks),
but may seem weak if k is large. However, it might be that a much better
approximation algorithm does not exists: in [20] it is proved that for k = Θ(n)
MPk-EOS cannot be approximated within O(2log1−ε n) for any fixed ε > 0, unless
NP ⊆ DTIME(npolylog(n)). The same hardness result is valid for the ”reverse”
problem of MPk-EOS when there should be k edge-disjoint vr-paths for every v ∈
V ; however, unlike MPk-EOS, this problem admits a k-approximation algorithm
[21], and, in particular, is in P for k = 1. In contrast, for undirected MPk-OS
[21] gives an O(lnn)-approximation algorithm for any k.

In fact, Theorem 1 is just a summary of (some) applications of a much more
general approximation algorithm for finding a min-power edge-cover of an inter-
secting family. A family F of subsets of a groundset V is an intersecting family
if X ∩ Y,X ∪ Y ∈ F for any intersecting X,Y ∈ F . An edge set I covers F if
for every X ∈ F there is an edge in I entering X , that is, there is uv ∈ I with
u ∈ V −X and v ∈ X . We give an O(lnn)-approximation algorithm for the prob-
lem of finding a min-power cover of an intersecting family F , but its polynomial
implementation (in case F is not given explicitly) requires that certain queries
related to F can be answered in polynomial time. Given an edge set I on V , the
residual family FI of F (w.r.t. I) consists of all members of F that are uncovered
by edges of I. It is well known that if F is intersecting so is FI for any I. A set
C ∈ F is an F-core, or simply a core if F is understood, if C does not contain
two disjoint members of F . Clearly, the maximal F -cores are pairwise disjoint
if F is intersecting. Given a maximal core C let F(C) = {X ∈ F : X ⊆ C}. For
any edge set I on V , make the following two assumptions:
Assumption 1:
The maximal FI-cores can be computed in polynomial time.
Assumption 2:
For any maximal FI -core C, a min-cost FI(C)-cover can be computed in poly-
nomial time.

Theorem 2. The problem of finding a min-power edge-cover of an intersect-
ing family on on n elements admits a 2H(n)-approximation algorithm under
Assumptions 1 and 2.

A set function f defined on subsets of a groundset V is intersecting supermodular
if f(X) + f(Y) ≤ f(X ∩ Y) + f(X ∪ Y) for any intersecting X,Y ⊂ V . An edge
set I covers f if in the graph (V, I) the indegree of every X ⊂ V is at least
f(X). A {0, 1}-valued set function is intersecting supermodular if, and only if,
its support is an intersecting family. A natural question is whether Theorem 2
extends to intersecting supermodular set functions. As MPk-EOS is a particular

240 Z. Nutov

case of the problem of finding a min-power cover of an intersecting supermodular
set function, such an extension is unlikely due to the hardness result of [20].

To prove Theorem 2 we combine ”set-cover approximation techniques” of [15]
used in [2] for k = 1 that are based on ”density” considerations (c.f., [12]) with
the techniques used for min-cost connectivity problems. However, unlike [15, 2],
we cannot use specific graph properties. To prove that we can find an edge set
of appropriate density, we use the method of ”uncrossing” sets (c.f., [23]). We
define an analogue of spiders which we call ”star-covers”: unlike [15, 2] a star
cover is not necesarilly a tree. Showing that any inclusion minimal F -cover can
be decomposed into such star-covers is harder than showing a decomposition of
a tree into spiders; we do not know whether such a decomposition exists for set
families related to the undirected Node Weighted Steiner Network problem – a
generalization of the Node Weighted Steiner Forest problem.

Theorems 2 and 1 are proved in Sections 2 and 3, respectively.

1.3 Notation

Let G = (V,E) be a directed graph. For disjoint X,Y ⊆ V let δG(X,Y) =
δE(X,Y) be the set of edges from X to Y in E. For brevity, δE(X) = δE(X,V −
X) is the set of edges in E leaving X , dE(X) = |δE(X)|, δ+

E(X) = δE(V −X,X)
the set of edges in E entering X , and d+

E(X) = |δ+
E(V − X)| is the indegree

of X . Thus given edge costs {c(e) : e ∈ E}, the power of a node v in G (with
respect to c) is p(v) = maxe∈δE(v) c(e), and the power of G is p(G) = pE(V) =∑

v∈V p(v). Throughout the paper, let G = (V, E) denote the input graph with
nonnegative costs on the edges. Let n = |V | and m = |E|. Given G, our goal
is to find a minimum power spanning subgraph G = (V,E) of G that satisfies
some prescribed property. We assume that a feasible solution exists; otherwise
our algorithms can be easily modified to return an error message. Let opt denote
the optimal solution value of an instance at hand.

2 Proof of Theorem 2

We use a result about the performance of an Approximate Greedy Algorithm for
a certain type of covering problems, defined as follows:
Covering Problem
Instance: A groundset I and functions ν, p on 2I given by an evaluation oracle.
Objective: Find I ⊆ I with ν(I) = ν(I) and with p(I) minimized.

We call ν the deficiency function (it is assumed to be decreasing and measures
how far I from being a feasible solution) and p the payment function (assumed
to be increasing). In our case p is just the power function. Let ρ > 1 and let
opt be the optimal solution value for the Covering Problem. The ρ-Approximate
Greedy Algorithm starts with I = ∅ and iteratively adds subsets of I − I to I
one after the other using the following rule. As long as ν(I) > ν(I) it adds to I
a set F ⊆ I − I so that

σI(F) =
ν(I) − ν(I + F)

p(F)
≥ ν(I) − ν(I)

ρ · opt
. (1)

Approximating Minimum Power Covers of Intersecting Families 241

The following known statement is proved using the same methods as in [12]
where the Set-Cover problem was considered.

Theorem 3. For any covering problem so that the payment function p satisfies

p(I1 ∪ I2) ≤ p(I1) + p(I2) ∀I1, I2 ⊆ I (2)

and ν is monotone decreasing, the ρ-Approximate Greedy Algorithm computes
a solution I with p(I) ≤ ρH(ν(∅) − ν(I)) · opt, where H(n) denotes the nth
Harmonic number.

In the rest of this section we prove the following Lemma:

Lemma 1. Let ν(I) be the number of minimal cores in FI . Then an edge set F
satisfying (1) with ρ = 2 can be found in polynomial time under Assumptions 1
and 2.

For simplicity of exposition, let us revise our notation and use F instead of FI ,
and let ν = ν(∅). We assume that I is a feasible solution, thus ν(I) = 0. Then
we need to show that under Assumptions 1 and 2 one can find in polynomial
time an edge set F so that:

σ(F) =
ν − ν(F)

p(F)
≥ ν

2 · opt
. (3)

Before presenting a formal proof of Lemma 1, we give a sketch. Let C be the
set of maximal F -cores. For C ∈ C let E(C) = {uv ∈ E : u, v ∈ C} be the edges
in E with both endpoints in C, and let F(C) = {X ∈ F : X ⊆ C}. Let E be a
minimal F -cover. We prove that (Corollary 1 and Lemma 3):
(i) dE(v) ≤ 1 for any v ∈ C and d+

E(C) = 1.
(ii) E(C) plus the unique edge eC in E that enters C cover F(C).
An edge set F is a star-cover with root s (an analogue of [15, 2] spiders) if for every
e ∈ δF (s) there exists C ∈ C with δF (C) = {e} such that e + F (C) is a minimal
F(C)-cover (Definition 1). We prove that adding a star cover F decreases the
number of cores by at least Δ(F), where Δ(F) = dF (s) − 1 if dF (s) ≥ 2 and
Δ(F) = 1 if dF (s) = 1 (Lemma 4). By (ii), the set E′ of edges in E which head
lies in some core is decomposed into star-covers F1, . . . , Ft, and adding all these
star-covers decreases ν by at least

∑t
i=1 Δ(Fi) ≥ ν/2. As p(E′) ≤ opt, we use an

averaging argument as in [15, 2] to conclude that there exists a star-cover F for
which (3) holds (Lemma 5). By (i), the power of a star-cover equals the power of
s plus the cost of its edges that are not incident to s (Corollary 2). This, together
with Assumptions 1 and 2 enables us to find in polynomial time a star-cover F
that maximizes Δ(F)/p(F) (Lemma 6).

A formal proof of Lemma 1 follows. We need to establish some properties of
minimal F -covers of an intersecting family F . Let E be a minimal F -cover. By
the minimality of E, for every e ∈ E there exists We ∈ F such that δ+

E(We) =
{e}; we call such We a witness set for e; note that e might have several distinct
witness sets.

242 Z. Nutov

Lemma 2. Let F be an intersecting family and let E be a minimal F-cover. Let
We,Wf be intersecting witness sets of two distinct edges e, f ∈ E. Then We∩Wf

is a witness for one of e, f and We ∪Wf is a witness for the other.

Proof. Note that there is an edge in E entering We ∩Wf and there is an edge in
E entering We ∪Wf ; this is since We,Wf ∈ F implies that We ∩Wf ,We ∪Wf

belong to F and thus each of them is covered by some edge in E. However, if
for arbitrary sets X,Y an edge covers one of X ∩ Y,X ∪ Y then it also covers
one of X,Y , and if some edge covers both X ∩ Y and X ∪ Y then it must cover
both X and Y . Thus no edge in E − {e, f} can cover We ∩Wf or We ∪Wf , so
one of e, f covers We ∩Wf , and thus the other must cover We ∪Wf .

Corollary 1. Let X be a minimal core of an intersecting family F and let E be
a minimal F-cover. Then d+

E(X) = 1.

Proof. Clearly d+
E(X) ≥ 1, since E is an F -cover and X ∈ F . Assume that

there are distinct e, f ∈ δ+
E(X), and let We,Wf be their witness sets. Then

X ⊆ We ∩Wf (in particular, We,Wf intersect), and thus e, f ∈ δ+
E (We ∩Wf).

This contradicts Lemma 2.

Lemma 3. Let C be a maximal core of an intersecting family F and let E be
a minimal F-cover. Let E(C) be the set of edges in E with both endpoints in
C, let X be the minimal core of FE(C) contained in C (possibly X = C), and
let eC be the unique edge in E that enters X. Then E(C) + eC covers F(C) =
{X ∈ F : X ⊆ C}, and dE(C)(v) ≤ 1 for every v ∈ C; thus p(E(C)) = c(E(C)),
namely, the power of E(C) equals its cost.

Proof. Let X1 be the minimal F -core contained in C. By Corollary 1 there is
a unique edge in E entering X1, say e1. If e1 covers C, then E(C) = ∅, and
it is easy to see that the statement holds. Otherwise, let X2 be the minimal
Fe1 -core contained in C and let e2 be the unique edge in E entering X2, and
so on, until C is covered by some edge eq. In such a way we obtain sequences
e1, . . . , eq−1 of edges in E(C) together with an additional edge eq that enters
C, and X1 ⊂ X2 · · · ⊂ Xq ⊆ C of sets in F(C) so that Xi+1 is the core of
FEi where Ei = {e1, . . . , ei} and ei is the unique edge in E entering Xi. The
statement follows, since we must have Eq−1 = E(C), X = Xq, and eq = eC . In
particular, E(C) + eC = Eq covers F(C) and no two edges in E(C) share a tail.

Definition 1. An edge set F is a star-cover (with root s) if for every e ∈ δF (s)
there exists C ∈ C with δF (C) = {e} such that e+F (C) is a minimal F(C)-cover.

As the family F(C) is intersecting for any maximal F -core C, by Lemma 3 we
get:

Corollary 2. Let F be a star-cover with root s. Then δF (v) ≤ 1 for any v = s,
and thus p(F) = pF (s) + c(F − δF (s)).

Lemma 4. For a star-cover F with root s let Δ(F) = d(s)− 1 if dF (s) ≥ 2 and
Δ(F) = 1 if dF (s) = 1. Then ν − ν(F) ≥ Δ(F).

Approximating Minimum Power Covers of Intersecting Families 243

Proof. Let F ′ be the residual family of the sets that are uncovered by F . The
minimal F -cores not covered by F are also minimal F ′-cores, while any other
minimal F ′-core X ′ must contain at least one F -core covered by F . We claim
that s ∈ X ′ must hold for any such X ′, and thus: if d(s) = 1 no such X ′ exists,
and if d(s) ≥ 2 there is at most one such X ′, since the minimal F ′-cores are
disjoint. To see that s ∈ X ′, let X be a minimal F -core contained in X ′ and let
C be the maximal F -core containing X . Let Y = X ∩C. Then Y ∈ F(C), thus
there is an edge uv ∈ F entering Y . Since uv does not cover X ′, we must have
u ∈ X ′ − C. But then uv covers C, implying u = s.

Lemma 5. There exists a star-cover F for which (3) holds.

Proof. Let E be an inclusion minimal optimal F -cover. For every maximal core
C of F let EC and eC be as in Lemma 3. Let E′ be the union taken over all
maximal cores C ∈ C of the edge sets FC = EC + eC . Then E′ is decomposed
into node disjoint star-covers F1, . . . , Ft. Now the statement follows by a simple
averaging argument. Let pi = p(Fi) and let Δi = Δ(Fi). We have

∑t
i=1 pi =

p(E′) ≤ p(E) = opt and
∑t

i=1 Δi ≥ ν/2. Thus:∑t
i=1 Δi∑t
i=1 pi

≥ ν/2
p(E′)

.

From number theory we know that there must be index i so that Δi/pi ≥
ν/(2p(E′)). Let F = Fi. Then ν − ν(F) ≥ Δi, by Lemma 4. Consequently

σ(F) =
ν − ν(F)

p(F)
≥ ν

2 · p(E′)
≥ ν

2 · p(E)
=

ν

2 · opt
.

Lemma 6. A star-cover F that maximizes Δ(F)/p(F) can be found in polyno-
mial time under Assumptions 1 and 2.

Proof. We first compute the maximal cores; this can be done in polynomial time
by Assumption 1. Second, for every node v that belongs to a maximal core C we
define the weight w(v) of v to be the minimum cost of an Fe(C)-cover, where
e = uv is an arbitrary edge that has head v and enters C. This can be done in
polynomial time by Assumption 2. Let us say that a star F is proper if every
its edge enters some maximal F -core. Given a proper star F with root s, let
w(F) = p(s) + w(LF) where LF is the set of leaves of F . We now see that our
goal is to compute a proper star F that maximizes max{|LF | − 1, 1}/w(F). We
may assume that we know the root s and its power p = pF (s) in F ; there are
O(n2) distinct choices. Delete all the edges, except that for every core C ∈ C
among the edges sv with v ∈ C and p(sv) ≤ p(s), if any, choose one with w(v)
minimal. This defines an auxiliary star T . Let v1, . . . , vq be the leaves of T sorted
by increasing weight, so w(v1) ≥ w(v2) ≥ . . . ≥ w(vq). Let Wi =

∑i
j=1 wi, and

let σ1 = 1/(p + W1) and σi = (i− 1)/(p + Wi), i = 1, . . . , q. We find the index j
for which σj is maximum, which will determine the required star-cover.

244 Z. Nutov

3 Proof of Theorem 1

3.1 Part (i)

We give a 2H(n)-approximation algorithm for MP(�, �+ 1)-OA (resp., MP(�, �+
1)-EOA), that is for the problems of finding a min-power augmenting edge set
that increases the outconnectivity (resp., edge-outconnectivity) from r by 1.
We then apply this algorithm sequentially for � = k0, . . . , k − 1, to produce
edge sets Fk0 , . . . , Fk−1 so that G0 + (Fk0 + · · · + F�) is (� + 1)-outconnected
(resp., (�+1)-edge-outconnected) from r, and p(F�) ≤ 2H(n)·opt. Consequently,
F = Fk0 + · · ·+ Fk−1 is k-outconnected from r, and

p(F) ≤
k−1∑
�=k0

p(F�) ≤
k−1∑
�=k0

2H(n) · opt = 2(k − k0)H(n) · opt .

A graphG = (V,E) is �-edge outconnected from r to T if there are � edge-disjoint
rt-paths for every t ∈ T . Using Theorem 2, we give a 2H(n)-approximation algo-
rithm for the following augmentation problem, that generalizes both MP(k0, k0 +
1)-OA and MP(k0, k0 + 1)-EOA.
Instance: A graph G0 = (V,E0) which is k0-outconnected from r to T and an

edge set I on V with costs {ce : e ∈ I} so that every edge in I has its
head in T .

Objective: Find a min-power edge-set I ⊆ I so that G = G0 + I is (k0 +1)-edge-
outconnected from r to T .

MP(k0, k0+1)-EOA is a special case of this problem when T = V . For MP(k0, k0+
1)-OA apply the following approximation ratio preserving reduction. Given an
instance G0 = (V,E0), k0, r, I of MP(k0, k0 + 1)-OA obtain an instance G′

0 =
(V ′, E′

0), T
′, k0, r, I ′, c′ of the above problem as follows. Replace every node v ∈ V

by the two nodes vt, vh connected by the edge vtvh of cost zero, and replace every
edge uv ∈ E0 ∪ I by the edge uhvt having the same cost as uv (which is zero if
uv ∈ E0). Let r′ = rh, T ′ = {vt : v ∈ V }, and

E′
0 = {uhvt : uv ∈ E0}+ {vtvh : v ∈ V }, I ′ = {uhvt : uv ∈ I} .

This establishes a bijective correspondence between edges in I and the edges in
I ′. It is not hard to verify (see [6] for details) that G′

0 = (V ′, E′
0) is k0-edge-

connected from r′ to T ′. Furthermore, if I ′ ⊆ I corresponds to I ⊆ I then:
(i) I is a feasible solution if, and only if, I ′ is a feasible solution.
(ii) dI(v) = dI′(vh) and dI′(vt) = 0 for every v ∈ V ; thus p(I) = p(I ′).

We now show that above problem can be reduced to the min-power intersect-
ing family cover problem, so that Assumptions 1 and 2 are valid. We say that
X ⊆ V − s is tight in G0 if X ∩T = ∅ and d+(X) = k0. From Menger’s Theorem
we have:

Fact 4. Let G0 = (V,E0) be k0-edge-outconnected from r to T . Then G = G0+I
is (k0 + 1)-edge-outconnected from r to T if, and only if, I covers all the tight
sets.

Approximating Minimum Power Covers of Intersecting Families 245

We now see that the augmentation problem is equivalent to the problem of
finding a cover of the family of tight sets. However, since only edges with head
in T can be added, this is equivalent to covering the family:

F = {X ∩ T : X is tight in G0} . (4)

It is well known (c.f. [6]) that:

Fact 5. The family F defined in (4) is intersecting.

It remains to show that Assumptions 1 and 2 are valid for F defined by (4). For
Assumption 1 we need to show that given a graph, the maximal F -cores can
be found in polynomial time (if some edges were added at previous steps, we
consider the graph after these edges were added). We first show how to find the
minimal F -cores. Then, for Assumption 1, we will show that finding maximal
F -cores can be done using n max-flow computations; for Assumption 2 we will
show that finding a min-cost F(C)-cover for a given maximal core C can be
done using one min-cost (k0 + 1)-flow computation.

The minimal cores can be found using |T | max-flow computations as follows.
For every t ∈ T , compute a maximum rt-flow. If its value is k0, then in the corre-
sponding residual network the set of nodes {v ∈ T : t is reachable from v} is the
minimal core containing t; otherwise, no minimal core containing t exists. After
the minimal F -cores are found, to find the maximal cores, for every minimal
core X do the following. Add an edge from r to every minimal core distinct from
X . Then choose t ∈ X and compute a maximum rt-flow; in the corresponding
residual network the set of nodes T ∩{v ∈ T : v is reachable from r} is the max-
imal core containing X . Now we show how to find a min-cost F(C)-cover for
a maximal core C that contains a minimal core X . The construction is similar
to the previous one: construct a network H = G0 + I, assigning zero costs to
edges in E0. Then add an edge from r to every minimal core distinct from X ,
and compute a min-cost (k0 + 1)-flow f from r to some t ∈ X . The edge set
{e ∈ I : f(e) = 1} is the desired F(C)-cover.

3.2 Part (ii)

Let us say that a graph is k-inconnected to r (resp., k-edge-inconnected to r) if
its reverse graph is k-outconnected from r (resp., k-edge-outconnected from r).
The algorithm for MP(k0, k)-ECA is as follows. Let r be an arbitrary node of G.
1. Using the algorithm as in part (i) of Theorem 1 compute an edge set F ′ so

that G0 + F ′ is k-edge-outconnected from r.
2. Compute a min-cost augmenting edge set F ′′ so that G0 + F ′′ is k-edge-

inconnected to r.
Let F = F ′ + F ′′. Note that G = G0 + F is both k-edge-outconnected from

r and k-edge-inconnected to r. This implies that G is k-edge connected, so F is
a feasible solution. To bound its power, let OPT be an optimal solution. Since
G0 + OPT is k-edge-outconnected from r we have p(F ′) ≤ 2H(k − k0)p(OPT).

246 Z. Nutov

A graph G is minimally k-inconnected to r if it is k-inconnected to r but
G−e is not k-inconnected to r for any edge e of G. In a similar way a minimally
k-edge-inconnected to r graph is defined. To bound the power of F ′′ we need the
following known statement, c.f., [4, 7, 5].

Fact 6. Let G be minimally k-inconnected or minimally k-edge-inconnected to
r. Then every node of G distinct from r has outdegree exactly k.

Let OPT ′′ ⊆ OPT be minimal so that G0 + OPT ′′ is k-edge-inconnected to
s. By Fact 6, the outdegree of every node w.r.t. OPT ′′ is at most k. Thus
c(OPT ′′) ≤ k · p(OPT ′′), by Proposition 1. Using this, the cost optimality of
F ′′, and Proposition 1 we get:

p(F ′′) ≤ c(F ′′) ≤ c(OPT ′′) ≤ k · p(OPT ′′) ≤ k · opt.

Consequently,

p(F)=p(F ′+F ′′) ≤ p(F ′)+p(F ′′) ≤ 2H(k−k0)·opt+k·opt=(2H(k−k0)+k)·opt.

The proof of part (ii) of Theorem 1 is complete.
We note that Theorem 2 can be extended to so called ”crossing families”. Two

intersecting sets X,Y ⊂ V cross if X ∩ Y,X − Y, Y −X are all nonempty and if
X ∪ Y = V . A set family F on V is a crossing family if X ∩ Y,X ∪ Y ∈ F for
any crossing X,Y ∈ F . Any crossing family can be naturally represented by two
intersecting families as follows. Let r ∈ V be arbitrary. For a set family F on V
define F+

r = {X ∈ F : r /∈ X} and F−
r = {V −X : X ∈ F −F+

r }. Summarizing,
we get the following statement:

Corollary 3. The problem of finding a min-power edge-cover of a crossing fam-
ily F on V admits a (2H(n) + 1)-approximation algorithm, if for some r ∈ V
Assumptions 1 and 2 are valid for F+

r and if the min-cost reverse cover of F−
r

can be computed in polynomial time.

3.3 Part (iii)

The algorithm is as follows. Let S ⊂ V be a subset of nodes of size k (so |S| = k).
For every r ∈ S do:
1. Using the algorithm as in part (i) of Theorem 1 compute an edge set F ′

r so
that G0 + F ′

r is k-outconnected from r.
2. Compute a min-cost augmenting edge set F ′′

r so that G0 + F ′′
r is k-edge-

inconnected to r.
The fact that F = ∪{F ′

r + F ′′
r : r ∈ S} is a feasible solution is known, c.f.,

[17] (this fact is independent from the cost/power of the edge sets computed).
For every r ∈ S we have p(F ′

r) ≤ 2(k− k0)H(n) · opt and p(F ′′
r) ≤ k · opt, by the

same argument as in the proof of part (ii). Consequently,

p(F) ≤ |S|(2(k − k0)H(n) + k) · opt = k(2(k − k0)H(n) + k) · opt .

We note that by combining part (i) of Theorem 1 with the method used in
[18] one can obtain an algorithm with approximation ratio (2H(n) + k) · (k −
k0) ·O(n

n−k ln k) which for large values of k might be better.

Approximating Minimum Power Covers of Intersecting Families 247

References

1. Althaus E., Calinescu G., Mandoiu I., Prasad S, Tchervenski N., Zelikovsky A.:
Power efficient range assignment in ad-hoc wireless networks. WCNC Proc. (2003)
1889–1894

2. Calinescu G., Kapoor S., Olshevsky A., Zelikovsky A.: Network lifetime and power
assignment in ad hoc wireless networks. ESA Proc. (2003) 114-126

3. Cheriyan J., Vempala S., Vetta A.: An Approximation Algorithm for the Minimum-
Cost k-Vertex Connected Subgraph. SIAM J. on Computing 32(4) (2003) 1050–
1055

4. Edmonds J.: Matroid intersection. Annals of Discrete Math. 4 (1979) 185–204
5. Frank A.: Connectivity and network flows. In Handbook of Combinatorics, eds.

R. Graham, M. Grötschel, and L. Lovász, Elsvier Science (1995) 111–177.
6. Frank A.: Increasing the rooted-connectivity of a digraph by one. Mathematical

Programming 84(3) (1999) 565–576
7. Frank A., Tardos É.: An application of submodular flows. Linear Algebra and its

Applications 114/115 (1989) 329–348
8. Gabow H. N.: A representation for crossing set families with application to sub-

modular flow problems. SODA Proc. (1993) 202–211
9. Guha S., Khuller S.: Improved methods for approximating node weighted Steiner

trees and connected dominating sets. Inf. Comput. 150(1) (1999) 57–74
10. Hajiaghayi M. T., Kortsarz G., Mirokni V. S., Nutov Z.: Power optimization for

connectivity problems IPCO Proc. (2005) 349–361
11. Jain K.: A Factor 2 Approximation Algorithm for the Generalized Steiner Network

Problem. Combinatorica 21(1) (2001) 39–60
12. Johnson D. S.: Approximation Algorithms for Combinatorial Problems. Journal of

Computing and System Sciences 9(3) (1974) 256–278
13. Khuller S.: Approximation algorithms for for finding highly connected subgraphs.

Chapter 6 in: Approximation Algorithms for NP-hard problems, D. S. Hochbaum
Ed., PWS, (1995) 236–265

14. Khuller S., Vishkin U.: Biconnectivity approximations and graph carvings. Journal
of the Association for Computing Machinery 41(2) (1994) 214–235

15. Klein C., Ravi R: A nearly best-possible approximation algorithm for node-
weighted steiner trees. Journal of Algorithms 19(1) (1995) 104–115

16. Kortsarz G, Mirokni V. S., Nutov Z., Tsanko E.: Approximation algorithms for
minimum power fault tolerant network design. Manuscript (2006)

17. Kortsarz G., Nutov Z.: Approximating node-connectivity problems via set covers.
Algorithmica 37 (2003) 75–92

18. Kortsarz G., Nutov Z.: Approximating k-node connected subgraphs via critical
graphs. SIAM J. on Computing 35(1) (2005) 247–257

19. Kortsarz G., Nutov Z.: Approximating minimum cost connectivity problems. To
appear in: Approximation Algorithms and Metaheuristics, T. F. Gonzalez ed.

20. Lando Y., Nutov Z.: On hardness of minimum power connectivity problems.
Manuscript (2006)

21. Nutov Z.: Approximating minimum power connectivity problems. Manuscript
(2006)

22. Raz R., Safra S.: A sub-constant error-probability low-degree test and a sub-
constant error-probability PCP characterization of NP, STOC Proc. (1997) 475-484

23. Williamson D. P., Goemans M. X., Mihail M., Vazirani V. V.: A primal-dual ap-
proximation algorithm for generalized Steiner network problems. Combinatorica
15 (1995) 435-454

Better Approximations for the Minimum
Common Integer Partition Problem

David P. Woodruff�

1 MIT
dpwood@mit.edu

2 Tsinghua University

Abstract. In the k-Minimum Common Integer Partition Problem, ab-
breviated k-MCIP, we are given k multisets X1, . . . , Xk of positive in-
tegers, and the goal is to find an integer multiset T of minimal size for
which for each i, we can partition each of the integers in Xi so that the
disjoint union (multiset union) of their partitions equals T . This prob-
lem has many applications to computational molecular biology, including
ortholog assignment and fingerprint assembly.

We prove better approximation ratios for k-MCIP by looking at what
we call the redundancy of X1, . . . , Xk, which is a quantity capturing the
frequency of integers across the different Xi. Namely, we show .614k-
approximability, improving upon the previous best known (k − 1/3)-
approximability for this problem. A key feature of our algorithm is that
it can be implemented in almost linear time.

Keywords: minimum common integer partition problem, approxima-
tion algorithms, computational biology.

1 Introduction

In a recent work [2] a new combinatorial optimization problem called the Min-
imum Common Integer Partition problem was introduced. This problem is one
of the many recent combinatorial problems with applications to computational
molecular biology, including ortholog assignment [1, 3, 4, 5] and DNA fingerprint
assembly [10]. The problem also poses interesting new algorithmic challenges.

Formally, the problem is as follows. Consider two multisets X = {x1, . . . , xm}
and T of positive integers. If there is a partition of T into multisets Ti such that
for each i the sum of integers in Ti equals xi, then T is called an integer partition
of X . We say that T is a common integer partition of multisets X1, . . . , Xk if it
is an integer partition of each Xi. The k-Minimum Common Integer Partition
Problem, abbreviated k-MCIP(X1, . . . , Xk), is to find a common integer partition
T of minimum cardinality.

As an example, for a pair of multisets X1 = {2, 2, 3} and X2 = {1, 1, 5}, the
integer partition T = {1, 1, 2, 3} is a minimum common integer partition of the
� The author would like to thank Andrew Yao and Tsinghua University for hospitality

and support while performing this researh.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 248–259, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Better Approximations for the MCIP Problem 249

Xi. Indeed, to see that T is an integer partition of X1, partition T into multisets
T1 = {1, 1}, T2 = {2}, and T3 = {3}. Then the sum of integers in T1 is 2, the
sum in T2 is 2, and the sum in T3 is 3. To see that T is an integer partition of
X2, partition it into T1 = {1}, T2 = {1}, and T3 = {2, 3}. To see that T has
minimal size, observe that any integer partition of either X1 or X2 must have
size at least 3. Further, the only integer partition of X1 of size 3 is X1 itself.
However, X1 is not an integer partition of X2. Thus every common partition has
size at least 4, which is the size of T .

A common partition T exists if and only if the integers in each Xi have the
same sum. As this property is easy to verify, we will assume it holds for the rest
of the paper. Let m =

∑k
i=1 |Xi|. We will think that k is much smaller than m,

as is the case in practice. Nevertheless, in our asymptotic notation we will write
the dependence on both m and k.

In [2], it is shown that k-MCIP is NP-hard1, and in fact APX-hard [9] for
every k ≥ 2. To show the former, the authors present a Cook-reduction from
Set-Partition, while for the latter they present an L-reduction from Maximum-
3-Dimensional-Matching with a bounded number of occurrences, which is known
to be APX-hard [7]. The authors also give a 5/4-approximation algorithm when
k = 2 and a 3k(k−1)

3k−2 -approximation algorithm for general k. Note that 3k(k−1)
3k−2 ≈

k − 1/3. The former is based on an approximation algorithm for Set-Packing
with small sets, and the latter is described below. Although their algorithm for
k = 2 is polynomial-time, its running time2 is Ω(m9), which is likely to make
it impractical. Indeed, as mentioned in the applications below, it is likely that
m ≈ 212, for which this running time is much too large to be of use. Their
algorithm for general k is much more efficient, running in time O(mk).

We note that an O(m log k)-time k-approximation for k-MCIP is straightfor-
ward, though in [2] the authors only provide an O(mk)-time k-approximation.
To see this, first suppose k = 2 and the multisets are X,Y . Repeatedly choose an
element x ∈ X and y ∈ X , and add min(x, y) to the common partition. Remove
x from X and y from Y if x = y. Otherwise remove min(x, y) from the multiset
it occurs in and replace max(x, y) with max(x, y)−min(x, y) in the other multi-
set. This procedure produces at most m− 1 numbers in the common partition.
Since the optimal solution has size at least max(|X |, |Y |) ≥ m/2, the algorithm
provides a 2-approximation. It runs in O(m) time. To solve k-MCIP, divide the
input multisets into 	k/2
 pairs (plus one multiset if k is odd), run the above
algorithm on each pair, and repeat the process on pairs of output multisets. The
running time is now O(m log k) and the output size is again at most m, so we
get an m/(m/k) = k approximation. We refer to this algorithm as k-Greedy.

In fact, it is not hard to achieve ratio 5k
8 for even k and (5k

8 + 3
8) for odd k.

This was also missed in [2], and already improves the previous best known ratio
for every k ≥ 3. To see this, for simplicity suppose that k is even. Partition the
k multisets into k/2 pairs (X2i−1, X2i). Run the algorithm of [2] for 2-MCIP on

1 Lan Liu and the author have shown that k-MCIP is NP-hard in the strong sense.
2 We assume the unit-cost RAM model on words of size O(log m) and that arithmetic

operations on words can be done in constant time.

250 D.P. Woodruff

each pair. Let the output partition of the algorithm on inputs X2i−1X2i be Yi.
Finally, output k-Greedy(Y1, . . . , Yk/2).

Let opti denote the size of the minimum common partition of X2i−1 and X2i.
Then |Yi| ≤ 5opti/4. Moreover, if opt denotes the size of the minimum common
partition of all of the Xi, then opti ≤ opt for all i. As the common partition
output by k-Greedy never has size larger than its total input size, we get that

|k− Greedy(Y1, . . . , Yk/2)| ≤
k/2∑
i=1

|Yi| ≤
k/2∑
i=1

5opti
4

≤ 5
4

k/2∑
i=1

opt =
5k
8
· opt,

and the ratio of 5k/8 follows.
The main problem with the above algorithm is that it invokes the algorithm

for k = 2 given in [2], and thus its running time is also Ω(m9). Thus the algorithm
is likely to be very impractical.

In this paper we give a new approximation algorithm for k-MCIP which runs
in almost linear time. More precisely, we have a randomized O(m log k) and a
deterministic O(mpoly(k))-time algorithm. Both running times are O(m) for
constant k. Moreover their ratios are bounded above by .614k(1 + o(1)). Since
.614 < 5/8, we not only reduce the running time to linear, we even improve
the approximation ratio of the natural (though inefficient) algorithm sketched
above. Although the algorithm in [2] for general k is also efficient, it was only
shown to achieve ratio k − 1/3. We improve the analysis of [2], and show their
algorithm actually provides a (k − 1/2)-approximation. We also provide an in-
stance to their algorithm for which this is best-possible, which turns out to be a
bit non-trivial. Finally, for the special case when the multisets Xi are disjoint,
we improve the analysis of our algorithm to show a ratio of (k + 1)/2.

Applications: Suppose we are given a collection of k genomes, one for each of
k different species. We look at the following special case: each genome consists
of the same number of copies of a single gene, but the copies are clustered into
different substrings in the different genomes. Thus, we may view each genome i
as a sequence of integer substring sizes xi

1, . . . , x
i
r, with the property that for all

pairs of genomes i, j,
∑

� xi
� =

∑
�′ x

j
�′ . The goal in this application is to parti-

tion the substrings into the same collection of strings, minimizing the number of
strings in the common partition. This provides a measure of similarity between
the different genomes, and has been proposed in practice. This is exactly the
Minimum Common Integer Partition problem. For more detail, see [2, 3, 4, 5].

Actually, the main motivating example for k > 2 is DNA fingerprint assem-
bly, as described in great detail on page 3 of [2]. This is a problem that has
arisen in the ongoing Oligonucleotide Fingerprinting Ribosomal Genes (OFRG)
project [10]. The goal of this project is to identify different microbial organisms
using fingerprints obtained in the lab. Here k is a parameter determined by a
specific measuring device, while m refers to a quantity known as the number of
probe subsets of a fingerprint. We refer the reader to [2, 10] for the details, but
we merely state that from [6] we have learned that a typical setting of MCIP
parameters likely to occur in practice is k = 28 and m = 212.

Better Approximations for the MCIP Problem 251

2 Overview of the Algorithms

To illustrate our techniques, we first recall the algorithm CommonElements given
in [2] which invokes the subroutine 2-Greedy described in the introduction. For a
formal treatment of 2-Greedy, see [2] where it is shown to terminate with output
partition size less than m (so the ratio is m/(m/2) = 2) in O(m) time.

The algorithm CommonElements first adds the integers common to all of the
Xi to a common partition, and then repeatedly invokes 2-Greedy. Let X1, . . . , Xk

be an instance of k-MCIP.

CommonElements(X1, . . . , Xk):

1. T ← ∅.
2. While there is an x occurring in all of the Xi, choose such an x, add x

to T , and remove one copy of x from each Xi.
3. Let X ′

1, . . . , X
′
k denote the resulting multisets.

4. T ′ ← 2-Greedy(X ′
1, X

′
2).

5. For i = 3, . . . , k,
(a) T ′ ← 2-Greedy(T ′, X ′

i).
6. Output T ∪ T ′.

In [2], it is shown that this algorithm is a (k−1/3)-approximation. We will later
show that it is in fact a (k−1/2)-approximation. However, let us first define our
new algorithm to see how it contrasts with this one.

The structure of our algorithm for k-MCIP is as follows. Let [k] = {1, 2, . . . , k}.

HighFrequency(X1, . . . , Xk):

1. T ← ∅.
2. Choose a set-partition π of [k] into pairs of integers, with one unpaired

integer r if k is odd.
3. For each pair (i, j) ∈ π,

(a) Compute Ci,j ← CommonElements(Xi, Xj).
4. If there is only a single pair (1, 2), output C1,2, else

– k even: output HighFrequency({Ci,j | (i, j) ∈ π}).
– k odd: output HighFrequency({Xr} ∪ {Ci,j | (i, j) ∈ π}).

We have not yet specified how to choose the partition π in step 2 of HighFre-
quency. We will try to choose π so that the output in step 4 has minimal size.
For constant k, this is easy to do by an exhaustive enumeration of partitions.
For larger k, we show a random π is a good choice, and in fact this choice can be
efficiently derandomized. For now the choice is not essential, as we merely wish
to compare the structure of HighFrequency with that of CommonElements.

At a high level, the main differences between HighFrequency and CommonEle-
ments are the following. In CommonElements, the multisets X1, . . . , Xk (or more
precisely, X ′

1, . . . , X
′
k) are traversed sequentially, invoking 2-Greedy on each new

252 D.P. Woodruff

Xi, together with the current common partition of X1, . . . , Xi−1. In our algo-
rithm, we traverse X1, . . . , Xk in parallel, and we recurse. Moreover, the traversal
order is not fixed, but rather determined by π. Also, instead of invoking 2-Greedy
on each instance of 2-MCIP we encounter, we invoke CommonElements, which
has a better approximation ratio and still can be implemented in linear time.

To get a feeling for the algorithms, consider the following example. Suppose
k = 4 and the input multisets are X1 = {2, 3}, X2 = {1, 4}, X3 = {2, 3}, and
X4 = {2, 3}. When we run CommonElements, step 2 has no effect since although
items 2 and 3 occur many times, they do not occur in X2. In step 4 we may
assume that T ′ = {1, 1, 3} (we are constructing a worst-case execution of 2-
Greedy). Then after the first iteration of step 5a, we have T ′ = {1, 1, 1, 2}, and
after the last iteration we obtain T ′ = {1, 1, 1, 1, 1} (again, in the worst-case).

However, let π = {1, 2}, {3, 4}. Then C1,2 = {1, 1, 3} or C1,2 = {1, 2, 2}, but
C3,4 = {2, 3}, so that the output of step 4 is {3, 1, 1} or {2, 2, 1}, which are
of minimal size. Thus, our algorithm HighFrequency is able to exploit the high
frequency of integers 2, 3 in the input, even though CommonElements is not. This
is the reason we’ve named our algorithm HighFrequency.

One of the main technical aspects of this paper is how to handle the case
when there are not many integers occurring in multiple input mutisets Xi. In
this case we show that even the optimal solution must be large, as intuitively if
many integers have low frequency, then most of the integers in the Xi will have
to be split into at least two new integers in any common partition. We show
this by developing a framework for capturing the frequency of integers across
the different input mutisets.

In the next section we prove a key lemma for lower-bounding the size of the
optimal common partition, and in section 4 we use this lemma to analyze the
performance of HighFrequency. We believe our lower bound can lead to future
results. For example, in the next section we use this characterization to improve
the analysis of the main algorithm of [2].

3 A Key Lemma and Two Quickies

Consider an instance S of k-MCIP consisting of k multisets of integers S =
{X1, . . . , Xk}. We will define a certain quantity of S, called its redundancy, which
captures the distribution of the number of occurrences, across the different Xi,
of integers occurring in S.

At first glance it may seem that our definition is needlessly complicated. After
presenting it, we explain the need for this complication.

Recall that the Xi are multisets, but may also be viewed as ordered lists.
Thus, we may refer to the element in the jth position of Xi for 1 ≤ j ≤ |Xi|.

Consider elements T of [|X1|+ 1]× [|X2|+ 1]× · · · × [|Xk|+ 1]. T translates
naturally into a multiset T̃ as follows: if its ith coordinate j does not equal
|Xi|+1, add the integer in the jth position of Xi to T̃ . We say that T is lonely if
the multiset T̃ has the form {t, t, . . . , t}. In this case we use the notation int(T)
to denote the integer t. We say a set C of lonely elements of [|X1|+ 1]× [|X2|+

Better Approximations for the MCIP Problem 253

1]× · · · × [|Xk|+ 1] is consistent if there are no two distinct elements T, T ′ ∈ C
and an i for which Ti = T ′

i = |Xi| + 1. That is, no two elements of C can agree
on any coordinate i, unless they both have the value |Xi|+1 on that coordinate.

We define the weighted-size of a set C of lonely elements Tj to be
∑|C|

j=1 |T̃j |.

Definition 1. The r-redundancy of S, denoted Red(r,S), is the maximum,
over all consistent sets C of at most r lonely elements, of the weighted-size of C.

We note that a simpler alternative, though incorrect, definition is the following:
define the degree of a variable x as deg(x, S) = |{i | x ∈ Xi}|. Then define the
redundancy Red(r, S) to be maxx1,...,xr distinct

∑r
i=1 deg(xi, S).

Although simpler, this definition fails to capture the following example: X1 =
{1, 1}, X2 = {1, 1}. Here, Red(2, S) = 4. Indeed, consider C = {(1, 1), (2, 2)}.
Then the elements (1, 1), (2, 2) are both lonely since their corresponding multisets
have the form {1, 1}. Moreover, they are consistent. Finally, the weighted size of
C is 4. However, the alternative definition would put Red(2, s) = deg(1, S) = 2.
One could instead remove the word “distinct” from the definition, but this also
does not solve the problem, since then for X1 = {1, 3, 4} and X2 = {1, 2, 5} it
would return Red(3, s) = 6 since x1 = x2 = x3 = 1, but our definition gives
Red(3, s) = 4 with say T1 = (1, 1), T2 = (2, 4), and T3 = (3, 4).

Define opt(S) to be the size of a minimum common partition of S. When S is
clear from the context, we will often just write opt. Recall that m =

∑k
i=1 |Xi|.

The following lemma lower bounds opt in terms of the redundancy of S.

Lemma 1. opt ≥ (2m−Red(opt, S))/k.

Proof. Let T be a minimum common integer partition of X1, . . . , Xk. Define the
bipartite graph with right partition T and left partition S (here S is the multiset
union3 of the Xi). Each x ∈ S is incident exactly to those elements ti ∈ T which
partition x. So, for instance, the sum over all neighbors of x is equal to x.

Then Red(opt, S) is an upper bound on the number of degree-1 vertices in the
left part. To see this, we construct a consistent set C of opt lonely elements whose
weighted-size is exactly the number of degree-1 vertices in the left part. For each
vertex v on the right, let S̃(v) denote v’s neighbors on the left with degree 1. As
each such v is incident to exactly 1 element in each Xi, we can naturally associate
S̃(v) with an element S(v) of [|X1| + 1] × [|X2| + 1] × · · · × [|Xk| + 1], where
S(v)j = |Xj |+1 iff v partitions a vertex in Sj with degree more than 1. Then S(v)
is lonely since each integer in S̃(v) equals the integer corresponding to v. The set
{S(v) | v on the right } is consistent since if w = S(v)j = S(v′)j for v = v′ and
j ≤ |Xj|, then w would have degree more than 1. Finally, {S(v) | v on the right }
has exactly opt elements. Thus, its weighted size is at most Red(opt, S). Since
every degree-1 vertex on the left is counted exactly once in the weighted-size of
{S(v) | v on the right }, there are at most Red(opt, S) such vertices.

3 The multiset union of two multisets is defined by the following rule: if x occurs f1

times in the first multiset and f2 times in the second, then x occurs f1 + f2 times in
the multiset union.

254 D.P. Woodruff

Resuming the proof of the lemma, there are at least m−Red(opt, S) remaining
vertices in the left part, and each has degree at least 2. Thus, there are at least
Red(opt, S) + 2(m − Red(opt, S)) = 2m − Red(opt, S) edges in the graph. On
the other hand, every vertex on the right has degree exactly k. Thus, 2m −
Red(opt, S) ≤ k|T | = k · opt, and the lemma follows by dividing by k.

Corollary 1. If for all j = j′, Xj and Xj′ are disjoint, then k-MCIP is (k +
1)/2-approximable in O(m log k) time.

Proof. In this case Red(r, S) ≤ r for any r, and the bound above gives opt ≥
2m/(k + 1). The claim follows by running k-Greedy whose output size is ≤ m.

We now look at the approximation ratio of CommonElements. In [2], it is shown
the ratio is 3k(k−1)/(3k−2) ≤ k−1/3. On the other hand, 3k(k−1)/(3k−2) ≥
k − 1/3− ε for any constant ε > 0 and large enough k. We show,

Corollary 2. CommonElements outputs a (k − 1/2)-approximation.

Proof. Recall the notation of section 2. Suppose CommonElements adds � integers
to T in step 2. It follows that T ′ is of size at most m − �k. Thus, |T ∪ T ′| ≤
� + (m − �k) = m − �(k − 1). On the other hand, there are at most � elements
with corresponding multisets of size k in any consistent set C of lonely elements.
It follows that the weighted-size of C, and thus Red(opt, S), can be at most
�k + (opt− �)(k− 1). Applying Lemma 1, k · opt ≥ 2m− (�k + (opt− �)(k− 1)),
which, after rearranging, shows opt ≥ (2m− �)/(2k − 1). Using that k ≥ 2 and
� ≥ 0, the corollary follows from the following bound on the approximation ratio,

(2k − 1)
m− �(k − 1)

2m− �
≤ (2k − 1)

m− �/2
2m− �

= (2k − 1)
1
2

= k − 1
2
.

Claim. The approximation ratio of CommonElements is at least k − 1/2− o(1).

Proof. Let r be a large positive integer, and consider X1 = X2 = · · · = Xk−1 =
{1, 1, 3, 3, 5, 5, 7, 7, . . . , 2r + 1, 2r + 1}, and Xk = {2, 6, 10, 14, . . . , 4r + 2}. Then∑

x∈Xi
x =

∑
x∈Xj

x = 2(r + 1)2 for all i = j. Thus, S = {X1, . . . , Xk} is an
instance of k-MCIP. The optimal solution is X1, which has size opt = 2r + 2.

The output of CommonElements on S is just the output of steps 3-6 on S (e.g.,
T ′) since no integer occurs in all of the Xi, and thus step 2 does not modify S. In
2-Greedy it is not specified how to choose the two integers x, y, and our strategy
is to present a sequence of choices for which T ′ is of size at least (2k−1)r−O(k2).
It will follow that the approximation ratio is at least

(2k − 1)r −O(k2)
2r + 2

=
(2k − 1)(r + 1)− (2k − 1)−O(k2)

2r + 2
= (k − 1/2)− O(k2)

2r + 2
,

which can be made arbitrarily close to k − 1/2 by increasing r.
We show by induction, after i invocations of 2-Greedy, 0 ≤ i ≤ k − 2 (recall

that there are k−1 invocations in total - we handle the last one separately), the
common partition of X1, . . . , Xi+1 generated by CommonElements has the form:

{1, 1, 3, 3, . . . , 2(r − i) + 1, 2(r − i) + 1} ∪ 1(2i) ∪ 2(s), (1)

Better Approximations for the MCIP Problem 255

where a(b) indicates b copies of a, and where s = 2
∑i−1

j=0(r − j).
Base Case: When i = 0, we have not yet invoked 2-Greedy, and so the

multiset in expression 1 should be equal to X1. Since 2i = 0 and s = 0 in this
case, this holds by definition of X1.

Inductive Step: Suppose expression 1 is the common partition after i ≥ 1
invocations, and consider the (i+1)st invocation, in which the common partition
after i invocations is invoked together with Xi+2 = {1, 1, 3, 3, . . . , 2r+1, 2r+1}.
We claim 2-Greedy may first repeatedly subtract 1s and 2s from Xi+2 until the
two multisets both have the form {1, 1, 3, 3, . . . , 2r + 1− 2i, 2r + 1− 2i}. To see
this, since each integer in Xi+2 is odd, and there are 2i integers in Xi+2 larger
than 2r+1−2i, 2-Greedy may subtract 2i different 1s so that Xi+2 has the form

{1, 1, . . . , 2r+1−2i, 2r+1−2i, 2r+2−2i, 2r+2−2i, 2r+4−2i, 2r+4−2i,. . ., 2r, 2r}.

Next, observe that the sum of the last 2i terms of Xi+2, 2
∑i

j=1(2r +2j− 2i), is
equal to s. Thus, 2-Greedy may subtract s different 2s so that the two multisets
become {1, 1, 3, 3, . . . , 2r+1−2i, 2r+1−2i}, as claimed, and the current partition
is 1(2i) ∪ 2(s).

Next 2-Greedy may choose pairs, (1, 3), (1, 3), (3, 5), (3, 5), . . . , (2r−1−2i, 2r+
1 − 2i), (2r − 1 − 2i, 2r + 1 − 2i), where the first element in each pair is from
the common partition after i invocations, and the second is from Xi+2. The first
element in each pair is added to the new partition. The multisets now have the
form {2r+1−2i, 2r+1−2i} and 1(2)∪2(2(r−i)). Finally, 2-Greedy may subtract
1 from the two different 2r + 1 − 2i, and then repeatedly subtract 2. Thus the
common partition after i + 1 invocations has the form

1(2i) ∪ 2(s) ∪ {1, 1, 3, 3, . . . , 2r − 1− 2i, 2r − 1− 2i} ∪ 1(2) ∪ 2(2(r−i)),

which is easily seen to satisfy the inductive hypothesis.
Last Invocation: By the inductive argument, the common partition ofX1, . . . ,

Xk−1 has the form of expression 1 with i = k− 2, namely, the form {1, 1, 3, 3, . . . ,
2r−2k+5, 2r−2k+5}∪1(2k−4)∪2(s),where s = 2

∑k−3
j=0 (r−j) = (2k−4)r−O(k2).

Recall Xk = {2, 6, 10, 14, . . . , 4r + 2}. First 2-Greedy may repeatedly subtracts 1s
and 2s from the two mutisets, so that they become

{1, 1, 3, 3, . . . , 2r − 2k + 5, 2r − 2k + 5} and {2, 6, . . . , 4r − 4k + 10},
and the common partition has the form 1(2k−4)∪2(s). Note that since every integer
in Xk is even, this can be accomplished by first subtracting s different 2s from the
largest integers of Xk, followed by 2k − 4 different 1s. Now 2-Greedy may choose
pairs (1, 2), (3, 6), (5, 10), . . . , (2r−2k+5, 4r−4k+10), so that the multisets both
have the form {1, 3, . . . , 2r − 2k + 5}.

Then it chooses pairs (1, 3), (3, 5), . . . , (2r − 2k + 3, 2r − 2k + 5), so that the
multisets have the form {2r − 2k + 5} and 1 ∪ 2(r−k+2). Finally, 2-Greedy may
add 1∪ 2(r−k+2) to the common partition, so the output of Common-Elements is

1(2k−3) ∪ 2(r−k+2+s) ∪ {1, 3, 5, . . . , 2r − 2k + 5} ∪ {1, 3, 5, . . . , 2r − 2k + 3}.
Since 2k−3+r−k+2+s ≥ (2k−3)r−O(k2), and there are 2r−O(k) elements
in the last two sets, the output partition has size (2k − 1)r −O(k2), as needed.

256 D.P. Woodruff

4 Analysis of HighFrequency

In this section we prove our main theorem, Theorem 1. We use the probabilistic
method to show that there are good set-partitions π that HighFrequency can
choose in step 2. We quantify how well HighFrequency performs in terms of the
average size f of a multiset from an optimal consistent set of lonely elements. On
the other hand, we also use Lemma 1 to lower bound the size of the minimum
common partition in terms of f . We then choose f so that the ratio between
this upper and lower bound is maximized, which is a worst-case ratio.

In the following, we will use O(), Ω(), o(), ω() to denote functions of k which
are independent of m, e.g., o(1) is a function which tends to 0 as k →∞.

Theorem 1. HighFrequency outputs a .614k(1 + o(1))-approximation.

Proof. First observe that for two multisets Xi, Xj containing c(Xi, Xj) elements
in common 4, the output size of CommonElements(Xi, Xj) is at most

((|Xi|+ |Xj | − 2c(Xi, Xj))− 1) + c(Xi, Xj) < |Xi|+ |Xj | − c(Xi, Xj).

In particular, its output size is always less than its input size.
Suppose in the ith invocation of HighFrequency, the algorithm is called with

multisets Y1, . . . , Yr. Then HighFrequency will partition these multisets into pairs
(with one extra Yj if r is odd) and invoke CommonElements on each pair.
For any call to CommonElements in the ith invocation of HighFrequency, say
CommonElements(Ya, Yb), |CommonElements(Ya, Yb)| < |Ya| + |Yb| − c(Ya, Yb).
Let ci be the sum of c(Ya, Yb) over all pairs (Ya, Yb) in the ith invocation.

Let mi denote the output size of the ith invocation of HighFrequency, so for
example, m1 is the input size to the first recursive call (or the output size of
HighFrequency if there are no recursive calls). Define m0 = m. Let x be such that
2x = o(

√
k). Since 2x ≤ k for large enough k, there are at least x invocations of

HighFrequency (and in fact, there may be many more, though we will only need
to consider the first x). Then for 1 ≤ i ≤ x, mi < mi−1 − ci. Summing these
inequalities up for all i and canceling common terms, mx < m−

∑x
i=1 ci. Since

|HighFrequency(X1, . . . , Xk)| ≤ mx, we have |HighFrequency(X1, . . . , Xk)| < m−∑x
i=1 ci. It follows that,

Eπ1,...,πx [|HighFrequency(X1, . . . , Xk)|] < m−Eπ1,...,πx

[
x∑

i=1

ci

]
,

where πi is a uniformly random set-partition chosen in the ith invocation of
HighFrequency, and thus each of the integer pairs (a, b) in each invocation is (by
itself) a uniformly random pair of integers. Indeed, by symmetry the first chosen
pair and also all other pairs have the same probability distribution, namely they
4 By elements in common, we mean we can find c(Xi, Xj) disjoint pairs of elements,

each pair containing one element from Xi and one element from Xj , such that the
elements within each pair are equal as integers. So if Xi = {1, 1, 3, 4} and Xj =
{1, 1, 2, 5}, then c(Xi, Xj) = 2, even though 1 is the only integer value in common.

Better Approximations for the MCIP Problem 257

are uniformly drawn at random from all possible pairs. Thus, E[c(Ya, Yb)] =
E[c(Ya′ , Yb′)] for every two integer pairs (a, b), (a′, b′) determined by πi.

We may bound E[c(Ya, Yb)] as follows. Consider the largest (in terms of
weighted size) consistent set of opt lonely elements of [|X1|+ 1]× · · · × [|Xk|+
1]. Suppose the sizes of their corresponding multisets are f1, . . . , fopt, and let
f = 	

∑
j fj/opt
. Observe that f is a positive integer since each fj ≥ 1. Now

from Lemma 1 we know that opt ≥ (2m − Red(opt, S))/k. But Red(opt, S) =∑opt
i=1 fi ≤ (f + 1)opt, and after rearranging, we have opt ≥ 2m/(k + f + 1).
Suppose f < k/5. Then, since |HighFrequency(X1, . . . ,Xk)| < m, we have

|HighFrequency(X1, . . . , Xk)|
opt

<
m
2m

k+f+1

=
k + f + 1

2
<

6k
10

(1+o(1))= .6k(1+o(1)),

and the theorem is proven in this case.
Let us now handle the case when f ≥ k/5. Consider two input multisets Ya, Yb

in the ith invocation of HighFrequency. Each is formed by successively applying
CommonElements on at most 2i−1 different input multisets Xi. Suppose a lonely
element S with int(S) = y intersects each of the (at most) 2i−1 input multisets
corresponding to Ya. Then y will occur in Ya. This also holds for Yb. Thus, if y
occurs in the (at most) 2i different input multisets corresponding to Ya and Yb,
y will be common to Ya and Yb. By our choice of π1, . . . , πi, the set of these (at
most) 2i input multisets is uniformly random amongst all such sets. Thus,

E[c(Ya, Yb)] ≥
∑

j

(fj

2i

)(
k
2i

) =
∑

j

fj(fj − 1) · · · (fj − (2i − 1))
k(k − 1) · · · (k − (2i − 1))

.

We claim the above expession is minimized when all of the fj are at least as large
as f = 	

∑
j fj/opt
. To see this, suppose, w.l.o.g., that f1 ≥ f2 ≥ · · · ≥ fopt. If

this were not the case, then f1 ≥ f + 1 and fopt ≤ f − 1. Suppose we decrease
f1 by 1 and increase fopt by 1. Then the average is the same and we still have
f1 ≥ f . On the other hand, the expression changes by

2i

k · · · (k − (2i − 1))
(
(f1 − 1) · · · (f1 − (2i − 1))− fopt · · · (fopt − (2i − 1) + 1)

)
.

Now, f1 > f ≥ k/5 > 2i for large enough k (since i ≤ x) and f1−j > fopt−j+1
for all j, so the above expression is non-negative. This substitution of variables
did not cause the value of the sum to increase, so the sum is minimized when
all the fj are at least f . Moreover, since f > 2i,

E[c(Ya, Yb)] ≥
∑

j

f(f − 1) · · · (f − (2i − 1))
k(k − 1) · · · (k − (2i − 1))

≥
∑

j

(
f − 2i

k − 2i

)2i

since k ≥ f > 2i

≥
∑

j

c2i

(
1− 5·2i

k

1− 2i

k

)2i

where c = f/k, and f ≥ k/5.

258 D.P. Woodruff

To analyze this, observe that Θ(2i

k) = 1/ω(2i) since i ≤ x and 2x = o(
√

k). We
use the following inequality, which follows from Proposition B.3 of [8].(

1− 1
ω(2i)

)2i

/

(
1− 1

ω(2i)

)
≥ e−2i/ω(2i) ≥

(
1− 1

ω(2i)

)2i

.

Plugging these inequalities into our bound above, we have that, E[c(Ya, Yb)] ≥∑
j c2i

(1 − o(1)) = opt · c2i

(1 − o(1)). In the ith invocation there are at least
	k/2i
 pairs. By linearity of expectation, Eπ1,...,πx [ci] ≥

⌊
k
2i

⌋
E[c(Ya, Yb)], and so

Eπ1,...,πx [ci] ≥
⌊

k
2i

⌋
· opt · c2i

(1− o(1)). Thus,

Eπ1,...,πx [|HighFrequency(X1, . . . , Xk)|] < m− opt
x∑

i=1

⌊
k

2i

⌋
c2i

(1− o(1)).

Since HighFrequency chooses the optimal π1, . . . , πx, it follows that

|HighFrequency(X1, . . . , Xk)| < m− opt
x∑

i=1

⌊
k

2i

⌋
c2i

(1 − o(1)).

The approximation ratio R of HighFrequency is |HighFrequency(X1, . . . , Xk)|/opt.
Dividing the expression above by opt gives R < m

opt −
∑x

i=1

⌊
k
2i

⌋
c2i

(1− o(1)).
Now since c ≤ 1 and x = o(k), we can drop the floors,

R <
m

opt
−

x∑
i=1

(
k

2i
− 1

)
c2i

(1− o(1)) <
m

opt
+ o(k) −

x∑
i=1

k

2i
· c2i

.

Recall that we have shown k+f+1
2 ≥ m

opt . Using this and f = ck, we have

R <
k

2
+ o(k) + k max

c

(
c

2
−

x∑
i=1

c2i

2i

)
.

We upper bound R by k
2 +o(k)+k maxc

(
c
2 −

c2

2 −
c4

4 −
c8

8

)
, as looking at higher

terms turns out to only negligibly reduce the approximation ratio further. Set
p(c) = c

2 −
c2

2 −
c4

4 −
c8

8 . Then p′(c) = 1
2 − c − c3 − c7. We solve p′(c∗) = 0.

By continuity, it is easy to see that there is exactly one positive real solution
c∗. A MATLAB routine shows that this value c∗ satisfies .4222 < c∗ < .4223.
Moreover, p′′(c) is non-positive for any c, and thus c∗ is a local maximum. Again
by computation, p(c∗) < .11391. At the extremes p(1/5) ≤ 1/10 and p(1) < 0,
and thus c∗ is a global maximum. It follows that R < k

2 + o(k) + .114k =
.614k(1 + o(1)), and the proof is complete.

Remark 1. We claim that our analysis cannot show R < k/2. Indeed, one can
construct S for which |HighRedundancy(S)| = m− (k − 1). Then, using Lemma
1, the best lower bound we can obtain for opt is 2m/k. Thus, R > k/2− o(1).

Better Approximations for the MCIP Problem 259

Theorem 2. k-MCIP is .614k(1+o(1))-approximable in O(m log k) probabilistic
time and O(mpoly(k)) deterministic time. Here, o(1)→ 0 as k →∞.

Proof. It remains to establish the running time. The proof of Theorem 1 actually
shows that only 3 invocations of HighFrequency are necessary to achieve the
bound .61391k(1 + o(1)). So if we choose π1, π2, and π3 judiciously, we may
choose the πi, i ≥ 4, arbitrarily. By a Markov bound, the probability over the
choices of π1, π2, and π3, that the approximation ratio is less than .614k(1+o(1))
is Ω(1). To evaluate HighFrequency and all recursive calls on a given set of set-
partitions πi takes O(m log k) time since (1) there are O(log k) recursive calls,
(2) CommonElements can be implemented in time proportional to its input size,
and (3) the sum of input sizes across all calls to CommonElements in a given
invocation of HighFrequency is at most m. By a Chernoff bound, we can output a
.614k(1+o(1))-approximation in O(m log k) time with probability at least 99/100
by running HighFrequency on O(1) different triples (pi1, π2, π3) and outputting
the smallest partition found. The choice of (π1, π2, π3) can be derandomized in
mpoly(k) time with the method of conditional expectations. We omit the details.

Conclusions. We have given an O(m log k)-time algorithm for k-MCIP with
approximation ratio .614k, improving the previous bound of k − 1/3. The best
lower bound is Ω(1). We believe it may be possible to slightly improve our aprox-
imation ratio, but that significant progress will require a new approach.

Acknowledgment. We thank the referees and Lan Liu for helpful comments.

References

[1] X. Chen. The minimum common partition revisited, manuscript, 2005.
[2] X. Chen, L. Liu, Z. Liu, and T. Jiang. On the minimum common integer partition

problem, CIAC 2006.
[3] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Computing

the assignment of orthologous genes via genome rearrangement, APBC, 2005.
[4] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Assignment

of orthologous genes via genome rearrangement. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB) 2-4, pp. 302-315, 2005

[5] Z. Fu, X. Chen, V. Vacic, P. Nan, Y. Zhong, and T. Jiang. A parsimony approach
to genome-wide ortholog assignment, RECOMB, 2006.

[6] Tao Jiang. Personal Communication.
[7] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. In-

formation Processing Letters (IPL) 37: 27-35, 1991.
[8] R. Motwani and P. Raghavan. Randomized Algorithms, Cambridge University

Press, 1995.
[9] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-

plexity classes. J. Computer and System Sciences (JCSS) 43: 425-440, 1991.
[10] L. Valinsky A. Schupham, G. D. Vedova, Z. Liu, A. Figueroa, K. Jampachaisri,

B. Yin, E. Bent, R. Mancini-Jones, J. Press, T. Jiang, and J. Borneman. Oligonu-
cleotide fingerprinting of ribosomal RNA genes (OFRG), pp. 569-585. In Molecular
Microbial Ecology Manual (2nd ed). Kluwer Academic Publishers, Dordrecht, The
Netherlands, 2004.

On Pseudorandom Generators with
Linear Stretch in NC0�

Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz

Computer Science Department, Technion, Haifa 32000, Israel
{abenny, yuvali, eyal}@technion.ac.il

Abstract. We consider the question of constructing cryptographic pseudoran-
dom generators (PRGs) in NC0, namely ones in which each bit of the output
depends on just a constant number of input bits. Previous constructions of such
PRGs were limited to stretching a seed of n bits to n + o(n) bits. This leaves
open the existence of a PRG with a linear (let alone superlinear) stretch in NC0.
In this work we study this question and obtain the following main results:

1. We show that the existence of a linear-stretch PRG in NC0 implies non-
trivial hardness of approximation results without relying on PCP machinery.
In particular, that Max 3SAT is hard to approximate to within some constant.

2. We construct a linear-stretch PRG in NC0 under a specific intractability as-
sumption related to the hardness of decoding “sparsely generated” linear
codes. Such an assumption was previously conjectured by Alekhnovich [1].

We note that Alekhnovich directly obtains hardness of approximation results from
the latter assumption. Thus, we do not prove hardness of approximation under
new concrete assumptions. However, our first result is motivated by the hope to
prove hardness of approximation under more general or standard cryptographic
assumptions, and the second result is independently motivated by cryptographic
applications.

1 Introduction

A cryptographic pseudorandom generator (PRG) [8, 24] is a deterministic function that
stretches a short random seed into a longer string which cannot be distinguished from
random by any polynomial-time observer. In this work, we study the existence of PRGs
that are both (1) extremely parallel and (2) stretch their seed by a significant amount.

Considering the first goal alone, it was recently shown in [3] that the ultimate level
of parallelism can be achieved under most standard cryptographic assumptions. Specif-
ically, any PRG in NC1 (the existence of which follows, for example, from the in-
tractability of factoring, discrete logarithm, or lattice problems) can be efficiently “com-
piled” into a PRG in NC0, namely one in which each output bit depends on just a
constant number of input bits. However, the PRGs produced by this compiler can only
stretch their seed by a sublinear amount: from n bits to n+O(nε) bits for some constant
ε < 1. Thus, these PRGs do not meet our second goal.

Considering the second goal alone, even a PRG that stretches its seed by just one
bit can be used to construct a PRG that stretches its seed by any polynomial number of

� Research supported by grant 36/03 from the Israel Science Foundation.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 260–271, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Pseudorandom Generators with Linear Stretch in NC0 261

bits. However, all known constructions of this type are inherently sequential. Thus, we
cannot use known techniques for turning an NC0 PRG with a sublinear stretch into one
with a linear, let alone superlinear, stretch.

The above state of affairs leaves open the existence of a linear-stretch PRG (LPRG)
in NC0; namely, one that stretches a seed of n bits into n + Ω(n) output bits.1 (In
fact, there was no previous evidence for the existence of LPRGs even in the higher
complexity class AC0.) This question is the main focus of our work. The question has a
very natural motivation from a cryptographic point of view. Indeed, most cryptographic
applications of PRGs either require a linear stretch (for example Naor’s bit commitment
scheme [19]), or alternatively depend on a larger stretch for efficiency (this is the case
for the standard construction of a stream cipher or stateful symmetric encryption from
a PRG, see [14]). Thus, the existence of an LPRG in NC0 would imply better parallel
implementations of other cryptographic primitives.

1.1 Our Contribution

LPRG in NC0 implies hardness of approximation. We give a very different, and
somewhat unexpected, motivation for the above question. We observe that the existence
of an LPRG in NC0 directly implies non-trivial and useful hardness of approximation
results. Specifically, we show (via a very simple argument) that an LPRG in NC0 im-
plies that Max 3SAT cannot be efficiently approximated to within some multiplicative
constant. This continues a recent line of work, initiated by Feige [12] and followed
by Alekhnovich [1], that provides simpler alternatives to the traditional PCP-based ap-
proach by relying on stronger assumptions. Unlike these previous works, which rely on
very specific assumptions, our assumption is of a more general flavor and may serve to
further motivate the study of cryptography in NC0. On the down side, the conclusions
we get are weaker and in particular are implied by the PCP theorem. In contrast, some
inapproximability results from [12, 1] could not be obtained using PCP machinery. It is
instructive to note that by applying our general argument to the sublinear-stretch PRGs
in NC0 from [3] we only get “uninteresting” inapproximability results that follow from
standard padding arguments (assuming P=NP). Furthermore, we do not know how to
obtain stronger inapproximability results based on a superlinear-stretch PRG in NC0.
Thus, our main question of constructing LPRGs in NC0 captures precisely what is
needed for this application.

Constructing an LPRG in NC0. We present a construction of an LPRG in NC0 under
a specific intractability assumption related to the hardness of decoding “sparsely gen-
erated” linear codes. Such an assumption was previously conjectured by Alekhnovich
in [1]. The starting point of our construction is a modified version of a PRG from [1]
that has a large output locality (that is, each output bit depends on many input bits) but
has a simple structure. The main technical tool we employ in order to reduce its locality
is a randomness extractor in NC0 that can use a “sufficiently short” seed for sources
with a “sufficiently high” entropy. We construct the latter by combining the known

1 Note that an NC0 LPRG can be composed with itself a constant number of times to yield an
NC0 PRG with arbitrary constant stretch.

262 B. Applebaum, Y. Ishai, and E. Kushilevitz

construction of randomness extractors from ε-biased generators [18, 6] with previous
constructions of ε-biased generator in NC0 [17]. Our LPRG can be implemented with
locality 4; this LPRG is essentially optimal, as it is known that no PRG with locality 4
can have a superlinear stretch [17]. However, the existence of superlinear-stretch PRG
with a higher (but constant) locality remains open.

By combining the two main results described above, one gets non-trivial inapprox-
imability results under the intractability assumption from [1]. These (and stronger) re-
sults were directly obtained in [1] from the same assumption without constructing an
LPRG in NC0. Our hope is that future work will yield constructions of LPRGs in NC0

under different, perhaps more standard, assumptions, and that the implications to hard-
ness of approximation will be strengthened.

LPRG in NC0 and Expanders. Finally, we observe that any LPRG in NC0 contains
a copy of a graph with some non-trivial expansion property. This connection implies
that a (deterministic) construction of an LPRG in NC0 must use some non-trivial com-
binatorial objects. (In particular, one cannot hope for “simple” transformations, such as
those given in [3], to yield LPRGs in NC0.) The connection with expanders also allows
to rule out the existence of exponentially-strong PRGs with superlinear stretch in NC0.

1.2 Related Work

The existence of PRGs in NC0 has been recently studied in [10, 17, 3]. Cryan and Mil-
tersen [10] observe that there is no PRG in NC0

2 (i.e., where each output bit depends on
at most two input bits), and prove that there is no PRG in NC0

3 achieving a superlinear
stretch; namely, one that stretches n bits to n +ω(n) bits. Mossel et al. [17] extend this
impossibility to NC0

4. Viola [23] shows that an LPRG in AC0 cannot be obtained from
a OWF via non-adaptive black-box constructions. This result can be extended to rule
out such a construction even if we start with a PRG whose stretch is sublinear.

On the positive side, Mossel et al. [17] constructed (non-cryptographic) ε-biased
generators with linear stretch and exponentially small bias in NC0

5. Later, in [3] it was
shown that, under standard cryptographic assumptions, there are pseudorandom gener-
ators in NC0

4. However, these PRGs have only sublinear-stretch.
The first application of average-case complexity to inapproximability was suggested

by Feige [12], who derived new inapproximability results under the assumption that re-
futing 3SAT is hard on average on some natural distribution. Alekhnovich [1] continued
this line of research. He considered the problem of determining the maximal number of
satisfiable equations in a linear system chosen at random, and made several conjectures
regarding the average case hardness of this problem. He showed that these conjectures
imply Feige’s assumption as well as several new inapproximability results. While the
works of Feige and Alekhnovich derived new inapproximability results (that were not
known to hold under the assumption that P = NP), they did not rely on the relation
with a standard cryptographic assumption or primitive, but rather used specific average
case hardness assumptions tailored to their inapproximability applications. A relation
between the security of a cryptographic primitive and approximation was implicitly
used in [17], where an approximation algorithm for Max 2LIN was used to derive an
upper bound on the stretch of a PRG whose locality is 4.

On Pseudorandom Generators with Linear Stretch in NC0 263

2 Preliminaries

Probability notation. We use Un to denote a random variable uniformly distributed
over {0, 1}n. If X is a probability distribution, or a random variable, we write x ← X
to indicate that x is a sample taken from X . The min-entropy of a random variable X

is defined as H∞(X) def= minx log(1
Pr[X=x]). The statistical distance between discrete

probability distributions Y and Y ′, denoted ‖Y −Y ′‖, is defined as the maximum, over
all functions A, of the distinguishing advantage |Pr[A(Y) = 1]− Pr[A(Y ′) = 1]|.

A function ε(·) is said to be negligible if ε(n) < n−c for any constant c > 0 and
sufficiently large n. We will sometimes use neg(·) to denote an unspecified negligible
function. For two distribution ensembles {Xn}n∈N and {Yn}n∈N, we write Xn ≡ Yn

if Xn and Yn are identically distributed, and Xn
s≈ Yn if the two ensembles are sta-

tistically indistinguishable; namely, ‖Xn − Yn‖ is negligible in n. A weaker notion of
closeness between distributions is that of computational indistinguishability: We write
Xn

c≈ Yn if for every (non-uniform) polynomial-size circuit family {An}, the distin-
guishing advantage |Pr[An(Xn) = 1]− Pr[An(Yn) = 1]| is negligible. By definition,
Xn ≡ Yn implies that Xn

s≈ Yn which in turn implies that Xn
c≈ Yn. A distribution

ensemble {Xn}n∈N is said to be pseudorandom if Xn
c≈ Un.

We will use the following definition of a pseudorandom generator.

Definition 1. (Pseudorandom generator) A pseudorandom generator (PRG) is a de-
terministic function G : {0, 1}∗ → {0, 1}∗ satisfying the following two conditions:

– Expansion: There exists a stretch function s : N → N such that s(n) > n for all
n ∈ N and |G(x)| = s(|x|) for all x ∈ {0, 1}∗.

– Pseudorandomness: The ensembles {G(Un)}n∈N and {Us(n)}n∈N are computa-
tionally indistinguishable.

When s(n) = n + Ω(n) we say that G is a linear-stretch pseudorandom generator
(LPRG). By default, we require G to be polynomial time computable.

It will sometimes be convenient to define a PRG by an infinite family of functions {Gn :
{0, 1}m(n) → {0, 1}s(n)}n∈N. Such a family can be transformed into a single function
that satisfies Definition 1 via padding. We will also rely on ε-biased generators, defined
similarly to PRGs except that the pseudorandomness holds only against linear functions.
Namely, for a bias function ε : N → (0, 1) we say that G : {0, 1}n → {0, 1}s(n) is an
ε-biased generator if for every non-constant linear function L : GFn

2 → GF2 and all
sufficiently large n’s it holds that |Pr[L(G(Un)) = 1]− 1

2 | < ε(n).

Locality. We say that f : {0, 1}n → {0, 1}s is c-local if each of its output bits depends
on at most c input bits, and that f : {0, 1}∗ → {0, 1}∗ is c-local if for every n the
restriction of f to n-bit inputs is c-local. The uniform versions of these classes contain
functions that can be computed in polynomial time.

3 LPRG in NC0 Implies Hardness of Approximation

In the following we show that if there exists an LPRG in NC0 then there is no polynomial-
time approximation scheme (PTAS) for Max 3SAT; that is, Max 3SAT cannot be

264 B. Applebaum, Y. Ishai, and E. Kushilevitz

efficiently approximated within some multiplicative constant r > 1. Recall that in the
Max 3SAT problem we are given a 3CNF boolean formula with s clauses over n vari-
ables, and our goal is to find an assignment that satisfies the largest possible number of
clauses. The Max �-CSP problem is a generalization of Max 3SAT in which instead of s
clauses we get s boolean constraints C = {C1, . . . , Cs} of arity �. Again, our goal is to
find an assignment that satisfies the largest possible number of constraints. (Recall that
a constraint C of arity � over n variables is a pair (f : {0, 1}k → {0, 1}, (i1, . . . , ik)).
A constraint C is satisfied by an assignment (σ1, . . . , σn) if f(σi1 , . . . , σik

) = 1.)
The following standard lemma shows that in order to prove that Max 3SAT is hard to

approximate, it suffices to prove that Max �-CSP is hard to approximate. This follows
by applying Cook’s reduction to transform every constraint into a 3CNF.

Lemma 1. Assume that, for some constants � ∈ N and ε > 0, there is no polynomial
time (1 + ε)-approximation algorithm for Max �-CSP. Then there is an ε′ > 0 such that
there is no polynomial time (1 + ε′)-approximation algorithm for Max 3SAT.

A simple and useful corollary of the PCP Theorem [5, 4] is the inapproximability of Max
3SAT.

Theorem 1. Assume that P = NP. Then, there is an ε > 0 such that there is no (1+ε)-
approximatation algorithm for Max 3SAT.

We now prove a similar result under the (stronger) assumption that there exists an LPRG
in NC0 without relying on the PCP Theorem.

Theorem 2. Assume that there exists an LPRG in NC0. Then, there is an ε > 0 such
that there is no (1 + ε)-approximation algorithm for Max 3SAT.

Proof. Let s(n) = cn for some constant c > 1, and let s = s(n). Let G : {0, 1}n →
{0, 1}s(n) be an LPRG which is computable in NC0

� . Let 0 < ε < 1/2 be a constant that
satisfies H2(ε) < 1/2 − 1/(2c), where H2(·) is the binary entropy function. Assume
towards a contradiction that there exists a PTAS for Max 3SAT. Then, by Lemma 1,
there exists a PTAS for Max �-CSP. Hence, there exists a polynomial-time algorithm Aε

that distinguishes satisfiable instances of �-CSP from instances of �-CSP for which any
assignment fails to satisfy a fraction ε of the constraints. We show that, given Aε, we
can “break” the LPRG G; that is, we can construct an efficient (non-uniform) adversary
that distinguishes between G(Un) and Us. Our adversary Bn will translate a string y ∈
{0, 1}s into an �-CSP instance φy with s constraints such that,

1. If y ← G(Un) then φy is always satisfiable.
2. If y ← Us then, with probability 1 − neg(n), no assignment satisfies more than

(1− ε)s constraints of φy .

Then, Bn will run Aε on φy and will output Aε(φy). The distinguishing advantage of B
is 1− neg(n) in contradiction to the pseudorandomness of G.

It is left to show how to translate y ∈ {0, 1}s into an �-CSP instance φy . We use n
boolean variables x1, . . . , xn that represent the bits of an hypothetical pre-image of y
under G. For every 1 ≤ i ≤ s we add a constraint Gi(x) = yi where Gi is the function
that computes the i-th output bit of G. Since Gi is an �-local function the arity of the
constraint is at most �.

On Pseudorandom Generators with Linear Stretch in NC0 265

Suppose first that y ← G(Un). Then, there exists a string σ ∈ {0, 1}n such that
G(σ) = y and hence φy is satisfiable. We move on to the case in which y ← Us. Here,
we rely on the fact that such a random y is very likely to be far from every element in
the range of G. More formally, we define a set BADn ⊆ {0, 1}s such that y ∈ BADn if
φy is (1 − ε)-satisfiable; that is, if there exists an assignment σ ∈ {0, 1}n that satisfies
a fraction (1 − ε) of the constraints of φy . In this case, the Hamming distance between
y and Im(G) is at most εs. Therefore, the size of BADn is bounded by

|Im(G)| ·
(

s

εs

)
≤ 2n2H2(ε)s = 2n(1+cH2(ε)) ≤ 2n(1+c(1

2− 1
2c)).

Hence,

Pr
y←Us

[φy is (1− ε) satisfiable] = BADn · 2−s ≤ 2n(−c+1+c(1
2− 1

2c)) = 2(1−c) n
2 ,

which completes the proof. ��

Remark 1. Theorem 2 can tolerate some relaxations to the notion of LPRG. In particular,
since the advantage of Bn is exponentially close to 1, we can consider an LPRG that
satisfies a weaker notion of pseudorandomness in which the distinguisher’s advantage
is bounded by 1− 1/p(n) for some polynomial p(n).

Papadimitriou and Yannakakis showed in [20] that if Max 3SAT does not have a PTAS
(i.e., it cannot be approximated up to an arbitrary constant), then several other problems
do not have PTAS as well (e.g., Max Cut, Max 2SAT, Vertex Cover). In fact, [20] defined
the class Max SNP, and showed that Max 3SAT is complete for this class in the sense that
any problem in Max SNP does not have a PTAS unless Max 3SAT has a PTAS. Hence,
we get the following corollary (again, without the PCP machinery):

Corollary 1. Assume that there exists LPRG in NC0. Then, all Max SNP problems do
not have a PTAS.

4 A Construction of LPRG in NC0

For ease of presentation, we describe our construction in a non-uniform way. We will
later discuss a uniform variant of the construction.

4.1 The Assumption

Let m = m(n) be an output length parameter where m(n) > n, let � = �(n) be a
locality parameter (typically a constant), and let 0 < μ < 1 be a noise parameter. Let
Mm,n,� be the set of all m× n matrices over GF2 in which each row contains exactly
� ones. For a matrix M ∈Mm,n,� we denote by Dμ(M) the distribution of the random
vector

Mx + e,

where x← Un and e ∈ {0, 1}m is a random error vector in which each entry is chosen
to be 1 with probability μ (independently of other entries), and arithmetic is over GF2.

266 B. Applebaum, Y. Ishai, and E. Kushilevitz

The following assumption is a close variant of a conjecture suggested by Alekhnovich
in [1, Conjecture 1]. 2

Assumption 3. For any m(n) = O(n), and any constant 0 < μ < 1, there exists a
positive integer �, and an infinite family of matrices {Mn}n∈N, Mn ∈Mm(n),n,�, such
that

Dμ(Mn)
c≈ Dμ+1/m(n)(Mn)

(Note that since we consider non-uniform distinguishers, we can assume that Mn is pub-
lic and is available to the distinguisher.)

Alekhnovich [1] shows that if the distribution Dμ(Mn) satisfies the above assumption
then it is pseudorandom. (In fact, the original claim proved in [1, Thm. 3.1] deals with
slightly different distributions. However, the proof can be adapted to our setting.)

Lemma 2. For any polynomial m(n) and constant 0 < μ < 1, and any infinite fam-
ily, {Mn}n∈N, of m(n) × n matrices over GF2, if Dμ(Mn)

c≈ Dμ+1/m(n)(Mn), then

Dμ(Mn)
c≈ Um(n).

Proof sketch. The proof follows by combining the following easy claims:

1. Dμ+1/m(n)(Mn) ≡ Dμ(Mn) + rn where rn ∈ {0, 1}m(n) is a random vector in
which each entry is chosen to be 1 with probability c/m(n) (independently of other
entries) for some constant c > 1.

2. Let rt(n)
n be the distribution resulting from summing t(n) independent samples from

rn. Then, for some polynomial t(n) it holds that rt(n)
n

s≈ Um(n).

3. Let {An} be a polynomial-time samplable distribution ensemble over GFm(n)
2 . For a

polynomial t(n), let At(n)
n be the sum (over GF2) of t(n) independent samples from

An. Suppose that Dn
c≈ Dn + An for some distribution ensemble {Dn}. Then, for

every polynomial t(n) we have Dn
c≈ Dn + A

t(n)
n .

By the first claim and the Lemma’s hypothesis, we have Dμ(Mn)
c≈ Dμ(Mn) + rn.

Hence, for some polynomial t(n),

Dμ(Mn)
c≈ Dn + rt(n)

n

s≈ Dn + Um(n) ≡ Um(n),

where the first transition is due to the third claim and the second transition is due to the
second claim. ��

By combining Assumption 3 and Lemma 2, we get the following proposition:

Proposition 1. Suppose that Assumption 3 holds. Then, for any m(n) = O(n), and any
constant 0 < μ < 1, there exists a constant � ∈ N, and an infinite family of matrices
{Mn}n∈N where Mn ∈Mm(n),n,� such that Dμ(Mn)

c≈ Um(n).

2 Our assumption is essentially the same as Alekhnovich’s. The main difference between the two
assumptions is that the noise vector e in [1] is a random vector of weight �μm�, as opposed
to our noise vector whose entries are chosen to be 1 independently with probability μ. It can
be shown that our assumption is implied by Alekhnovich’s assumption (since our iid noise
vectors can be viewed as a convex combination of noise vectors of fixed weight).

On Pseudorandom Generators with Linear Stretch in NC0 267

Remark 2. If the restriction on the density of the matrices Mn is dropped, the above
proposition can be based on the conjectured (average case) hardness of decoding a
random linear code (cf., [7, 15]). In fact, under the latter assumption we have that Dμ

(Mn)
c≈ Um(n) for most choices of Mn’s.

4.2 The Construction

From here on, we let μ = 2−t for some t ∈ N. Then we can sample each bit of the error
vector e by taking the product of t independent random bits. In this case, we can define
an NC0 function whose output distribution is pseudorandom. Namely,

fn(x, ê) = Mnx + E(ê)

where

x ∈ {0, 1}n, ê ∈ {0, 1}t·m(n), E(ê) =

⎛⎝ t∏
j=1

êt·(i−1)+j

⎞⎠m(n)

i=1

. (1)

Since fn(Un, Ut·m(n)) ≡ Dμ(Mn), the distribution fn(Un, Ut·m(n)) is pseudorandom
under Assumption 3 (when the parameters are chosen appropriately). Moreover, the lo-
cality of fn is � + t = O(1). However, fn is not a pseudorandom generator as it uses
n + t ·m(n) input bits while it outputs only m(n) bits. To overcome this obstacle, we
note that most of the entropy of ê was not “used”. Hence, we can apply an extractor to
regain the lost entropy. Of course, in order to get a PRG in NC0 the extractor should also
be computed in NC0. Moreover, to get a linear stretch we should extract all the t ·m(n)
random bits from ê by investing less than n additional random bits. In the following, we
show that such extractors can be implemented by using ε-biased generators.

First, we show that the distribution of ê given E(ê) contains (with high probability)
a lot of entropy. In the following we let m = m(n).

Lemma 3. Let ê← Ut·m and E(ê) be defined as in Eq. 1. Denote by [ê|E(ê)] the dis-
tribution of ê given the outcome of E(ê). Then, except with probability e−(2−tm)/3, it
holds that

H∞([ê|E(ê)]) ≥ m(1− 2−t+1) log(2t − 1) ≥ t ·m(1− δ(t)), (2)

where δ(t) = 2−Ω(t).

Proof. We view E(ê) as a sequence of m independent Bernoulli trials, each with a prob-
ability 2−t of success. Recall that ê is composed of m blocks of length t, and that the
i-th bit of E(ê) equals the product of the bits in the i-th block of ê. Hence, whenever
E(ê)i = 1 all the bits of the i-th block of ê equal to 1, and when E(ê)i = 0 the i-th
block of ê is uniformly distributed over {0, 1}t\{1t}. Consider the case in which at most
2·2−tm components of E(ê) are ones. By a Chernoff bound, the probability of this event
is at least 1−e−(2−tm)/3. In this case, ê is uniformly distributed over a set of size at least
(2t−1)m(1−2−t+1). Hence, H∞([ê|E(ê)]) ≥ m(1−2−t+1) log(2t−1) ≥ tm(1−δ(t)),
for δ(t) = 2−Ω(t). ��

268 B. Applebaum, Y. Ishai, and E. Kushilevitz

ε-biased generators can be used to extract random bits from distributions that contain
sufficient randomness. Extractors based on ε-biased generators were previously used
in [6, 11]. Formally,

Lemma 4 ([18, 2, 16]). Let g : {0, 1}s → {0, 1}n be an ε-biased generator, and let Xn

be a random variable taking values in {0, 1}n whose min-entropy is at least p. Then,

‖(g(Us) + Xn)− Un‖ ≤ ε · 2(n−p−1)/2 .

It can be shown that for some fixed exponentially small bias ε(n) = 2−Ω(n) and every
constant c there exists an ε-biased generator in NC0 that stretches n bits into cn bits. (The
locality of this generator depends on c). Hence, whenever p exceed some linear threshold
we can extractn bits from Xn in NC0 by investing only n/c random bits for any arbitrary
c. (Details are deferred to the full version.) However, in our case p is very close to n and
so we can rely on a weaker ε-biased generator with an arbitrary linear stretch c and bias
ε = 2−n/poly(c). Recently, Mossel et al. [17] constructed such an ε-biased generator in
NC0

5.

Lemma 5 ([17], Thm. 14). For every constant c, there exists an ε-biased generator g :
{0, 1}n → {0, 1}cn in NC0

5 whose bias is at most 2−bn/c4
(where b is some universal

constant that does not depend on c).

We remark that the above construction can be implemented in uniform NC0 by using the
results of [9, Theorem 7.1]. 3

We can now describe our LPRG.

Construction 4. Let t and � be positive integers, and c, k > 1 be real numbers that will
be used as stretch factors. Let m = kn and let {Mn ∈ Mn,m,�} be an infinite family of
matrices. Let g : {0, 1}n → {0, 1}cn be the ε-biased generator promised by Lemma 5.
We define the function

Gn(x, ê, r) = (Mnx + E(ê), g(r) + ê),

where x ∈ {0, 1}n, ê ∈ {0, 1}t·m, r ∈ {0, 1}t·m/c, E(ê) =
(∏t

j=1 êt·(i−1)+j

)m

i=1
.

Observe that Gn is an NC0 function. We show that if the parameters are chosen properly
then Gn is an LPRG.

Lemma 6. Under Assumption 3, there exist constants t, � ∈ N, constants c, k > 1, and a
family of matrices {Mn ∈Mn,m,�} such that the function Gn defined in Construction 4
is an LPRG.

Proof. Set k > 1 to be some arbitrary constant and let m = kn. Let c = 2t/(1− 1/k)
and choose t to be a constant satisfying:

Δ
def=

bt

c5 − δ(t) > 0, (3)

3 Theorem 7.1 of [9] gives an explicit family of asymmetric constant-degree bipartite expanders,
which can replace the probabilistic construction given in [17, Lemma 12]. We note that the
locality of the resulting generator depends on c. See full version for details.

On Pseudorandom Generators with Linear Stretch in NC0 269

where δ(·) is the negligible function from Eq. 2 and b is the bias constant of Lemma 5.
There exists a (large) constant t satisfying the above since δ(t) = 2−Ω(t) while bt/c5 =
Θ(1/t4). Let � ∈ N be a constant and {Mn ∈Mn,m,�} be an infinite family of matrices
satisfying Assumption 3.

First, we show that Gn has linear stretch. The input length of Gn is n+ tm+ tm/c =
n(tk + k/2 + 1/2). The output length is m(t + 1) = n(tk + k). Hence, since k > 1,
the constant tk + k/2+ 1/2 is smaller than the constant tk + k, and so the function Gn

has a linear stretch.
Let x, ê and r be uniformly distributed over {0, 1}n, {0, 1}t·m and {0, 1}t·m/c re-

spectively. We prove that the distribution GMn(x, ê, r) is pseudorandom. By Lemmas 3,
4 and 5 it holds that

‖(E(ê), ê + g(r)) − (E(ê), Ut·m)‖ ≤ e−(2−tm)/3 + 2−b(tm/c)/c4
2(tm−(t−δ(t))m−1)/2

≤ e−(2−tm)/3 + 2(δ(t)−bt/c5)m

≤ e−(2−tm)/3 + 2−Δm = neg(m) = neg(n),

where the last inequality is due to Eq. 3. Therefore, by Proposition 1, we get that

(Mnx+E(ê), g(r)+ê)
s≈ (Mnx+E(ê), Ut·m) ≡ (D2−t(Mn), Ut·m)

c≈ (Um, Ut·m) .

��

By the above Lemma we get a construction of LPRG in NC0 from Assumption 3. In fact,
in [3] it is shown that such an LPRG can be transformed into an LPRG whose locality
is 4. Hence, we have:

Theorem 5. Under Assumption 3, there exists an LPRG in NC0
4.

Mossel et al. [17] showed that a PRG in NC0
4 cannot achieve a superlinear stretch. Hence,

Theorem 5 is essentially optimal with respect to stretch.

Remarks on Theorem 5.

1. (Uniformity) Our construction uses a family of matrices {Mn} satisfying Assump-
tion 3 as a non-uniform advice. We can eliminate this advice and construct an LPRG
in uniform NC0

4 by slightly modifying Assumption 3. In particular, we follow
Alekhnovich (cf. [1, Remark 1]) and conjecture that any family {Mn} of good ex-
panders satisfy Assumption 3. Hence, our construction can be implemented by using
an explicit family of asymmetric constant-degree bipartite expanders such as the one
given in [9, Theorem 7.1].

2. (The stretch of the construction) Our techniques do not yield a superlinear stretch
PRG in NC0. To see this, consider a variant of Assumption 3in which we allow m(n)
to be superlinear and let μ(n) be subconstant. (These modifications are necessary
to obtain a superlinear PRG.) In this case, the noise distribution cannot be sampled
in NC0 (since μ(n) is subconstant). This problem can be bypassed by extending
Assumption 3 to alternative noise models in which the noise is not iid. However, it
is not clear how such a modification affects the hardness assumption.

270 B. Applebaum, Y. Ishai, and E. Kushilevitz

5 The Necessity of Expansion

As pointed out inthe previous section, our construction of LPRG makes use of expander
graphs. This is also the case in several constructions of “hard functions” with low locality
(e.g., [13, 17, 1]). We now show that this is not coincidental at least in the case of PRGs.
Namely, we show that the structure of any LPRG in NC0 contains a copy of a graph with
some expansion property. (In fact, this holds even in the case of ε-biased generators.)
Then, we use known lower bounds for expander graphs to rule out the possibility of
exponentially strong PRG with superlinear stretch in NC0.

Let g : {0, 1}n → {0, 1}s be a PRG. We claim that every set S of output bits whose
size is O(log n) touches at least |S| input bits. Otherwise, there exists a small set S of
output bits and a string y ∈ {0, 1}|S| such that Pr[gS(Un) = y] = 0 (where gS(·) is
the restriction of g to the output bits of S). Hence, an efficient adversary can distinguish
between gS(Un) and U|S| with advantage 2−O(logn) = 1/poly(n), in contradiction to
the pseudorandomness of g. More generally, if g is ε-strong (i.e., cannot be broken by
any efficient adversary with probability ε), then every set of t ≤ log(1/ε) output bits
touches at least t input bits. This claim extends to the case of ε-biased generators by
using the Vazirani XOR Lemma [22].

In graph theoretic terms, we have a bipartite graph G = ((In = [n],Out = [s]), E)
that enjoys some output expansion property. This property is trivial when the output
degree of G is high (as in standard constructions of PRGs) or when s is not much larger
than n (as in the NC0 constructions of [3]). However, when the locality is constant and the
stretch is linear, G is a sparse bipartite graph having n input vertices, s = n+Ω(n) output
vertices, and a constant output degree. In the standard cryptographic setting, when ε(n)
is negligible, we get expansion for sets of size O(log(n)). That is, G expands (output)
sets of size smaller than ω(logn). When ε < 2−Ω(n) (as in the ε-biased construction
of [17]), we get expansion for sets of size at most Ω(n).

Radhakrishnan and Ta-Shma [21] obtained some lower bounds for similar graphs.
In particular, by using [21, Thm. 1.5] it can be shown that if g : {0, 1}n → {0, 1}s
is an NC0

� function that enjoys the above expansion property for sets of size ≤ t, then
� ≥ Ω(log(s/t)/ log(n/t)). We therefore conclude that there is no 2−Ω(n)-strong PRG
(resp. 2−Ω(n)-biased generator) with superlinear stretch in NC0.

Acknowledgments. We thank Eli Ben-Sasson and Amir Shpilka for helpful discus-
sions.

References

1. M. Alekhnovich. More on average case vs approximation complexity. In Proc. 44th FOCS,
pages 298–307, 2003.

2. N. Alon and Y. Roichman. Random cayley graphs and expanders. Random Struct. Algorithms,
5(2):271–285, 1994.

3. B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. SIAM J. Comput. To
appear. Preliminary version in FOCS 04.

4. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness
of approximation problems. J. of the ACM, 45(3):501–555, 1998.

On Pseudorandom Generators with Linear Stretch in NC0 271

5. S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of np. J. of
the ACM, 45(1):70–122, 1998.

6. E. Ben-Sasson, M. Sudan, S. Vadhan, and A. Wigderson. Randomness-efficient low-degree
tests and short pcps via epsilon-biased sets. In Proc. 35th STOC, pages 612–621, 2003.

7. A. Blum, M. Furst, M. Kearns, and R. J. Lipton. Cryptographic primitives based on hard
learning problems. In Advances in Cryptology: Proc. of CRYPTO ’93, volume 773 of LNCS,
pages 278–291, 1994.

8. M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-
random bits. SIAM J. Comput., 13:850–864, 1984.

9. M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness conductors and
constant-degree lossless expanders. In Proc. 34th STOC, pages 659–668, 2002.

10. M. Cryan and P. B. Miltersen. On pseudorandom generators in NC0. In Proc. 26th MFCS,
2001.

11. Y. Dodis and A. Smith. Correcting errors without leaking partial information. In Proc. 37th
STOC, pages 654–663, 2005.

12. U. Feige. Relations between average case complexity and approximation complexity. In
Proc. of 34th STOC, pages 534–543, 2002.

13. O. Goldreich. Candidate one-way functions based on expander graphs. ECCC, 7(090), 2000.
14. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.
15. O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom generators.

SIAM J. Comput., 22(6):1163–1175, 1993.
16. O. Goldreich and A. Wigderson. Tiny families of functions with random properties: A quality-

size trade-off for hashing. Random Struct. Algorithms, 11(4):315–343, 1997.
17. E. Mossel, A. Shpilka, and L. Trevisan. On ε-biased generators in NC0. In Proc. 44th FOCS,

pages 136–145, 2003.
18. J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications.

SIAM J. Comput., 22(4):838–856, 1993.
19. M. Naor. Bit commitment using pseudorandomness. J. of Cryptology, 4:151–158, 1991.
20. C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes.

J. of Computer and Systems Sciences, 43:425–440, 1991.
21. J. Radhakrishnan and A. Ta-Shma. Tight bounds for depth-two superconcentrators. SIAM J.

Discrete Math., 13(1):2–24, 2000.
22. U. Vazirani. Randomness, Adversaries and Computation. Ph.d. thesis, UC Berkeley, 1986.
23. E. Viola. On constructing parallel pseudorandom generators from one-way functions. In

Proc. 20th CCC, pages 183– 197, 2005.
24. A. C. Yao. Theory and application of trapdoor functions. In Proc. 23rd FOCS, pages 80–91,

1982.

A Fast Random Sampling Algorithm for
Sparsifying Matrices

Sanjeev Arora�, Elad Hazan�, and Satyen Kale�

Computer Science Department, Princeton University
35 Olden Street, Princeton, NJ 08540

{arora, ehazan, satyen}@cs.princeton.edu

Abstract. We describe a simple random-sampling based procedure for
producing sparse matrix approximations. Our procedure and analysis
are extremely simple: the analysis uses nothing more than the Chernoff-
Hoeffding bounds. Despite the simplicity, the approximation is compa-
rable and sometimes better than previous work.

Our algorithm computes the sparse matrix approximation in a single
pass over the data. Further, most of the entries in the output matrix
are quantized, and can be succinctly represented by a bit vector, thus
leading to much savings in space.

1 Introduction

Eigenvector computations are ubiquitous in numerous algorithmic tasks: a few
applications include clustering in high dimensional data, principal component
analysis, spectral graph partitioning, semidefinite programming, and Google’s
PageRank algorithm. Because of the central importance of eigenvector compu-
tations, this problem has been very well studied by numerical analysts.

In practical applications one frequently needs to compute eigenvectors of ma-
trices arising from massive data sets such as web corpora, images, or video.
Any superlinear computation quickly becomes infeasible as the matrix size be-
comes large. If approximate eigenvectors are allowed, then one can use the power
method and the Lanczos method [TB97] which are very efficient in practice.
These two methods spend the bulk of their processing time in computing matrix-
vector products. Computing a matrix-vector product takes time proportional to
the number of non-zero entries in the matrix (i.e. the sparsity of the matrix), and
suggests that the eigenvector computation could be sped up by sparsifying the
matrix first. This involves computing a different matrix that has fewer non-zero
entries than the original, yet remains close to it by some metric. Section 2 makes
these notions precise and describes how such a sparse matrix approximation can
be used as a proxy for the original in the eigenvector computation.

Frieze, Kannan and Vempala [FKV04] considered the problem of efficiently
computing low-rank approximations to matrices, and gave an algorithm to per-
form the task via random sampling of the columns of the input matrix with
� Supported by Sanjeev Arora’s NSF grants MSPA-MCS 0528414, CCF 0514993, ITR

0205594.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 272–279, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Fast Random Sampling Algorithm for Sparsifying Matrices 273

carefully chosen probabilities. Since many columns are discarded in the ran-
dom sampling process, the algorithm can be interpreted as computing a sparse
representation of the input matrix (albeit only for the specific application of
computing low-rank approximations). This work was later refined and extended
by Drineas et al [DFK+04] and Drineas and Kannan [DK03]. Recently, Desh-
pande and Vempala [DV06] and Drineas et al [DMM06] gave algorithms for fast
computation of low-rank approximations of matrices with multiplicative rather
than additive error.

Achlioptas and McSherry [AM01] gave an algorithm that sparsifies the in-
put matrix via random sampling of the entries rather than the columns. They
applied their sparsification algorithm to the problem of computing low-rank
approximations to matrices: the idea was to simply use the sparsified matrix
in the orthogonal or Lanczos iteration algorithms for computing the approxi-
mations. They gave precise error estimates for the low-rank approximation in
terms of the sparsification quality. Their best algorithm has better performance
than [DFK+04] and [DK03] in minimizing the �2 norm of the difference matrix,
and comparable performance in the Frobenius norm. In addition, they require
only one pass over the input matrix instead of the two passes needed for pre-
vious work. Furthermore, [AM01] also describe a quantization algorithm: this
algorithm transforms all non-zero entries of the input matrix into entries with
the same magnitude, and so the output matrix can be succinctly represented by
a bit vector corresponding to the sign of the entries.

The purpose of this note is to give a new and simple sparsification algorithm
that has comparable performance to the algorithm of Achlioptas and McSherry,
and is better in situations when the allowed approximation error is small. This is
because the dependence on the approximation error ε is 1

ε for our algorithm vs.
1
ε2 for [AM01], so our algorithm scales better when the error that can be tolerated
goes down. Another advantage is that it runs in a single pass over the input ma-
trix and produces quantized entries directly (without the need for an extra quan-
tization step like [AM01]). The analysis is particularly simple: all that is needed
are the well-known Chernoff-Hoeffding bounds. This algorithm arose in applica-
tions in fast semidefinite programming [AHK05], where our algorithm gives bet-
ter performance than that of [AM01]. In this paper, we abstract out the algorithm
and refine the details that were hidden in the specific applications of [AHK05].

2 Preliminaries

Given an input symmetric matrix A, an ε-approximation for A is a symmetric
matrix Ã such that ‖A−Ã‖2 ≤ ε. Here, ‖A‖2 := max‖x‖2=1 ‖Ax‖2 is the �2 norm
of A. For symmetric matrices A, ‖A‖2 is the magnitude of the largest eigenvalue
in absolute value. We assume without loss of generality that the input matrix A
is a symmetric, n× n real matrix. This is because given an arbitrary n×m real
matrix B, we can instead consider the symmetric (n + m)× (n + m) matrix

A =
(

0 B
B� 0

)

274 S. Arora, E. Hazan, and S. Kale

which has the same �2 norm as B, and whose ε-approximation gives an ε-
approximation for B in the obvious way.

Now, we will make precise what it means to compute an approximate eigen-
vector. For a matrix A, let v be a unit eigenvector corresponding to the largest
eigenvalue, so that the largest eigenvalue of A is v�Av. A unit vector u will be
called an ε-approximate largest eigenvector of A if u�Au ≥ v�Av − ε. Let Ã be
an ε-approximation of A, and let u be an arbitrary unit vector. Then we have

|u�(A− Ã)u| ≤ ‖A− Ã‖2 = ε.

Let u be the unit eigenvector corresponding to the largest eigenvalue of Ã. Then

v�Av ≤ v�Ãv + ε ≤ u�Ãu + ε.

which implies that u is an ε-approximate largest eigenvector of A.

3 Algorithm and Comparison of Results

The procedure Sparsify in Figure 1 computes a sparse, O(ε)-approximation to
an input matrix A.

Procedure Sparsify(A, ε)
for each i ≤ j ∈ [n] do
if |Aij | > ε√

n
then

Ãji = Ãij = Aij

else

Ãji = Ãij =

⎧⎪⎨⎪⎩
sgn(Aij) · ε√

n
with probability pij =

√
n|Aij |

ε

0 with probability 1 − pij

return Ã

Fig. 1. Procedure Sparsify

Theorem 1 below gives the performance guarantees for the procedure Spar-
sify. We defer the proof of the theorem to Section 4.

Theorem 1. Let A ∈ Rn×n be a matrix with N non-zero entries and let S =∑
ij |Aij |. Let ε > 0 be a given error parameter. Then the procedure Sparsify

runs in O(N) time (a single pass over the input matrix) and produces a matrix
Ã such that:

1. With probability at least 1−exp(−Ω(
√

nS
ε)), Ã has O(

√
nS
ε) non-zero entries,

and
2. With probability at least 1− exp(−Ω(n)), we have ‖A− Ã‖2 ≤ O(ε).

A Fast Random Sampling Algorithm for Sparsifying Matrices 275

Now, we give a comparison of our results with previous work. Achlioptas and
McSherry [AM01] have a very detailed comparison of the use of the sparsifi-
cation algorithm with the algorithms of [FKV04], [DFK+04], and [DK03] for
the task of computing low-rank matrix approximations, so we refer the inter-
ested reader to [AM01] for this specific application. In this section, we only
compare the algorithm of [AM01] to ours for the task of sparsifying an input
matrix.

The strongest result1 of [AM01] is a random sampling algorithm, that, in one
pass over the input matrix A, computes a matrix Ã such that with probability at
least 1−1/n, we have ‖A−Ã‖2 ≤ ε, and which retains an expected Õ(n

ε2

∑
ij A2

ij+
n) non-zero entries.

In comparison, our algorithm computes, in one pass over the input matrix
A, a matrix Ã such that with probability at least 1 − exp(−Ω(n)), we have
‖A− Ã‖2 ≤ ε, and which retains an expected Õ(

√
n

ε

∑
ij |Aij |) non-zero entries.

Thus, our algorithm has exponentially lower failure probability and better
dependence on the error parameter ε (linear, rather than quadratic), and on the
input matrix order n.

Our algorithm also has the advantage that barring a few large entries, the
sampled entries are all quantized: since their magnitude is always ε√

n
, they can

be represented very succinctly by just their sign. This can result in considerable
savings in the space needed to store the sampled matrix. [AM01] also have an
algorithm which can quantize a matrix, but it does not lead to any sparsification
by itself. It can be applied to the sparsified matrix rather than the original
one to obtain some amount of quantization. However, the error bound of the
quantization process depends on the largest entry in the sparsified matrix, which
curtails the benefits of quantization.

To elucidate how the choice of the error parameter affects the performance of
the two algorithms, we consider two cases. In the first case, the error ε is of the
order of the �2 norm of A, viz. ε = δ‖A‖2. This situation arises in applications
such as solving semidefinite programs efficiently [AHK05]. In the second case, the
error ε is of the order of the Frobenius norm of A, viz. ε = δ‖A‖F = δ

√∑
ij A2

ij .
This situation arises in applications such as computing low-rank approximations
to matrices [FKV04], [DFK+04], [DK03], and [AM01].

The first error is typically much smaller than the second, so our algorithm can
be expected to perform better in the first case, and Achlioptas and McSherry’s
in the second. Figure 2 gives examples of the level of sparsification achieved by
the algorithms in various cases.

In summary, the our algorithm is better in some situations than that of [AM01]
and worse in others. Exactly which algorithm to use in a given situation depends
on the input parameters. A general guideline is that our algorithm is preferable
when one needs a high degree of accuracy.

1 It has been suggested to the authors that an algorithm with similar parameters to
ours can be derived using the techniques of [AM01]. However, for the purpose of
comparison, we only consider the algorithms described explicitly in their paper.

276 S. Arora, E. Hazan, and S. Kale

Algorithm Matrix ε = δ‖A‖2 ε = δ‖A‖F

This paper I + 1
n
J O

(
n1.5

δ

)
O
(

n
δ

)
[AM01] I + 1

n
J no sparsification O

(
n
δ2

)
This paper H no sparsification O

(
n1.5

δ

)
[AM01] H no sparsification O

(
n
δ2

)
This paper C O

(
n1.5

δ

)
O
(

n
δ

)
[AM01] C no sparsification O

(
n
δ2

)
Fig. 2. Comparison of algorithms for sparsification under different error tolerances.
The matrices are: (i) I + 1

n
J , where I is the identity matrix, and J is the all 1’s matrix,

(ii) the matrix H which is the Hadamard matrix of order n (assuming it exists), and
(iii) C, the combinatorial Laplacian of a d-regular graph on n nodes.

4 Analysis: Proof of Theorem 1

We prove the first part of Theorem 1 in the following Lemma:

Lemma 1. With probability at least 1− exp(−Ω(
√

nS
ε)), the matrix Ã contains

at most O(
√

nS
ε) non-zero entries.

Proof. Since
∑

ij |Aij | = S, the number of entries with magnitude larger than
ε√
n

is at most
√

nS
ε . So without loss of generality, we may assume that all the

entries have magnitude smaller than ε√
n
.

The Chernoff bound [MR95] asserts that if X1, X2, . . . , Xn are indicator ran-
dom variables and X =

∑
i Xi with E[X] = μ, then

Pr[X > (1 + δ)μ] <
[

eδ

(1 + δ)1+δ

]μ

In our case, we set up indicator random variables Xij for i ≤ j which are 0 or 1
depending on whether Ãij = 0 or not. Let X =

∑
i≤j Xij . Then 2X is an upper

bound on the number of non-zero entries of Ã. We have

E[X] =
∑
i≤j

pij =
∑
i≤j

√
n|Aij |
ε

≤
√

nS

ε
.

The claim follows by using the Chernoff bound with δ = e− 1. �

Now, we will proceed to prove the second part of Theorem 1. For this, define
M = A− Ã. We will show that with high probability, for all unit vectors x, we
have |x�Mx| ≤ O(ε), which implies ‖A− Ã‖2 ≤ O(ε).

Notice that for all coordinates i, j such that |Aij | ≥ ε√
n
, we have Mij = 0 .

For the rest of the coordinates, since E[Ãij] = sgn(Aij) · ε√
n
×

√
n|Aij |

ε = Aij , we

A Fast Random Sampling Algorithm for Sparsifying Matrices 277

conclude that E[Mij] = 0. We will now consider a ε0√
n
-grid on the unit sphere

(ε0 is set to some constant, say 1
2),

T =
{
x : x ∈ ε0√

n
Zn, ‖x‖2 ≤ 1

}
.

Feige and Ofek [FO05] give a bound on the size of T and show that it suffices
to consider only vectors in T (we reprove this in Appendix A):

Lemma 2. The size of |T | is at most exp(cn) for c = (1
ε0

+ 2). If for every
x, y ∈ T we have |x�My| ≤ ε, then for every unit vector x, we have |x�Mx| ≤

ε
(1−ε0)2

.

Let x, y ∈ T . Since E[Mij] = 0, we conclude that E[x�My] = 0. We now a prove
strong concentration bound:

Lemma 3. With probability at least 1− exp(−Ω(n)), for every x, y ∈ T it holds
that |x�My| ≤ cε.

Proof. We use the following bound from Hoeffding’s original paper [Hoe63]: let
X1, ..., Xn be independent random variables, such that Xi takes values in the
range [ai, bi]. Let X =

∑
i Xi, and E[X] = μ. Then for any t > 0

Pr[|X − μ| ≥ t] ≤ 2 exp
(
− 2t2∑

i(bi − ai)2

)
.

Consider the random variables Zij = Mijxiyj , then x�My =
∑

ij Mijxiyj =∑
ij Zij . Since Ãij is either sgn(Aij) · ε√

n
or 0, the squared range of Mij is

ε2

n . Thus, the sum of squared ranges for the variables {Zij , i ≤ j} at most∑
i≤j

ε2

n x2
i y

2
j ≤ ε2

n

∑
i x

2
i

∑
j y2

j ≤ ε2

n , and similarly the sum of squared ranges

for the variables {Zij , i > j} is bounded by ε2

n . Since E[Zij] = 0, by the Hoeffding
bound we have:

Pr

⎡⎣|∑
i≤j

Zij | ≥ cε

⎤⎦ ≤ 2 exp

(
−2c2ε2

ε2

n

)
= 2 exp(−2c2n).

A similar bound holds for Pr[|
∑

i>j Zij | ≥ cε]. Since |x�My| = |
∑

i≤j Zij +∑
i>j Zij |, by the union bound we have

Pr[|x�My| ≥ 2cε] ≤ 4 exp(−2c2n).

Since there are exp(2cn) pairs of vectors x, y ∈ T , the union bound implies
that with probability at least 1− exp(−Ω(n)), for all vectors x, y ∈ T , we have
|x�My| ≤ cε. �

278 S. Arora, E. Hazan, and S. Kale

5 Conclusions

In this paper, we presented a fast and simple random sampling algorithm to
sparsify matrices, with comparable performance guarantees to previous work.
The analysis of the algorithm is also fairly easy, relying only on the well-known
Chernoff-Hoeffding bounds. The algorithm has better dependence on the error
parameter than previous work, which makes it preferable when low error is
desired.

However, its dependence on the input matrix size may be worse than previ-
ous algorithms in situations where all entries are roughly the same magnitude.
This suggests that in practice, a hybrid algorithm combining ours with that of
Achlioptas and McSherry may be able to strike a better balance between the
dependence on the error parameter and input size.

References

[AHK05] Sanjeev Arora, Elad Hazan, and Satyen Kale. Fast algorithms for approx-
imate semidefinite programming using the multiplicative weights update
method. In 46th FOCS, pages 339–348, 2005.

[AM01] Dimitris Achlioptas and Frank McSherry. Fast computation of low rank
matrix approximations. In 32nd STOC, pages 611–618, 2001.

[DFK+04] Petros Drineas, Alan M. Frieze, Ravi Kannan, Santosh Vempala, and
V. Vinay. Clustering large graphs via the singular value decomposition.
Machine Learning, 56(1-3):9–33, 2004.

[DK03] Petros Drineas and Ravi Kannan. Pass efficient algorithms for approxi-
mating large matrices. In SODA, pages 223–232, 2003.

[DMM06] P. Drineas, M. Mahoney, and S. Muthukrishnan. Column-based relative-
error. In RANDOM, 2006.

[DV06] Amit Deshpande and Santosh Vempala. Adaptive sampling and fast low-
rank matrix approximation. In RANDOM, 2006.

[FKV04] Alan M. Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo
algorithms for finding low-rank approximations. J. ACM, 51(6):1025–1041,
2004.

[FO05] U. Feige and E. Ofek. Spectral techniques applied to sparse random graphs.
Random Structures and Algorithms, 27(2):251–275, September 2005.

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association, 58(301):13–30, 1963.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Univ.
Press, 1995.

[TB97] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997.

A Discretization

In this section, we prove Lemma 2. We restate it here for convenience:

Lemma 4. Let T =
{
x : x ∈ ε0√

n
Zn, ‖x‖2 ≤ 1

}
. The size of T is at most

exp(cn) for c = (1
ε0

+ 2). If for every x, y ∈ T we have |x�My| ≤ ε then
for every unit vector x, we have |x�Mx| ≤ ε

(1−ε0)2
.

A Fast Random Sampling Algorithm for Sparsifying Matrices 279

Proof. Map every point in x ∈ T in a one-to-one correspondence with a n-
dimensional hypercube of side length ε0√

n
on the grid:

x �→ Cx =
{
x + u : u ≥ 0, ‖u‖∞ ≤

ε0√
n

}
.

The maximum length of any vector in Cx is bounded by ‖x‖+ ε0 ≤ 1 + ε0, and
thus the union of these cubes is contained in the n-dimensional ball B of radius
(1 + ε0). We conclude:

|T | ×
(

ε0√
n

)n

=
∑
x∈T

Vol(Cx) ≤ Vol(B) =
πn/2

Γ (n/2 + 1)
(1 + ε0)n.

And so:

|T | ≤ πn/2

Γ (n/2 + 1)

(
(1 + ε0)

√
n

ε0

)n

≤ exp
((

1
ε0

+ 2
)

n

)
.

Next, given any unit vector, x, let y = (1 − ε0)x. By “rounding down” the
coordinates of y to the nearest multiple of ε0√

n
, we get a grid point z such that

y ∈ Cz . Thus, the maximum length of any vertex of Cz is bounded by ‖y‖+ε0 =
1, so all vertices of Cz are grid points in T . Express y as a convex combination
of the vertices vi of Cz ; viz. y =

∑
i αivi with αi ≥ 0 and

∑
i αi = 1. Then we

have

|y�My| = |(
∑

i

αivi)�M(
∑

i

αivi)| ≤
∑
i,j

αiαj |v�i Mvj | ≤
∑
i,j

αiαjε = ε.

The second inequality above follows because we assumed that for all x, y ∈ T ,
|x�My| ≤ ε. Finally, since y = (1 − ε0)x, we have

|x�Mx| =
|y�My|
(1− ε0)2

≤ ε

(1− ε0)2
.

�

The Effect of Boundary Conditions on Mixing
Rates of Markov Chains

Nayantara Bhatnagar1,�, Sam Greenberg2,�, and Dana Randall1,�

1 College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280
2 School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160

Abstract. Many natural Markov chains undergo a phase transition as
a temperature parameter is varied; a chain can be rapidly mixing at
high temperature and slowly mixing at low temperature. Moreover, it is
believed that even at low temperature, the rate of convergence is strongly
dependent on the environment in which the underlying system is placed.
It is believed that the boundary conditions of a spin configuration can
determine whether a local Markov chain mixes quickly or slowly, but
this has only been verified previously for models defined on trees. We
demonstrate that the mixing time of Broder’s Markov chain for sampling
perfect and near-perfect matchings does have such a dependence on the
environment when the underlying graph is the square-octagon lattice. We
show the same effect occurs for a related chain on the space of Ising and
“near-Ising” configurations on the two-dimensional Cartesian lattice.

1 Introduction

Boundary conditions play a crucial role in statistical physics for determining the
uniqueness of Gibbs states, or the limiting distributions of families of configu-
rations on the infinite lattice. Consider the Ising model on the n× n Cartesian
lattice, a fundamental physical model for ferromagnetism. Each configuration σ
in the state space S = {+,−}n2

consists of an assignment of a + or − spin to
each of the vertices, and the Gibbs distribution assigns weight

π(σ) = λ−D(σ)/Z,

where D(σ) = |{(i, j)∈E | σ(i) =σ(j)}| and Z is the normalizing constant or
partition function. In the classical description of the Ising model, λ = e2β , where
β > 0 is inverse temperature.

To characterize when there is a phase transition in a physical model, physicists
study whether there is a unique limiting distribution as n → ∞. The vertices
on the boundary of an n× n grid are hard-wired to be + in one case and − in
another. The Gibbs measure on the interior is defined as the limiting distribution
conditioned on the boundary. It is well known that there is a critical value
λc such that, for λ < λc, the limiting distribution is unique, yet for λ > λc,

� Supported in part by NSF grants CCR-0515105 and DMS-0505505.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 280–291, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Effect of Boundary Conditions on Mixing Rates of Markov Chains 281

correlations between the spins of vertices inside a finite region and the spins on
the boundary of that region persist over long distances and there are multiple
limiting distributions (see, e.g., [3]). A related effect has been observed in the
context of mixing times of local chains on finite regions. The mixing time of a
chain, i.e., the number of steps required so that probabilities of reaching each
configuration is close to the stationary distribution, undergoes a similar phase
change. When λ is sufficiently small, local dynamics are efficient, while when λ is
large, local chains require exponential time to converge to equilibrium [16]. This
is because at low enough temperature the Gibbs distribution strongly favors
configurations that are predominantly one spin; it takes exponential time to
move between mostly + and mostly − states using local chains [8, 9].

A natural question that integrates these two perspectives is: Can one type of
boundary condition cause a Markov chain mix slowly, while another causes the
same chain to mix rapidly? Martinelli, Sinclair, and Weitz [10,11] answered this
question in the affirmative in the context of spin systems on trees. The ques-
tion remains unresolved when configurations are defined on lattices, although
the same effect is believed to occur. Martinelli [8] showed that mixing times of
Glauber (local) dynamics on Ising configurations of the 2-dimensional lattice can
vary by an exponential factor, though the mixing time for both of his boundary
conditions were shown to be exponential – in reality the boundary that leads to
faster mixing is believed to converge in polynomial time.

Models and Results: The first problem we consider is sampling matchings on
finite regions of the square-octagon lattice. This is the lattice formed by tightly
packing octagons so that the uncovered space forms smaller squares (see Fig-
ure 1). For certain finite regions R of this lattice, there is an ergodic Markov
chain on the set of perfect matchings; it starts at any matching and repeat-
edly does the following: choose a square or octagonal face uniformly, and if the
matching alternates edges around this face, then “rotate” to the other match-
ing. Propp [12] used coupling-from-the-past [13] on certain regions to generate
so-called “diabolo tilings of fortresses,” and conjectured that the chain mixes
slowly. The only proof of slow mixing for this model requires “activities” on
the edges that weigh matchings according to the number of edges that bound
squares on the lattice [4]. It has been conjectured that there is a region such that
one boundary condition will cause this local Markov chain to mix quickly while
another will mix slowly; however, like the Ising model at sufficiently low tem-
perature, it remains a challenge to show fast mixing for such a contour model,
even though there is a boundary for which the chain is believed to mix rapidly.

In this paper, we consider instead the Broder-chain on the set of perfect
and near-perfect matchings on the square-octagon lattice. For a finite, simply-
connected region R on this lattice, let the boundary of R be the set of vertices that
have neighbors both inside and outside R on the infinite lattice. The boundary
condition is defined by specifying, for each vertex on the boundary, whether it
is to be included in the matchings or not. We hardwire a boundary condition
and start with a perfect matching on the remaining region. The Broder-chain
successively chooses an edge and this edge is added, deleted, or exchanged with

282 N. Bhatnagar, S. Greenberg, and D. Randall

another edge (if exactly one endpoint was matched). The chain converges to
the uniform distribution on perfect and near-perfect matchings. We show that,
for a family of regions, there are two types of boundary conditions, one that
causes the Broder-chain to mix slowly and another that causes the chain to mix
rapidly. Remarkably, these two boundary conditions differ by the deletion of
only four vertices. This is the first proof of slow mixing for matchings on the
square-octagon lattice without activities on the edges.

The second model we consider is the Ising model on Z2. It is strongly believed
that Glauber dynamics are very sensitive to boundary conditions, even at low
temperature, and that they will be fast for the all plus boundary and slow for
two sides fixed to plus and two to minus. It is useful to view the Ising model
in terms of contours. Given an Ising configuration, take the union of all edges
that separate a + spin from a − spin. For the all-plus boundary condition, these
edges form an even degree subgraph that can be thought of as sets of closed
contours. Glauber dynamics perform local changes to these contours and, at
low temperature, short contours are thermodynamically favorable. Fernandez,
Ferrari, and Garcia [2] proposed a chain that, in one step, moves between two
configurations that differ by a single contour. They show that at sufficiently
low temperature, this chain converges quickly to stationarity, but unfortunately
there is no efficient way to perform a step of the chain.

Instead, we consider a Broder-type chain on the set of Ising and “near-Ising”
configurations on finite regions of the Cartesian lattice. For the all-plus bound-
ary condition, for example, near-Ising configurations allow exactly one contour
to be open while the others must be closed. A step of the chain removes or
adds an edge, with transition probabilities chosen so that we converge to the
Gibbs distribution on Ising and near-Ising configurations. We show that, at suf-
ficiently low temperature, there are two boundary conditions so that the chain
mixes slowly with one and quickly with the other. The fast mixing results are
of independent interest because they demonstrate how to extend the result by
Fernandez et al. to define a rapidly mixing chain at low temperature that can be
efficiently implemented. Moreover, this gives a much more efficient algorithm for
sampling Ising configurations at low temperature than the only other rigorous
method known previously [14].

Techniques: A key fact underlying our results is that both the matching and
Ising models considered here can be reformulated as contour models. Contours
for the Ising model are unrestricted, while the contours arising from matchings
on the square-octagon lattice are required to turn left or right at every step. The
contours arising from these matchings behave similarly to Ising contours at low
temperature where long contours are penalized.

In the first (fast) cases, boundaries are defined so that initially all vertices,
including the boundary, have even degree in the contour representation. During
the simulation, configurations must have zero or one open path. We show that
the weight of perfect and near-perfect configurations are polynomially related.
Following the canonical path technique introduced by Jerrum and Sinclair [5],
this suffices to show polynomial mixing for both models.

The Effect of Boundary Conditions on Mixing Rates of Markov Chains 283

In the second (slow) cases, our proofs are based on a Peierls argument from
statistical physics (see, e.g., [3]). We introduce four designated vertices on the
boundary that initially have odd degree in the contour representation, and thus
are the endpoints of two paths. At any point during the simulatation of the
Broder-chains, at most two vertices in the contour representation have changed
parity. Once one of the initial paths is disconnected, the two pieces tend to shrink.
We prove, via sensitive injections, that it will take exponential time for these to
reconnect — this is sufficient to show slow mixing. While this is an artifact of
the extended state space, these models do correctly capture the effects of the two
boundaries for models where the Gibbs measure favors short contours. On the
square-octagon lattice these bounds are especially sensitive because we cannot
modify the temperature to establish the required inequalities.

2 Preliminaries

Let M be an ergodic (i.e., irreducible and aperiodic), reversible Markov chain
with finite state space S, transition probability matrix P , and stationary distri-
bution π. Let P t(x, y) be the t-step transition probability from x to y and let
||·, ·|| denote the total variation distance.

Definition 1. For ε > 0, the mixing time τ = min{t : ‖P t′
, π‖ ≤ 1/4, ∀t′ ≥ t}.

A Markov chain is rapidly mixing if the mixing time is bounded above by a
polynomial in n, the size of each configuration in the state space. If the mixing
time is exponential in n, the chain is slowly mixing. Jerrum and Sinclair defined
the conductance of a chain and showed that it bounds mixing time [5].

Definition 2. If a Markov chain has stationary distribution π, we define the
conductance Φ as

Φ = min
S:π(S)≤1/2

∑
x∈S,y �∈S π(x)P (x, y)

π(S)
.

Theorem 1. An ergodic, reversible chain with conductance Φ is rapidly mixing
if and only if Φ > 1/p(n) for some polynomial p(·).

Jerrum and Sinclair use this theorem to analyze a natural Markov chain on
matchings due to Broder [1]. Here we consider the chain on the state space
consisting of perfect and near-perfect matchings. At each step, the Broder-
chain MB does the following:

Choose an edge e uniformly at random.
' If the endpoints of e are unmatched, add e to the matching.
' If e is in the matching and the matching is perfect, remove e.
' If exactly one endpoint of e is matched, remove the matched
edge and add e.
' Otherwise, do nothing.

284 N. Bhatnagar, S. Greenberg, and D. Randall

(a) (b) (c) (d)

Fig. 1. For n = 5, (a) L, (b) L′, (c) a near-perfect matching, (d) that matching’s
contraction

This chain converges to the uniform distribution on matchings and near-perfect
matchings. Jerrum and Sinclair [5, 15] find the following characterization for
when the Broder-chain can be used to efficiently sample perfect matchings.

Theorem 2. Let SP be the set of perfect matchings in S and SN be the set of
near-perfect matchings. If |SN | ≤ p(n)|SP | for some polynomial p(·), then Φ is
at least inverse-polynomial.

Theorem 2 was proven using the canonical path technique. The key idea in this
proof is to define paths between every pair of states (I, F) ∈ S×S in the transi-
tion graph of the chain. If not too many paths go through any specific transition
then there cannot be a bottleneck in the transition graph. The following sum-
mary of their method will be useful in Section 4.

Theorem 3. Suppose there exists a function η such that, for a transition T =
(G,G′) along the canonical path from I to F ,

1. given T and η(T, I, F), we can reconstruct both I and F
2. μ(I)μ(F) ≤ μ(G)μ(η(T, I, F))P (G,G′).

Then Φ = Ω(n−c) for some constant c.

This theorem is the key ingredient that establishes our fast mixing results. For
our slow mixing results, we show that the conductance is exponentially small.
For this, it suffices to identify a bad cut (S, S̄) in the state space.

3 Perfect Matchings in the Square-Octagon Lattice

Let L to be the square-octagon lattice with n squares on a side, for n odd
(see Figure 1a). Define L′ to be the same lattice, but with one vertex missing
from each of the corner squares (Figure 1b). Regions L and L′ capture the two
boundary conditions we study.

We let S (resp. S′) be the set of perfect and near-perfect matchings on L
(resp. L′) and let MB be the Broder-chain on these state spaces, as described
in Section 2. Our first main result is the following:

Theorem 4. There exist constants c1, c2 > 1 such that the mixing time of MB

on S is O(nc1) while the mixing time of MB on S′ is Ω(ec2n).

The Effect of Boundary Conditions on Mixing Rates of Markov Chains 285

3.1 Contraction to Contours

Before presenting the proof of Theorem 4, it will be convenient to define a
bijection between perfect matchings and a related contour representation. We
“contract” the lattice regions L and L′ by replacing each of the squares with
vertices so that only the edges bounded by octagons on each side survive. The
result is isomorphic to a subregion of the Cartesian lattice (see Figure 1c and
1d). We use bold script (L, S, MB , etc.) when referring to the square-octagon
graphs, and normal script (L, S,MB, etc.) for the contracted case. To that end,
define L and L′ to be the integer lattice with n vertices on each side.

Consider the effect of this contraction on a perfect matching of L. The con-
traction is an even degree subgraph where all vertices of degree 2 are incident
to edges that bound two sides of a unit square; if the endpoints were collinear,
the corresponding square in L would have two unmatchable vertices. For L′, we
get an even degree subgraph with this turning property, only now there are four
vertices of odd degree in the corners, as they correspond squares in L′ with only
three vertices present. Finally, near-perfect matchings of L and L′ contract as
above, except two vertices might have the opposite parity (corresponding to the
square(s) in the lattice containing the two unmatched vertices).

We define new ground-states S and S′ with this in mind. We call a subgraph
of L a turning graph if all vertices have even degree and vertices of degree 2
“turn corners.” We call a subgraph of L′ a turning graph if this applies to all
but the corner vertices. We call a subgraph of L or L′ a near-turning graph if
all vertices of degree 2 turn, and exactly two vertices have parity different from
what was prescribed for turning graphs. Let ST and SN (resp. S′

T and S′
N) be

the turning and near-turning graphs of L (resp. L′). Let S and S′ be the union
of the turning and near-turning graphs in each case.

Notice that the contraction map is not one-to-one. Let G ∈ S and let v ∈ L.
If the degree of v in G is 2, 3, or 4, there is a unique way to expand v to a square
face of G ∈ S, but if d(v) = 0 or 1, then there are two ways to recover the
matched edge(s) that were deleted from the corresponding square, illustrated in
Figure 1. For G ∈ S ∩ S′, the number of matchings which contract to G is to
within a small polynomial factor q(n) of 2|V (L)|−|V (G)|.

Our first goal is to show that the Broder-chain is fast on L, and for this we
need to show a polynomial relationship between the numbers of near-perfect and
perfect matchings. For simplicity, we instead consider their contracted versions
in L and introduce a weight μ on turning and near-turning contours as follows:
for G ∈ S ∪ S′ let μ(G) := 2−|V (G)|. After a normalization, μ(G) is within q(n)
of the number of matchings which contract to G. It then follows that showing a
polynomial relationship between

∑
G∈ST

μ(G) and
∑

G∈SN
μ(G) is sufficient to

establish fast mixing of the Broder-chain.
The following lemma will be crucial in our proof of slow mixing. It shows that

we can encode near-turning contours as a function of the number of vertices it
hits, rather than its total length.

Lemma 1. For G ∈ S∪S′, let Na(G) be the set of near-turning components A,
edge-disjoint from G, such that |V (G∪A)| = |V (G)|+a. Then |Na(G)| ≤ 4n42a.

286 N. Bhatnagar, S. Greenberg, and D. Randall

Proof. Using a standard “Euler-like” decomposition, any A can be described
as a single turning path between the odd-degree vertices. If we are given the
coordinates of the first odd vertex and the initial direction of the path, we
can encode the rest in a binary string, with 0 representing a left-turn and 1
representing a right-turn. This is a natural encoding of the turning-path, but
requires |E(A)| bits, possibly more than a. It will be necessary to define an
encoding which focuses on vertices instead of edges.

Fortunately, not all turns need to be encoded; whenever the path touches the
graph G, either because it turns back on itself or because it touches G\A, the
next turn is forced. We therefore only encode those turns when our path hits a
previously-empty vertices, creating a bitstream of length a − 1. This encoding
is not completely unique. After the last recorded turn, the path might proceed
for any number of forced-turns; our encoding would fail to represent how many.
However, knowing the length of the turning-path determines this uniquely, and
we can upper bound the length by 2n2 edges. Hence each binary string corre-
sponds to at most a polynomial number of turning-paths.

The total size of Na(G) is therefore upper bounded by the number of possible
lengths times the number of starting vertices and directions, times the number
of binary strings of length a− 1. This gives us |Na(G)| ≤ 2n2 · n2 · 4 · 2a−1. ��

3.2 Fast Mixing of MB on S

For the rapid mixing result of Theorem 4, it is sufficient to show a polynomial re-
lationship between the size of SP and the size of SN . Focusing on the contracted
representations, this is equivalent to the following.

Lemma 2. For some polynomial p(·), μ(SN) ≤ p(n) · μ(ST).

Proof. We define a function f : SN → ST . For G′ ∈ ST , define the pre-image
of G′ to be f−1(G′) = {G ∈ SN : f(G) = G′}. We define f in such a way
that, although f−1(G′) contains many graphs, their total weight is within a
polynomial factor of the weight of G′.

Let A(G) be the component of G containing the two odd vertices and let
f(G) = G\A(G). partitioning according to the size of A(G), for G′ ∈ Img(f),

μ(f−1(G′)) =
n2∑

a=1

∑
A∈Na(G′)

μ(G′∪A) =
n2∑

a=1

|Na(G′)|·μ(G′)·2−a ≤ 16n6μ(G′).

where the last inequality is due to Lemma 1. Then

μ(SN) =
∑

G′∈Img(f)

μ(f−1(G′)) ≤ 16n6
∑

G′∈Img(f)

μ(G′) ≤ 16n6μ(ST). ��

Hence, by Theorem 2, the Broder-chain is fast on L.

The Effect of Boundary Conditions on Mixing Rates of Markov Chains 287

Fig. 2. Stages of f : (a) W , (b) removing B(W) and shifting, (c) adding squares along
the wall to obtain U

3.3 Slow Mixing of MB on S′

We turn now to the behavior of the Broder-chain on L′. Define a bridge to be
a turning path connecting two corner vertices of L′. Perfect matchings of L′

contract to turning subgraphs of L′ with two distinct bridges, while near-perfect
matchings of L′ might map to a graph with only one bridge.

Our strategy will be to show that there is a bad cut in the state space. Let σ, τ
be two configurations that each have only one bridge, and suppose that these
bridges connect different pairs of vertices on the corners of the boundary. To move
from σ to τ it is necessary to pass through a configuration with two bridges. We
will show that the set of configurations with two bridges is exponentially smaller
than configurations with any one bridge, and so this will establish slow mixing of
the Broder-chain. We must define a very sensitive map from configurations with
two bridges to those with one. This is accomplished by the following lemma.

Lemma 3. Let W be the set of graphs in S′ with two bridges and U be the
graphs with only one. There is a constant c > 1 such that μ(W) ≤ c−nμ(U).

Proof. We define a function f :W → U in such a way that f−1(U) is exponen-
tially smaller than the weight of U . Informally, first remove the larger of the two
bridges in W ; then shift all components between that bridge and the wall by 1
unit (away from the wall). (See Figure 2.) This allows us to use cells adjacent to
the wall to encode the initial part of the bridge, which is crucial to the result.

More precisely, for W ∈ W, let B(W) be the maximal bridge (with respect
to vertices) in W . Let WT be the set of turning graphs of S′ and let WN be
the near-turning graphs. If W ∈ WT , we can remove B(W) leaving a graph in
U . If W ∈ WN , we remove both B(W) and the near-turning component A(W).
Suppose B(W) connects the upper-left and lower-left corners of L′. Shift all of
the components between B(W) and the left wall one square to the right. This
allows us to add edges along this left wall. It would be convenient to be able tho
add a cycle to any face along the wall; this is not always possible, as the original
components might obstruct the addition, even after shifting. However, it can be
seen that at least n/2 of the faces do allow such an addition after shifting. We
use these n/2 positions to encode the initial segment of the deleted bridge. Break

288 N. Bhatnagar, S. Greenberg, and D. Randall

n/2 of these positions into groups of 25. We will add a 4-cycle to exactly one
face in each group, thus encoding the first 5 bits of the bit string. (For instance,
if the first five bits of B(W) are 01011, we add a cycle on the 1 + 2 + 8 = 11th
face in the group.) We do this in each of the n

2·32 groups. In this way, we can
encode the first 5n/64 bits of B at a cost of only 4n/64 additional edges (4 per
face). Let the graph in U thus obtained be U .

We partition f−1(U) based on the size of the bridge removed. For each U , let
E(U) be the extra encoding added along the left wall and let Bb(U) be the set
of bridges B that add b vertices (|U ∪B| = |U |+ b) and match those 5n/64 bits
encoded in E(U). Then, partitioning according to b,

μ(f−1(U) ∩WT) =
n2∑

b=1

∑
B∈Bb(U)

μ(U\E(U) ∪B)

≤
n2∑

b=1

|Bb(U)| · μ(U) · 2 4n
64 −b ≤ 32n62

−n
64 · μ(U).

For f−1(U) ∩WN , we must further partition according to size.

μ(f−1(U) ∩WN) =
n2∑

b=1

∑
B∈Bb(U)

n2∑
a=1

∑
A∈Na(U∪B)

μ(U\E(U) ∪A ∪B)

≤
n2∑

b=1

∑
B∈Bb(U)

n2∑
a=1

|Na(U ∪B)|μ(U)2
4n
64 −b−a

≤
n2∑

b=1

n2∑
a=1

|BN (U)|16n42a · μ(U)2
4n
64 −b−a≤ 64n122

−n
64 μ(U),

where the last two inequalities come from Lemma 1. Then, for some c > 1,

μ(W) =
∑

U∈Img(f)∩WT

μ(f−1(U))+
∑

U∈Img(f)∩WN

μ(f−1(U)) < cn
∑

U∈Img(f)

μ(U) ≤ c−nμ(U). ��

This establishes an exponentially small cut in S′ because the set of turning
graphs with a bridge from upper-left to upper-right has the same weight as the
set with bridges from lower-left to lower-right, by symmetry. This upper bounds
conductance, and verifies the slow mixing result in Theorem 4.

4 Ising Model

There is an analogous dichotomy for the mixing time of a Broder-type Markov
chain defined for the Ising model. In the Ising model, each face of an n×n region
on the Cartesian lattice is assigned one of two spins, + or −. (Traditionally, the
spins are assigned to the vertices; we use the equivalent model on faces for

The Effect of Boundary Conditions on Mixing Rates of Markov Chains 289

Fig. 3. Paths arising from the plus-minus boundary

reasons that will soon become clear.) Given a fixed assignment of spins to the
faces just outside the boundary, our goal is to sample from the set of possible
configurations with that boundary according to the Gibbs measure. We will
consider two boundaries, the all-plus boundary β, and the plus-minus boundary
β′ where the we fix + along the horizontal sides and − along the vertical sides.

Given any Ising configuration with a prescribed boundary, we can uniquely
reconstruct the spins on the interior from the set of edges that separate faces
with unequal spins. We will concentrate on this contour representation of Ising
configurations. The Ising model is defined so that the Gibbs measure of a config-
uration mapping to a subgraph G is proportional to the weight μ(G) = λ−|E(G)|.
Notice that an Ising configuration with boundary β maps to a graph that can
be decomposed into edge-disjoint contours, while an Ising configuration with
boundary β′ maps to a graph that can be decomposed into a set of contours
and two paths connecting the four corners, as in Figure 3. These contours are
no longer forced to turn, but the setting is otherwise reminiscent of Section 3.

Following Section 3, we first enlarge our state-space. Let Λ be the set of
contours and near-contours of L, where every vertex has even degree except
possibly two vertices. (We can think of near-contours representing “near-Ising”
configurations, although this does not have a natural interpretation in the spin
representation.) Let Λ′ be the set of contours and near-contours of L′, where
the contours contain only vertices of even degree except in the four corners, and
near-contours have this parity everywhere except at two vertices.

We now define a Markov chain MI on Λ. Given G in Λ (or Λ′), choose an
edge e uniformly at random in L. If e ∈ G, let G′ = G\e. If e ∈ G, let G′ = G∪e.
Then, if G′ is in Λ (or Λ′),MI sends G to G′ with probability min(μ(G′)

μ(G) , 1) and
does nothing otherwise. Our second main theorem establishes that the mixing
time of MI is also very sensitive to the boundary.

Theorem 5. For any λ > 3, there exists constants c1, c2 > 1 such that the
mixing-time ofMI on Λ is O(nc1), but the mixing-time ofMI on Λ′ is Ω(ec2n).

4.1 Fast Mixing of MI on Λ

To prove the fast mixing part of Theorem 5, we again bound conductance. This
proof is almost identical to the arguments underlying the fast mixing of the
Broder-chain on the square-octagon lattice.

290 N. Bhatnagar, S. Greenberg, and D. Randall

Let ΛT be the set of contours of Λ and let ΛN be the set of near-contours. Our
canonical paths map I and F to the closest contour graphs (if they are near-
contours) and then define a traditional canonical path between these contour
graphs. If G ∈ ΛT , then G = G. However, if G ∈ ΛN , we again let A(G) be
the component of G containing the odd vertices and let G = G\A(G). In the
canonical path from I to I, place a fixed ordering on all vertices, perhaps by
vertical and then horizontal location. Decompose A(I) as an Eulerian path, and,
starting from the first of the odd vertices, remove this path one edge at a time.
The path from F to F is defined to be the inverse of the path from F to F .

For any contour G, the set of near-contours mapped to G in this manner has
small weight. To show this, we use the trivial bound that the number of self-
avoiding walks of length � starting at a particular vertex is bounded by c�, where
c < 3, see [7]. Observe that the set of H s.t. H = G has weight

μ({H ∈ ΛN : H = G}) =
n2∑
l=1

∑
A

|A|=l

μ(G ∪A) <

n2∑
l=1

n23lμ(G)λ−l < n4μ(G)

We define a canonical path between contours I and F ∈ ΛT by “unwinding”
the cycles and paths in their symmetric difference. Let C = I ⊕ F . Order the
components {Ci} of C by {ci}, where ci is the earliest vertex in Ci. Each Ci

is a contour, so it can be written as cycle starting from ci. The path from I
to F unwind each of the components in turn, starting at ci and complementing
each edge in turn. For a transition T = (G,G′), define the graph η(T, I, F) :=
I ⊕ F ⊕ (G ∪G′). Given η(T, I, F) we will be able to reconstruct I and F given
T . To reconstruct I and F from η(T, I, F) and G, let C = η(T, I, F)⊕ (G∪G′),
and divide the edges of G and η(T, I, F) according to the components of C. Note
that every edge in both I and F is in both G and η(T, I, F). Any edge in only
one of I or F is in only one of G or η(T, I, F). This implies that the weight
μ(I)μ(F) ≤ μ(η(T, I, F))μ(G). Using Theorem 3, this is sufficient to prove that
the conductance is at least p(n), for some polynomial p(·), and thus is implies
that the chain is rapidly mixing when we have the all-plus boundary.

4.2 Slow Mixing of MI on Λ′

We proceed as in Section 3.3 by finding a cut set W that has exponentially
smaller weight than the parts of the state space it separates. This implies that
the conductance is exponentially small and that the chain is slowly mixing.

As before, define a bridge to be a path connecting corners of L′. (Recall they
need no longer turn.) We defineW to be the set of graphs in Λ′ with two bridges
and U to be the set of graphs with only one. For W ∈ W, let B(W) be the
maximal (in terms of vertices) bridge in W . If W is an near-contour, let A(W)
be the component with internal odd vertices.

We define the function f : W → U such that, for W ∈ W , f removes B(W)
(and A(W) if one exists). By the choice of λ and the bound on the number of
self-avoiding walks, there exists c > 1 such that, for any U ∈ Img(f),

The Effect of Boundary Conditions on Mixing Rates of Markov Chains 291

μ(f−1(U)) =
∑
A

∑
B

μ(U ∪A ∪B) =
n2∑

a=1

n2∑
b=2n

∑
A,B
|A|=a
|B|=b

μ(U)μ(A)μ(B)

<

n2∑
a=1

n2∑
b=2n

3a3bμ(U)λ−aλ−b < cnμ(U).

Then, μ(W) =
∑

U∈Img(f) μ(f−1(U)) < c−n
∑

μ(U) = c−nμ(U) which, by The-
orem 1, shows slow mixing.

References

1. A.Z. Broder. How hard is it to marry at random? (On the approximation of the
permanent). Proc. 8th ACM Symposium on Theory of Computing, 50–58, 1986.

2. R. Fernandez, P.A. Ferrari, and N.L. Garcia. Loss network representation of Ising
contours. Annals of Probability 29: 902–937, 2001.

3. H.O. Georgii. Gibbs measures and phase transitions. de Gruyter Studies in Math-
ematics 9, Walter de Gruyter & Co., Berlin, 1988.

4. S. Greenberg and D. Randall. Slow mixing of Glauber dynamics on perfect match-
ings of the square-octagon lattice. Preprint, 2006.

5. M.R. Jerrum and A.J. Sinclair. Approximate counting, uniform generation and
rapidly mixing Markov chains. Information and Computation 82: 93–133, 1989.

6. M.R. Jerrum and A.J. Sinclair. Polynomial-time approximation algorithms for the
Ising model. SIAM Journal on Computing 22: 1087–1116, 1993.

7. N. Madras and G. Slade. The Self-Avoiding Walk. Boston, MA, Birkhuser, 1993.
8. F. Martinelli. Lectures on Glauber dynamics for discrete spin models. Lectures on

Probability Theory and Statistics (Saint-Flour, 1997), Lecture notes in Mathemat-
ics 1717: 93-191, Springer, Berlin, 1998.

9. F. Martinelli, E. Olivieri and R. Schonmann. For 2-D lattice spin systems weak
mixing implies strong mixing. Comm. Mathematical Physics 165: 33–47, 1994.

10. F. Martinelli, A. Sinclair, D. Weitz, The Ising model on trees: Boundary conditions
and mixing time. Comm. Mathematical Physics 250: 301–334, 2004.

11. F. Martinelli, A. Sinclair, D. Weitz, Fast mixing for independent sets, colorings and
other models on trees. Proc. 15th ACM/SIAM Symposium on Discrete Algorithms,
449–458, 2004.

12. J. Propp. Diabolo Tilings of Fortress. Talk given at the MIT Combinatorics
Seminar, 1998 (http://www.math.wisc.edu/ propp/diabolo.ps.gz).

13. J. Propp and D.B. Wilson. Exact Sampling with Coupled Markov Chains and
Applications to Statistical Mechanics. Random Structures and Algorithms 9: 223–
252, 1996.

14. D. Randall and D.B. Wilson. Sampling Spin Configurations of an Ising System.
Proc. 10th ACM/SIAM Symposium on Discrete Algorithms, S959–960, 1999.

15. A.J. Sinclair and M.R. Jerrum. Approximate counting, uniform generation and
rapidly mixing Markov chains. Information and Computation 82: 93–133, 1989.

16. L. Thomas. Bound on the mass gap for the finite volume stochastic Ising models
at low temperature. Comm. Mathematical Physics 126: 1–11, 1989.

Adaptive Sampling and
Fast Low-Rank Matrix Approximation

Amit Deshpande and Santosh Vempala

Mathematics Department and CSAIL, MIT
amitd@mit.edu, vempala@mit.edu

Abstract. We prove that any real matrix A contains a subset of at
most 4k/ε + 2k log(k + 1) rows whose span “contains” a matrix of rank
at most k with error only (1 + ε) times the error of the best rank-k
approximation of A. We complement it with an almost matching lower
bound by constructing matrices where the span of any k/2ε rows does
not “contain” a relative (1 + ε)-approximation of rank k. Our existence
result leads to an algorithm that finds such rank-k approximation in time

O

(
M

(
k

ε
+ k2 log k

)
+ (m + n)

(
k2

ε2
+

k3 log k

ε
+ k4 log2 k

))
,

i.e., essentially O(Mk/ε), where M is the number of nonzero entries of A.
The algorithm maintains sparsity, and in the streaming model [12, 14, 15],
it can be implemented using only 2(k +1)(log(k +1)+1) passes over the
input matrix and O

(
min{m, n}(k

ε
+ k2 log k)

)
additional space. Previous

algorithms for low-rank approximation use only one or two passes but
obtain an additive approximation.

1 Introduction

Given an m × n matrix A of reals and an integer k, the problem of finding a
matrix B of rank at most k that minimizes ‖A − B‖2F =

∑
i,j(Aij − Bij)2 has

received much attention in the past decade. The classical optimal solution to this
problem is the matrix Ak consisting of the first k terms in the Singular Value
Decomposition (SVD) of A:

A =
n∑

i=1

σiuiv
T
i

where σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 are the singular values and {ui}n1 , {vi}n1
are orthonormal sets of vectors called left and right singular vectors, respec-
tively. Computing the SVD and hence the best low-rank approximation takes
O(min{mn2,m2n}) time.

Recent work on this problem has focussed on reducing the complexity while
allowing an approximation to Ak. Frieze et al. [13] introduced the following
sampling approach where rows of A are picked with probabilities proportional
to their squared lengths.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 292–303, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Adaptive Sampling and Fast Low-Rank Matrix Approximation 293

Theorem 1 ([13]). Let S be an i.i.d. sample of s rows of an m× n matrix A,
from the following distribution: row i is picked with probability

Pi ≥ c
‖A(i)‖2
‖A‖2F

.

Then there is a matrix Ãk whose rows lie in span(S) such that

E
[
‖A− Ãk‖2F

]
≤ ‖A−Ak‖2F +

k

cs
‖A‖2F .

Setting s = k/cε in the theorem, we get

E
[
‖A− Ãk‖2F

]
≤ ‖A−Ak‖2F + ε‖A‖2F .

The theorem suggests a randomized algorithm (analyzed in [13], [7] and later
in [9]) that makes two passes through the matrix A and finds such an approx-
imation using O(min{m,n}k2/ε4) additional time. So overall, it takes O(M +
min{m,n}k2/ε4) time, where M is the number of non-zero entries of A. A differ-
ent sampling approach that uses only one pass and has comparable guarantees
(in particular, additive error) was given in [2], and further improved in [1].

The additive error ε‖A‖2F could be arbitrarily large compared to the true
error, ‖A−Ak‖2F . Is it possible to get a (1+ ε)-relative approximation efficiently,
i.e., in linear or sublinear time? Related to this, is there a small witness, i.e., is
there a (1 + ε)-approximation of rank k whose rows lie in the span of a small
subset of the rows of A? Addressing these questions, it was shown in [11] that
any matrix A contains a subset S of O(k2/ε) rows such that there is a matrix
Ãk of rank at most k whose rows lie in span(S) and

‖A− Ãk‖2F ≤ (1 + ε)‖A− Ak‖2F .

This existence result was applied to derive an approximation algorithm for a
projective clustering [3, 16] problem: find j linear subspaces, each of dimension
at most k, that minimize the sum of squared distances of each point to its
nearest subspace. However, the question of efficiently finding such a (1 + ε)-
relative approximation to Ak was left open.

In recent independent work, Drineas et al. [6, 10] have shown that, using the
SVD, one can find a subset of O(k log k/ε) rows whose span “contains” such a
relative approximation. They also provide practical motivation for this problem.

1.1 Our Results

Our first result is the following improved existence theorem.

Theorem 2. Any m× n matrix A contains a subset S of 4k/ε + 2k log(k + 1)
rows such that there is a matrix Ãk of rank at most k whose rows lie in span(S)
and

‖A− Ãk‖2F ≤ (1 + ε)‖A− Ak‖2F .

294 A. Deshpande and S. Vempala

Based on this, we give an efficient algorithm in Section 3.2 that exploits any
sparsity of the input matrix. For a matrix with M nonzero entries, a rank-k
approximation is computed in

O

(
M

(
k

ε
+ k2 log k

)
+ (m + n)

(
k2

ε2
+

k3 log k

ε
+ k4 log2 k

))
time using O(min{m,n}(k

ε + k2 log k)) space (Theorem 5). In the streaming
model, the algorithm requires 2(k + 1)(log(k + 1) + 1) passes over the input
matrix. The running time is O

(
M(k/ε + k2 log k)

)
for M sufficiently larger than

m,n; when k is a constant it is O(M/ε + 1/ε2). We note that while some of the
analysis is new, most of the algorithmic ideas were proposed in [11].

We complement the existence result with the following lower bound (Prop.
4): there exist matrices for which the span of any subset of k/2ε rows does not
contain a (1 + ε)-relative approximation.

Finally, the improved existence bound also leads to better PTAS for the pro-
jective clustering problem. The complexity becomes d(n/ε)O(jk2/ε+jk2 log k) re-
ducing the dependence on k in the exponent from k3 and resolving an open
question of [11].

Notation. Henceforth, we will use πV (A) to denote the matrix obtained by pro-
jecting each row of A onto a linear subspace V . If V is spanned by a subset S of
rows, we denote the projection of A onto V by πspan(S)(A). We use πspan(S),k(A)
for the best rank-k approximation to A whose rows lie in span(S). Thus, the
approximation Ãk in Theorem 2 is Ãk = πspan(S),k(A) for a suitable S.

2 Sampling Techniques

We now describe the two sampling techniques that will be used.

2.1 Adaptive Sampling

One way to generalize the sampling procedure of Frieze et al. [13] is to do the
sampling in multiple rounds, and in an adaptive fashion. The rows in each new
round get picked with probabilities proportional to their squared distance from
the span of the rows that we have already picked in the previous rounds.

Here is the t-round adaptive sampling algorithm, introduced in [11].

1. Start with a linear subspace V . Let E0 = A− πV (A), and S = ∅.
2. For j = 1 to t, do:

(a) Pick a sample Sj of sj rows of A independently from the following dis-

tribution: row i is picked with probability P
(j−1)
i ≥ c

‖E
(i)
j−1‖2

‖Ej−1‖2
F

.
(b) S = S ∪ Sj .
(c) Ej = A− πspan(V ∪S)(A).

The next theorem, from [11], is a generalization of Theorem 1.

Adaptive Sampling and Fast Low-Rank Matrix Approximation 295

Theorem 3 ([11]). After one round of the adaptive sampling procedure de-
scribed above,

ES1

[
‖A− πspan(V ∪S1),k(A)‖2F

]
≤ ‖A−Ak‖2F +

k

cs1
‖E0‖2F .

We can now prove the following corollary of Theorem 3, for t-round adaptive
sampling, using induction on the number of rounds.

Corollary 1. After t rounds of the adaptive sampling procedure described above,

ES1,...,St

[
‖A− πspan(V ∪S),k(A)‖2F

]
≤
(

1 +
k

cst
+

k2

c2stst−1
+ . . . +

kt−1

ct−1stst−1 . . . s2

)
‖A−Ak‖2F

+
kt

ctstst−1 . . . s1
‖E0‖2F .

Proof. We prove the theorem by induction on t. The case t = 1 is precisely
Theorem 3. For the inductive step, using Theorem 3 with span(V ∪S1∪· · ·∪St−1)
as our initial subspace, we have

ESt

[
‖A− πspan(V ∪S),k(A)‖2F

]
≤ ‖A−Ak‖2F +

k

cst
‖Et−1‖2F .

Combining this inequality with the fact that

‖Et−1‖2F = ‖A− πspan(V ∪S1∪···∪St−1)(A)‖2F ≤ ‖A− πspan(V ∪S1∪···∪St−1),k(A)‖2F ,

we get

ESt

[
‖A− πspan(S′),k(A)‖2F

]
≤ ‖A−Ak‖2F +

k

cst
‖A− πspan(V ∪S1∪···∪St−1),k(A)‖2F .

Finally, taking the expectation over S1, . . . , St−1:

ES1,...,St

[
‖A− πspan(V ∪S),k(A)‖2F

]
≤ ‖A−Ak‖2F +

k

cst
ES1,...,St−1

[
‖A− πspan(V ∪S1∪···∪St−1),k(A)‖2F

]
and the result follows from the induction hypothesis for t− 1.

From Corollary 1, it is clear that if we can get a good initial subspace V such
that dim(V) = k and the error given by V is within some multiplicative factor
of ‖A − Ak‖2F , then we can hope to prove something about relative rank-k ap-
proximation. This motivates a different generalization of the sampling method
of [13].

296 A. Deshpande and S. Vempala

2.2 Volume Sampling

Another way to generalize the sampling scheme of Frieze et al. [13] is by sampling
subsets of rows instead of individual rows. Let S be a subset of k rows of A, and
Δ(S) be the simplex formed by these rows and the origin. Volume sampling
corresponds to the following distribution: we pick subset S with probability
equal to

PS =
vol(Δ(S))2∑

T :|T |=k vol(Δ(T))2
.

Remark: Volume sampling can also be thought of as squared length sampling in
the exterior product space. Consider a matrix A′ with rows A′

S = A(i1) ∧A(i2) ∧
. . . ∧A(ik) ∈

∧k R, indexed by all k-subsets S = {i1, i2, . . . , ik} ⊆ [m]. It is easy
to see that the topmost singular value of A′ is σ1σ2 . . . σk with v1∧v2∧ . . .∧vk as
its corresponding right singular vector. Moreover, determinant (i.e., normalized
volume) defines a norm on the wedge product of k vectors, and therefore, rank-k
approximation of A by volume sampling k-subsets of rows can be thought of as
rank-1 approximation of A′ by squared length sampling of its rows.

Volume sampling technique was introduced in [11] to prove the following the-
orem.

Theorem 4 ([11]). Let S be a random subset of k rows of a given matrix A
chosen with probability PS defined as above. Then.

ES

[
‖A− πspan(S)(A)‖2F

]
≤ (k + 1)‖A−Ak‖2F .

The next lemma was used crucially in the analysis of volume sampling.

Lemma 1 ([11]).∑
S,|S|=k

vol(Δ(S))2 =
1

(k!)2
∑

1≤t1<t2<...<tk≤n

σ2
t1σ

2
t2 . . . σ2

tk
,

where σ1, σ2, . . . , σr > 0 = σr+1 = . . . = σn are the singular values of A.

2.3 Approximate Volume Sampling Via Adaptive Sampling

Here we give an algorithm for approximate volume sampling. In brief, we run a
k-round adaptive sampling procedure, picking one row in each round.

1. S = ∅, E0 = A.
2. For j = 1 to k, do:

(a) Pick row i with probability proportional to P
(j−1)
i ≥ c

‖E
(i)
j−1‖2

‖Ej−1‖2
F

.
(b) Add this new row to subset S.
(c) Ej = A− πspan(S)(A).

Next we show that the above procedure gives an approximate implementation
of volume sampling.

Adaptive Sampling and Fast Low-Rank Matrix Approximation 297

Proposition 1. Suppose the k-round adaptive procedure mentioned above picks
a subset S with probability P̃S. Then,

P̃S ≤ k! PS

Proof. Let S = {Ai1 , Ai2 , . . . , Aik} be a subset of k rows, and let τ ∈ Πk, the
set of all permutations of {i1, i2, . . . , ik}. By Hτ,t we denote the linear subspace
span(Aτ(i1), Aτ(i2), . . . , Aτ(it)), and by d(Ai, Hτ,t) we denote the orthogonal dis-
tance of Ai from this subspace. Our adaptive procedure picks a subset S with
probability equal to

P̃S =
∑

τ∈Πk

‖Aτ(i1)‖2
‖A‖2F

d(Aτ(i2), Hτ,1)2∑m
i=1 d(Ai, Hτ,1)2

· · · d(Aτ(ik), Hτ,k−1)2∑m
i=1 d(Ai, Hτ,k−1)2

≤
∑

τ∈Πk
‖Aτ(i1)‖2 d(Aτ(i2), Hτ,1)2 · · · d(Aτ(ik), Hτ,k−1)2

‖A‖2F ‖A−A1‖2F · · · ‖A−Ak−1‖2F

=

∑
τ∈Πk

(k!)2vol(Δ(S))2

‖A‖2F ‖A−A1‖2F · · · ‖A−Ak−1‖2F

=
(k!)3 vol(Δ(S))2∑m

i=1 σ2
i

∑m
i=2 σ2

i · · ·
∑m

i=k σ2
i

≤ (k!)3 vol(Δ(S))2∑
1≤i1<i2<...<ik≤m σ2

i1
σ2

i2
· · ·σ2

ik

=
k! vol(Δ(S))2∑

T :|T |=k vol(Δ(T))2
(using Lemma 1)

= k! PS

Now we will show why it suffices to have just the approximate implementation
of volume sampling. If we sample subsets S with probabilities P̃S instead of PS ,
we get an analog of Theorem 4 with a weaker multiplicative approximation.

Proposition 2. If we sample a subset S of k rows using the k-round adaptive
sampling procedure mentioned above, then

ES

[
‖A− πS(A)‖2F

]
≤ (k + 1)! ‖A−Ak‖2F .

Proof. Since we are picking a subset S with probability P̃S the expected error is

ES

[
‖A− πspan(S)(A)‖2F

]
=

∑
S:|S|=k

P̃S‖A− πspan(S)(A)‖2F

≤ k!
∑

S:|S|=k

PS‖A− πspan(S)(A)‖2F

≤ k! (k + 1)‖A−Ak‖2F (using Theorem 4)

= (k + 1)! ‖A−Ak‖2F

298 A. Deshpande and S. Vempala

3 Low-Rank Approximation with Multiplicative Error

In this section, we combine adaptive sampling and volume sampling to prove the
existence of a small witness and then to derive an efficient algorithm.

3.1 Existence

We now prove Theorem 2.

Proof. From Theorem 4, we know that there exists a subset S0 of k rows of A
such that

‖A− πspan(S0)(A)‖2F ≤ (k + 1)‖A−Ak‖2F .

Let V = span(S0), t = log(k + 1), c = 1 in Corollary 1, we know that there
exist subsets S1, . . . , St of rows with sizes s1 = . . . = st−1 = 2k and st = 4k/ε,
respectively, such that

‖A− πspan(V ∪S1∪...∪St),k(A)‖2F ≤
(
1 +

ε

4
+

ε

8
+ . . .

)
‖A−Ak‖2F +

ε

2t+1 ‖E0‖2F

≤ (1 +
ε

2
) ‖A−Ak‖2F +

ε

2t+1 ‖A− πV (A)‖2F

≤ (1 +
ε

2
) ‖A−Ak‖2F +

ε

2t+1 (k + 1)‖A−Ak‖2F

= (1 +
ε

2
) ‖A−Ak‖2F +

ε

2
‖A−Ak‖2F

= (1 + ε)‖A−Ak‖2F .

Therefore, for S = S0 ∪ S1 ∪ . . . ∪ St we have

|S| ≤
t∑

j=0

|Sj | = k + 2k(log(k + 1)− 1) +
4k
ε
≤ 4k

ε
+ 2k log(k + 1)

and

‖A− πspan(S′),k(A)‖2F ≤ (1 + ε)‖A−Ak‖2F .

3.2 Efficient Algorithm

In this section we describe an algorithm that given a matrix A ∈ Rm×n, finds
another matrix Ãk of rank at most k such that ‖A− Ãk‖2F ≤ (1 + ε)‖A−Ak‖2F .
The algorithm has two phases. In the first phase, we pick a subset of k rows
using the approximate volume sampling procedure described in Subsection 2.3.
In the second phase, we use the span of these k rows as our initial subspace and
perform (k + 1) log(k + 1) rounds of adaptive sampling. The rows chosen are all
from the original matrix A.

Adaptive Sampling and Fast Low-Rank Matrix Approximation 299

Linear Time Low-Rank Matrix Approximation

Input: A ∈ Rm×n, integer k ≤ m, error parameter ε > 0.
Output: Ãk ∈ Rm×n of rank at most k.

1. Pick a subset S0 of k rows of A using the approximate volume sampling
procedure described in Subsection 2.3. Compute an orthonormal basis B0
of span(S0).

2. Initialize V = span(S0). Fix parameters as t = (k + 1) log(k + 1), s1 =
s2 = . . . = st−1 = 2k, and st = 16k/ε.

3. Pick subsets of rows S1, S2, . . . , St, using t-round adaptive sampling pro-
cedure described in Subsection 2.1. After round j, extend the previous or-
thonormal basis Bj−1 to an orthonormal basis Bj of span(S0∪S1∪. . .∪Sj).

4. S =
⋃t

j=0 Sj , and we have an orthonormal basis Bt of span(S).
5. Compute h1, h2, . . . , hk, the top k right singular vectors of πspan(S)(A).
6. Output matrix Ãk = πspan(h1,...,hk)(A), written in the standard basis.

Here are some details about the implementations of these steps.
In Step 1, we use the k-round adaptive procedure for approximate volume

sampling. In the j-th round of this procedure, we sample a row and com-
pute its component vj orthogonal to the span of the rows picked in rounds
1, 2, . . . , j − 1. The residual squared lengths of the rows are computed using
‖E(i)

j ‖2 = ‖E(i)
j−1‖2 −A(i) · vj , and ‖Ej‖2F = ‖Ej−1‖2F − ‖Avj‖2. In the end, we

have an orthonormal basis B0 = {v1/ ‖v1‖ , . . . , vk/ ‖vk‖}.
In Step 3, there are (k+1) log(k+1) rounds of adaptive sampling. In the j-th

round, we extend the orthonormal basis from Bj−1 to Bj by Gram-Schmidt or-
thonormalization. We compute the residual squared lengths of the rows ‖E(i)

j ‖2,
as well as the total, ‖Ej‖2F , by subtracting the contribution πspan(Bj\Bj−1)(A)
from the values that they had during the previous round.

Each round in Steps 1 and 3 can be implemented using 2 passes over the
matrix: one pass to figure out the sampling distribution, and an another one to
sample a row (or a subset of rows) according to this distribution. So Steps 1 and
3 require 2(k + 1) log(k + 1) + 2k passes.

Finally, in Step 5, we compute πspan(S)(A) in terms of basis Bt using one pass
(now we have an m×O(k/ε + k2 log k) matrix), and we compute its top k right
singular vectors using SVD. In Step 6, we rewrite them in the standard basis
and project matrix A onto their span, which requires one additional pass.

So the total number of passes is 2(k + 1)(log(k + 1) + 1).

Theorem 5. With probability at least 3/4, the algorithm outputs a matrix Ãk

such that
‖A− Ãk‖2F ≤ (1 + ε)‖A− Ak‖2F .

Moreover, the algorithm takes

O

(
M

(
k

ε
+ k2 log k

)
+ (m + n)

(
k2

ε2
+

k3 log k

ε
+ k4 log2 k

))
time and O

(
min{m,n}(k

ε + k2 log k)
)

space.

300 A. Deshpande and S. Vempala

Proof. We begin with a proof of correctness. After the first phase of approximate
volume sampling, using Proposition 2, we have

ES0

[
‖A− πspan(S0)(A)‖2F

]
≤ (k + 1)! ‖A−Ak‖2F .

Now using V = span(S0), c = 1, t = (k + 1) log(k + 1), st = 16k/ε, st−1 =
. . . = s1 = 2k in Theorem 1 we get that

ES1,...,St

[
‖A− πspan(S),k(A)‖2F

]
≤
(
1 +

ε

16
+

ε

32
+ . . .

)
‖A−Ak‖2F +

ε

2t+3 ‖A− πspan(S0)(A)‖2F

≤ (1 +
ε

8
) ‖A−Ak‖2F +

ε

8 · 2t
‖A− πspan(S0)(A)‖2F .

Now taking expectation over S0 we have

ES0,...,St

[
‖A− πspan(S),k(A)‖2F

]
≤ (1 +

ε

8
) ‖A−Ak‖2F +

ε

8 · 2t
ES0‖A− πspan(S0)(A)‖2F

≤ (1 +
ε

8
) ‖A−Ak‖2F +

ε

8 · 2t
(k + 1)! ‖A−Ak‖2F

≤ (1 +
ε

8
) ‖A−Ak‖2F +

ε

8 · 2t
(k + 1)(k+1) ‖A−Ak‖2F

≤ (1 +
ε

8
) ‖A−Ak‖2F +

ε

8
‖A−Ak‖2F

= (1 +
ε

4
)‖A− Ak‖2F .

This means

ES0,...,St

[
‖A− πspan(S),k(A)‖2F − ‖A−Ak‖2F

]
≤ ε

4
‖A−Ak‖2F .

Therefore, using Markov’s inequality, with probability at least 3/4 the algorithm
gives a matrix Ãk = πspan(S),k(A) satisfying

‖A− Ãk‖2F ≤ (1 + ε)‖A− Ak‖2F .

Now let us analyze its complexity.
Step 1 has k rounds of adaptive sampling. In each round, the matrix-vector

multiplication requires O(M) time and storing vector vj requires O(n) space. So
overall, Step 1 takes O(Mk + nk) time, O(nk) space.

Step 3 has 2(k + 1) log(k + 1) rounds of adaptive sampling. The j-th round
(except for the last round), involves Gram-Schmidt orthonormalization of 2k
vectors in Rn against an orthonormal basis of size at most (2j+1)k, which takes
time O(njk2). Computing πspan(Bj\Bj−1)(A) for updating the values ‖E(i)

j ‖2 and
‖Ej‖2F takes time O(Mk). Thus, the total time for the j-th round is O(Mk +
njk2). In the last round, we pick O(k/ε) rows. The Gram-Schmidt orthonor-
malization of these O(k/ε) vectors against an orthonormal basis of O(k2 log k)

Adaptive Sampling and Fast Low-Rank Matrix Approximation 301

vectors takes O(nk3 log k/ε) time; storing this basis requires O(nk/ε+nk2 log k)
space. So overall, Step 3 takes O

(
Mk2 log k + n(k3 log k/ε + k4 log2 k)

)
time and

O(nk/ε + nk2 log k) space (to store the basis Bt).
In Step 5, projecting A onto span(S) takes O

(
M(k/ε + k2 log k)

)
time. Now

we have πspan(S)(A) in terms of our basis Bt (which is a m× O(k2 log k + k/ε)
matrix) and computation of its top k right singular vectors takes time
O
(
m(k/ε + k2 log k)2

)
.

In Step 6, rewriting h1, h2, . . . , hk in terms of the standard basis takes time
O
(
n(k3 log k + k2/ε)

)
. And finally, projecting the matrix A onto span(h1, . . . , hk)

takes time O(Mk).
Putting it all together, the algorithm takes

O

(
M

(
k

ε
+ k2 log k

)
+ (m + n)

(
k2

ε2
+

k3 log k

ε
+ k4 log2 k

))
time and O

(
min{m,n}(k/ε + k2 log k)

)
space (since we can do the same with

columns instead of rows), and O(k log k) passes over the data.

This algorithm can be made to work with high probability, by running indepen-
dent copies of the algorithm in each pass and taking the best answer found at
the end. The overhead to get a probability of success of 1− δ is O(

√
log(1/δ)).

4 Lower-Bound for Relative Low-Rank Matrix
Approximation

Here we show a lower bound of Ω(k/ε) for rank-k approximation using a subset
of rows.

Proposition 3. Given ε > 0 and n large enough so that nε ≥ 2, there exists an
n× (n + 1) matrix A such that for any subset S of its rows with |S| ≤ 1/2ε,

‖A− πspan(S),1(A)‖2F ≥ (1 + ε)‖A−A1‖2F

Proof. Let e1, e2, . . . , en+1 be the standard basis for Rn+1, considered as rows.
Consider the n× (n+1) matrix A, whose i-th row is given by A(i) = e1 + ε ei+1,
for i = 1, 2, . . . , n. The best rank-1 approximation for this is A1, whose i-th row
is given byA(i)

1 = e1 +
∑n

i=1
1
nei+1. Therefore,

‖A−A1‖2F =
n∑

i=1

‖A(i) −A
(i)
1 ‖2 = n

(
(n− 1)2ε2

n2 + (n− 1)
ε2

n2

)
= (n− 1)ε2.

Now let S be any subset of the rows with |S| = s. It is easy to see that the best
rank-1 approximation for A in the span of S is given by πspan(S),1(A), whose i-th
row is given by πspan(S),1(A)(i) = e1 + ε

s

∑
i∈S ei+1, for all i (because it has to

be a symmetric linear combination of them). Hence,

302 A. Deshpande and S. Vempala

‖A−πspan(S),1(A)‖2F =
∑
i∈S

‖A(i)−πspan(S),1(A)(i)‖2+
∑
i/∈S

‖A(i)−πspan(S),1(A)(i)‖2

= s

(
(s− 1)2ε2

s2 +(s− 1)
ε2

s2

)
+ (n− s)

(
s

ε2

s2 + ε2
)

=
(s− 1)2ε2

s
+

(s− 1)ε2

s
+

nε2

s
+ nε2 − ε2 − sε2

=
nε2

s
+ nε2 − 2ε2.

Now if s ≤ 1
2ε then ‖A − πspan(S),1(A)‖2F = (1 + 2ε)nε2 − 2ε2 ≥ (1 + ε)nε2 ≥

(1 + ε)‖A−A1‖2F , for n chosen large enough so that nε ≥ 2.

Now we will try to extend this lower bound for relative rank-k approximation.

Proposition 4. Given ε > 0, k, and n large enough so that nε ≥ 2k, there exists
a kn× k(n+1) matrix B such that for any subset S of its rows with |S| ≤ k/2ε,

‖B − πspan(S),k(A)‖2F ≥ (1 + ε)‖B −Bk‖2F .

Proof. Consider B to be a kn × k(n + 1) block-diagonal matrix with k blocks,
where each of the blocks is equal to A defined as in Proposition 3 above. It is
easy to see that

‖B −Bk‖2F = k‖A−A1‖2F .

Now pick any subset S of rows with |S| ≤ k
2ε . Let Si be the subset of rows taken

from the i-th block, and let |Si| = k
2εi

. We know that
∑k

i=1 |Si| =
∑k

i=1
k

2εi
≤ k

2ε ,
and hence nεi ≥ nε ≥ 2.

Therefore,

‖B − πspan(S),k(B)‖2F =
k∑

i=1

‖A− πspan(Si),1(A)‖2F

≥
k∑

i=1

(1 +
εi

k
)‖A−A1‖2F (using Proposition 3)

= (k +
∑k

i=1 εi

k
)‖A−A1‖2F

≥ (k +
k∑k

i=1 1/εi

)‖A−A1‖2F (by A.M.-H.M. inequality)

≥ (k + kε)‖A−A1‖2F
= k(1 + ε)‖A−A1‖2F
= (1 + ε)‖B −Bk‖2F .

5 Discussion

Our algorithm implements approximate volume sampling using 2k passes over
the matrix. Can we do it using fewer passes? Can exact volume sampling be
implemented efficiently?

Adaptive Sampling and Fast Low-Rank Matrix Approximation 303

It would also be nice to close the gap between the upper bound O(k/ε+k log k)
and the lower bound Ω(k/ε) on the number of rows whose span “contains” a
(1 + ε)-approximation of rank at most k.

Acknowledgements. We would like to thank Sariel Har-Peled, Prahladh
Harsha, Ravi Kannan, Frank McSherry, Luis Rademacher and Grant Wang.

References

1. S. Arora, E. Hazan, S. Kale, “A Fast Random Sampling Algorithm for Sparsifying
Matrices.” to appear in the Proceedings of RANDOM, 2006.

2. D. Achlioptas, F. McSherry, “Fast Computation of Low Rank Approximations.”
Proceedings of the 33rd Annual Symposium on Theory of Computing, 2001.

3. C. Aggarwal, C. Procopiuc, J. Wolf, P. Yu, J. Park. “Fast Algorithms for Projected
Clustering.” Proceedings of SIGMOD, 1999.

4. Z. Bar-Yosseff. “Sampling Lower Bounds via Information Theory.” Proceedings of
the 35th Annual Symposium on Theory of Computing, 2003.

5. W.F. de la Vega, M. Karpinski, C. Kenyon, Y. Rabani. “Approximation schemes
for clustering problems.” Proceedings of the 35th Annual ACM Symposium on
Theory of Computing, 2003.

6. P. Drineas, personal communication, 2006.
7. P. Drineas, A. Frieze, R. Kannan, S. Vempala, V. Vinay. “Clustering in large graphs

and matrices.” Proceedings of the 10th SODA, 1999.
8. P. Drineas, R. Kannan. “Pass Efficient Algorithm for approximating large matri-

ces.” Proceedings of 14th SODA, 2003.
9. P. Drineas, R. Kannan, M. Mahoney. “Fast Monte Carlo Algorithms for Matrices

II: Computing a Low-Rank Approximation to a Matrix.” Yale University Technical
Report, YALEU/DCS/TR-1270, 2004.

10. P. Drineas, M. Mahoney, S. Muthukrishnan. “Polynomial time algorithm for
column-row based relative error low-rank matrix approximation.” DIMACS Tech-
nical Report 2006-04, 2006.

11. A. Deshpande, L. Rademacher, S. Vempala, G. Wang. “Matrix Approximation and
Projective Clustering via Volume Sampling.” Proceedings of the 17th ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2006.

12. J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, J. Zhang. “On Graph Problems
in a Semi-Streaming Model.” Proceedings of the 31st ICALP, 2004.

13. A. Frieze, R. Kannan, S. Vempala. “Fast Monte-Carlo algorithms for finding low-
rank approximations.” Journal of the ACM, 51(6):1025-1041, 2004.

14. S. Guha, N. Koudas, K. Shim. “Data-streams and histograms.” Proceedings of
33rd ACM Symposium on Theory of Computing, 2001.

15. M. Henzinger, P. Raghavan, S. Rajagopalan. “Computing on Data Streams.” Tech-
nical Note 1998-011, Digital Systems Research Center, Palo Alto, CA, May 1998.

16. J. Matoušek. “On approximate geometric k-clustering.” Discrete and Computa-
tional Geometry, pg 61-84, 2000.

Robust Local Testability of Tensor Products of
LDPC Codes�

Irit Dinur1, Madhu Sudan2, and Avi Wigderson3

1 Hebrew University, Jerusalem, Israel
dinuri@cs.huji.ac.il

2 Massachusetts Institute of Technology, Cambridge, MA
madhu@mit.edu

3 Institute for Advanced Study, Princeton, NJ
avi@ias.edu

Abstract. Given two binary linear codes R and C, their tensor product
R ⊗ C consists of all matrices with rows in R and columns in C. We
analyze the “robustness” of the following test for this code (suggested
by Ben-Sasson and Sudan [6]): Pick a random row (or column) and check
if the received word is in R (or C). Robustness of the test implies that
if a matrix M is far from R ⊗ C, then a significant fraction of the rows
(or columns) of M are far from codewords of R (or C).

We show that this test is robust, provided one of the codes is what
we refer to as smooth. We show that expander codes and locally-testable
codes are smooth. This complements recent examples of P. Valiant [13]
and Coppersmith and Rudra [9] of codes whose tensor product is not
robustly testable.

1 Introduction

A binary linear code is a linear subspace C ⊆ {0, 1}n. A code is locally testable
if given a word x ∈ {0, 1}n one can verify whether x ∈ C by reading only few
(randomly chosen) bits from x. More precisely such a code has a tester, which
is a randomized algorithm with oracle access to the received word x. The tester
reads at most q symbols from x and based on this “local view” decides if x ∈ C
or not. It should accept codewords with probability one, and reject words that
are “far” (in Hamming distance) from the code with “noticeable” probability.

Locally testable codes (LTCs) are related to probabilistically checkable proofs
(PCPs). LTCs were first explicitly studied by Goldreich and Sudan [12], who
describe them as the “combinatorial core of PCPs”. They constructed LTCs
relying on some of the PCP machinery [11, 2, 1]. Since locally testable codes are
simpler than PCPs, it seems natural to seek alternative constructions for them,
possibly departing from the PCP framework.
� Most of the research was done while the authors were visiting Microsoft Research

Theory group. Additionally, Irit Dinur’s work was supported in part by ISF grant
984/04, Madhu Sudan’s work was supported in part by NSF Award CCR-0514915,
and Avi Wigderson’s work was supported in part by NSF Award CCR-0324906.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 304–315, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Robust Local Testability of Tensor Products of LDPC Codes 305

One of the most interesting challenges in constructing LTCs, is to come up
with an LTC that has constant relative distance and highest possible (maybe
linear?) rate. Several steps in this direction were made in recent years, see
[12, 8, 3, 4, 6, 7, 10].

All known efficient constructions of LTCs rely on some form of “composition”
of two (or more) codes. In this paper we focus on composition by tensor product,
which is an elementary way to compose two codes. Given two binary codes R ⊆
{0, 1}m and C ⊆ {0, 1}n, their tensor product is the code R ⊗ C consisting of all
binary n×m matrices whose rows belong to R and whose columns belong to C.

Ben-Sasson and Sudan [6] suggested using the tensor operation for construct-
ing LTCs. They introduce the notion of robust LTCs: An LTC is called robust
if whenever the received word is far from the code, then with noticeable proba-
bility the local view of the tester is far from an accepting local view. It is very
easy to compose testers for robust LTCs: If it so happens that restriction of the
code to the local view of the tester is itself an LTC, then instead of reading the
entire local view, a tester for the smaller LTC can be invoked thereby saving on
the query complexity of the tester.

Ben-Sasson and Sudan [6] showed that a code obtained by tensoring three or
more codes (i.e. a code of the form C1 ⊗C2 ⊗C3) is robustly testable, and used
this result to construct LTCs. For the tensor product of two codes R and C,
they considered the following natural test, and asked whether it is robust:

Test for R ⊗ C: Pick a random row (or column), accept iff it belongs to R
(or C).

Rather than providing a general definition of robustness (which can be found
in Section 2.2), let us spell out the meaning of robustness for this particular
test. Let x be an n × m matrix. Let δrow(x) denote the expected distance of
a random row of x from R, and let δcol(x) denote the expected distance of a
random column of x from C. Let δR⊗C(x) denote the distance of x from the
tensor product code R ⊗ C. The robustness of the test is the largest value of α
that satisfies

δrow(x) + δcol(x)
2

≥ α · δR⊗C(x)

for every x. We say that the test is robust if its robustness is bounded away
from 0.

Paul Valiant [13] showed a surprising example of two linear codes R and C
for which the test above is not robust, by exhibiting a word x that is far from
R ⊗ C but such that the rows of x are very close to being in R (i.e. δrow(x) is
small) and the columns of x are very close to being in C (i.e. δcol(x) is small).
An additional example of [9] gives a code whose tensor product with itself is not
robust, and a similar result is shown for some non-linear code.

Results. Despite these examples, in this paper we show that the test above is
robust for two important classes of Low Density Parity Check (LDPC) codes:
Expander codes, and LTCs (see Proposition 1). We note that these are almost
disjoint classes, as [5] prove that random expander LDPC codes are not locally
testable.

306 I. Dinur, M. Sudan, and A. Wigderson

We do this by introducing smooth codes which are a class of low density parity
check codes. The smoothness property captures how badly the code is affected
if some of the parity checks are removed from it.

We first show that if either R or C are smooth, then R⊗C has the following
property. Any given word x that has small δrow(x) and small δcol(x), must have
a large sub-matrix that completely agrees with some word in R⊗C (so x is close
to R ⊗ C). This implies that R ⊗ C is robust. We then argue that both LTCs
and expander codes are smooth.

2 Notation, Definitions, and Results

All codes we consider will be binary linear codes. A binary linear code is a linear
subspace C ⊆ {0, 1}n, whose dimension is denoted by dim(C). Every member of
C is called a codeword.

We define the distance between two words x, y ∈ {0, 1}n to be δ(x, y) =
Pri[xi = yi]. We also define the weight of a string to be wt(x) = δ(x,0). The
distance of a code is denoted δ(C), and defined to be the minimal value of δ(x, y)
for two distinct codewords x, y ∈ C. Clearly the distance of a linear code is equal
to weight of the minimal-weight non-zero codeword.

Let In = {0, 1}n denote the trivial code. For x ∈ In and C ⊆ In, let δC(x) =
min{y∈C}{δ(x, y)} denote the distance of x from the code C.

2.1 Tensor Products of Codes

For x ∈ Im and y ∈ In we let x ⊗ y denote the tensor product of x and y (i.e.,
the n×m matrix xyT).

Let R ⊆ Im and C ⊆ In be linear codes. We define the tensor product code
R⊗ C to be the linear subspace spanned by words r ⊗ c ∈ {0, 1}n×m for r ∈ R
and c ∈ C. The following facts are immediate:

– The code R⊗C consists of all n×m matrices whose rows belong to R and
whose columns belong to C.

– dim(R ⊗ C) = dim(R) · dim(C)
– δ(R⊗ C) = δ(R) · δ(C).

Fix R ⊆ Im and C ⊆ In of distance δR and δC respectively for the rest of the
manuscript.

Let M ∈ Im ⊗ In and let δ(M) = δR⊗C(M). Let δrow(M) = δR⊗In(M)
denote its distance from the space of matrices whose rows are codewords of
R. This is the expected distance of a random row in x from R. Similarly let
δcol(M) = δIm⊗C(M).

2.2 Robust Locally Testable Codes

Locally testable codes, as described in the introduction, are codes for which one
can test whether a given word x is in the code by reading only few (randomly
chosen) symbols from x. We discuss here only non adaptive and bi-regular testers.

Robust Local Testability of Tensor Products of LDPC Codes 307

Non adaptive means that which queries are read is determined before any query
is made, and bi-regular means that every test queries the same number of bits,
and every bit is queried by the same number of tests. It would be interesting to
extend our result for locally testable codes without these restrictions.

Definition 1 ((Non adaptive, bi-regular) Locally Testable Code). We
say that a code C ⊆ In is (d, δ, ε, ρ)-locally-testable if δ(C) ≥ δ and there is a
randomized algorithm (called a tester) T , which selects d indices from [n], and
for any given word x ∈ In, T reads the bits of x in these locations, satisfying:

– If x ∈ C then Pr[T x accepts] = 1.
– If δC(x) ≥ ρ then Pr[T x rejects] > ε.

Moreover, the probability that a given index is chosen to be read by T is the same
for all indices in [n].

A somewhat stronger notion of LTCs is that of robust-LTCs. Such a code has a
stronger soundness requirement: Whenever x ∈ C the local view of the tester is far
(in expectation) from an accepting view. For a formal definition let us introduce a
little notation. The tester algorithmT has two inputs: the random string r, and the
word x that is being tested. The tester reads the string r and computes a predicate
Tr and a d-tuple of indices i1, . . . , id in which it queries the word x. It accepts iff
Tr(x[i1], . . . , x[id]) = 1. Let acc(Tr) =

{
w ∈ {0, 1}d

∣∣∣ Tr(w) = 1
}

be the set of
local-views on which the tester accepts. Define the robustness of T on x to be

ρT (x) = Er[δ((x[i1], . . . , x[id]) , acc(Tr))] ,

which is the expected distance of the local view from an accepting one. The robust-
ness of T is the minimal ratio between the robustness of T on x, and the distance
of x from the code:

ρT = min
x �∈C

ρT (x)
δC(x)

.

Definition 2 (Robust Code). We say that a code C ⊆ In is α-robust if there
is a tester T that accepts every word in C with probability 1, such that ρT ≥ α.

2.3 Low Density Parity Check (LDPC) Codes

A bipartite graph ([n], [m], E) is a parity check graph for a code C ⊆ In if the
following holds (let Γ (j) denote the neighbors of j in the graph):

x ∈ C ⇐⇒ ∀j ∈ [m]
∑

i∈Γ (j)

xi = 0 mod 2

In other words, every right-hand-side vertex j ∈ [m] corresponds to a parity
constraint, and a word is in the code if and only if it satisfies all of the constraints.

308 I. Dinur, M. Sudan, and A. Wigderson

A code is referred to as an LDPC code if it has a “low-density” parity check
graph, e.g. a graph with constant1 average degree.

We first remark that LTCs are low density parity check codes, since a parity
check graph can be constructed from the tester algorithm. Moreover, since our
LTCs are bi-regular, so is their parity check graph.

Proposition 1. Every (d, δ, ε, ρ)-LTC C with ρ < δ has a parity check graph
with right degree d and such that for every word x, if δC(x) ≥ ρ then it violates
at least ε fraction of the parity checks.

Proof. Let T be a tester for C. The predicates computed by T are parity checks
(perhaps redundant) of C, since the code is linear. The construction of a parity
graph (L,R,E) from T is immediate, with the nodes of R corresponding to the
enumeration of the random strings of T .

Another important class of LDPC codes is that of expander codes.

Definition 3 ((c, d)-regular (γ, δ)-expander). Let c, d ∈ N and let γ, δ ∈
(0, 1). Define a (c, d)-regular (γ, δ)-expander to be a bipartite graph (L,R,E)
with vertex sets L,R such that all vertices in L have degree c, and all vertices in
R have degree d; and the additional property that every set of vertices L′ ⊂ L,
such that |L′| ≤ δ |L|, has at least (1− γ)c |L′| neighbors.

We say that a code C is an (c, d, γ, δ)-expander code if it has a parity check
graph that is a (c, d)-regular (γ, δ)-expander.

The following is an important (and straightforward) property of expander
codes,

Proposition 2. If C is a (c, d, γ, δ)-expander code and γ < 1
2 , then δ(C) ≥ δ.

Proof. We prove that every non-zero word in C must have weight more than δn.
Indeed let (L,R,E) be a parity check graph of C that is a (c, d)-regular (γ, δ)-
expander. The proposition follows by examining the unique neighbor structure of
the graph. Let x ∈ C be a non-zero codeword, and let L′ ⊆ L be the set of indices
in which x is 1. If |L′| ≤ δn then L′ has at least (1− γ)c |L′| > c

2 |L′| neighbors in
R. At least one of these sees only one element of L′, so the parity of its neighbors
is one, violating the corresponding constraint and contradicting x ∈ C.

2.4 Results

Let R,C be codes. We study the robustness of the following test (described also
in the introduction) for a given word M ∈ Im ⊗ In.

Test T for R⊗ C:

1. Select b ∈ {0, 1} at random.
2. If b = 0 select i ∈ [n] at random, and accept iff the i-th row of M is in R.
3. If b = 1 select j ∈ [m] at random, and accept iff the j-th column of M is in

C.

1 Implicit throughout this manuscript is the notion that we are working with infinite
families of codes/graphs, where the parameters such as the degree or the distance
do not change with the length of the code/graph etc.

Robust Local Testability of Tensor Products of LDPC Codes 309

Obviously, T accepts every word of R⊗C with probability 1. We are interested
in studying the robustness of T which we sometimes refer to as ρ instead of ρT .

Recall our notation δ(M) = δR⊗C(M) and our definition of δrow(M) =
δR⊗In(M) and δcol(M) = δIm⊗C(M). In other words δrow(M) equals the av-
erage distance of a row of M from R, and similarly δcol(M) equals the average
distance of a column of M from C. The following proposition is immediate:

Proposition 3. The robustness of T on input M is ρ(M) = δrow(M)+δcol(M)
2 .

��

In order to establish robustness for T , say ρT ≥ α > 0, we must be able to prove
for all M that (δrow(M)+δcol(M))/2

δ(M) ≥ α.
As already mentioned in the introduction, for general codes R and C this is

false. Paul Valiant [13] described a pair of codes R and C and a word M that is
very far from R⊗ C, yet both δrow(M) and δcol(M) are very small.

Nevertheless, we observe that if C (or R) is somewhat “nice”, then such a
bound can be proven.

Theorem 1 (Tensoring Expander-codes). Let R ⊂ Im be a code of distance
at least δR > 0. Let C ⊂ In be a (c, d, γ, δ)-expander code for some c, d ∈ N, δ > 0,
and 0 < γ < 1/6. Then

ρT ≥
(1
3 − 2γ)δδR

4d
.

Theorem 2 (Tensoring LTCs). Let R ⊂ Im and C ⊂ In be codes of relative
distance at least δR, δC respectively. Furthermore, let C be a (d, δC , ε, ρ)-LTC,
with ρ ≤ δC

16 . Then,

ρT ≥ min
{

εδR

2d2 ,
δRδC

16

}
.

3 Smooth Codes

We prove the two theorems by a common technique, where we show that the
tensor product has nice testing properties if the underlying codes are nice in a
certain sense that we refer to as “smooth”. To motivate this notion, consider a
code C ⊆ In given by a (possibly redundant2) parity check graph B = (L,R,E),
where every vertex of R has degree d.

We consider how badly the code is affected if we remove some constraints
R0 ⊆ R. Let C(R0) denote the resulting code. C(R0) clearly contains C, but
may now contain codewords of lesser weight. For instance we may remove all
the neighbors of some vertex u ∈ L (for the vertex u of minimum degree, this
only requires us to remove a d/|L| fraction of the right vertices), and now u
is unconstrained, leading to a code of distance one. However if we delete the
uth coordinate of C(R0) one may hope that the resulting code still has large
2 A parity check graph is redundant if removing a node from the right still results in

a parity check graph for the same code.

310 I. Dinur, M. Sudan, and A. Wigderson

distance. More generally, we may hope that the negative effect of deleting some
subset R0 of the constraints may be recovered by dropping some subset L0 of
the coordinate vertices. If a code exhibits such a property, we call it smooth,
defined quantitatively below.

For a set S ⊂ [n] we always denote S = [n] − S. For a code C ⊆ In and
L0 ⊆ L = [n] let C|L0 be the projection of the codewords of C to the coordinates
of L0. (Such a code is called a punctured code. For reasons that will be evident
later, it is nicer to highlight the set of coordinates that are being deleted.)

For a code C defined by a bipartite graph B = (L,R,E), let C(R0) denote
the “supercode” given by the parity check graph B′ = (L = [n], R − R0, E

′ =
E ∩ (L× (R −R0))).

Definition 4 (Smooth Code). A code C ⊆ In is (d, α, β, δ)-smooth if it has
a parity check graph B = (L,R,E) where all the right vertices R have degree d,
the left vertices have degree c = d|R|/|L|, and for every set R0 ⊆ R such that
|R0| ≤ α|R|, there exists a set L0 ⊆ L, |L0| ≤ β|L| such that the code C(R0)|L0

has distance at least δ.

We next turn to prove that the test T described in the previous section is robust
when one of the codes being tensored is smooth. More specifically we prove
that for any word M , if ρ(M) = (δrow(M) + δcol(M))/2 is small then δ(M) is
proportionally small.

Lemma 1 (Main Lemma). Let R ⊆ Im and C ⊆ In be codes of distance
δR and δC . Let C be (d, α, δC

2 , δC

2)-smooth, and let M ∈ Im ⊗ In. If ρ(M) ≤
min

{
α δR

2d2 ,
δRδC

8

}
then δ(M) ≤ 8ρ(M).

Proof. For row i ∈ [n], let ri ∈ R denote the codeword of R closest to the ith
row of M . For column j ∈ [m], let c(j) ∈ C denote the codeword of C closest to
the jth column of M . Let MR denote the n×m matrix whose ith row is ri, and
let MC denote the matrix whose jth column is c(j). Let E = MR −MC .

In what follows the matrices MR,MC and (especially) E will be the central
objects of attention. We refer to E as the error matrix. Note that δ(M,MR) =
δrow(M) and δ(M,MC) = δcol(M) and so

wt(E) = δ(MR,MC) ≤ δ(M,MR) + δ(M,MC) = δrow(M) + δcol(M) = 2ρ(M) .
(1)

Our proof strategy is to show that the error matrix E is actually very struc-
tured. We do this in two steps. First we show (Proposition 4) that its columns
satisfy most constraints of the column code. Then we show (Proposition 5) that
E contains a large submatrix which is all zeroes. Finally using this structure of
E we show (Proposition 6) that M is close to some codeword of R⊗ C. Propo-
sition 4 is the crux of our analysis (while Proposition 5 follows more or less in
a straightforward way from the definition of smoothness, and Proposition 6 is a
standard property of tensor product codes).

Proposition 4. Let {i1, . . . , id} be a constraint of C (i.e., every codeword of
y ∈ C satisfies yi1 + . . . + yid

= 0). Let ei denote the ith row of E. Suppose
wt(eij) < δR/d for every j ∈ [d]. Then ei1 + · · ·+ eid

= 0.

Robust Local Testability of Tensor Products of LDPC Codes 311

Proof. Let ci denote the i-th row of the matrix MC . (Recall that these rows are
not necessarily codewords of any nice code - it is only the columns of MC that
are codewords of C). For every column j, we have (ci1)j + · · ·+ (cid

)j = 0 (since
the columns of MC are codewords of C). Thus we conclude that ci1 +· · ·+cid

= 0
as a vector.

Now consider ri1 + · · ·+ rid
(recall that ri is the i-th row of MR). Since each

one of the ri’s is a codeword of R, we have ri1 + · · ·+ rid
∈ R. But this implies

ei1 + · · ·+ eid
= (ri1 − ci1) + · · ·+ (rid

− cid
) = (ri1 + · · ·+ rid

)− (ci1 + · · ·+ cid
)

= (ri1 + · · ·+ rid
)− 0 ∈ R

Now we use the fact that the eis have small weight. This implies that wt(ei1 +
· · · + eid

) ≤
∑

j wt(eij) < δR. But R is an error-correcting code of minimum
distance δR so the only word of weight less than δR in it is the zero codeword,
yielding ei1 + · · ·+ eid

= 0.

Combined with the smoothness of C, the above proposition gives us sufficient
structure to show that E has a large clean submatrix. We argue this below.

Proposition 5. There exist subsets U ⊆ [m] and V ⊆ [n] with |U |/m < δR/2
and |V |/n < δC/2 such that E(i, j) = 0 implies i ∈ V or j ∈ U .

Proof. First, we consider the rows of E that have weight above δR/d. Let

V1 = {i ∈ [n] | wt(ei) ≥ δR/d} .

We use δrow(M) ≤ 2ρ(M) ≤ αδR

d2 and Markov’s inequality to deduce |V1|/n ≤
2ρ(M)
δR/d ≤

α
d .

Next, we consider every constraint of C that involves an index in V1. Recall
that the code C is (d, α, δC

2 , δC

2)-smooth, and let B = ([n], [�], F) be the corre-
sponding parity check graph of C (with right degree d and left degree c = d�

n).
Viewing V1 as a subset of the left vertices of B, let W ⊆ [�] be the set of neigh-
bors of V1 in B. First notice that |W | ≤ c |V1| ≤ c · αn/d = α�. Next, observe
that constraints in [�] − W touch only indices outside V1, i.e., indices j with
w(ej) < δR/d. By Proposition 4, such constraints are satisfied by the rows of E.
It is clear that if an equality holds for row-vectors, it also holds for each column
separately. Thus, every column of the error matrix E, denoted e(j), is contained
in the code C(W).

Now we use the smoothness of C to define the sets V and U . Since |W | ≤ α�,
there must be a set V ⊆ [n] of cardinality at most δC

2 n such that the code
C(W)|V has distance at least δC

2 n. Let U be the set of indices corresponding to
columns of E that have δC

2 n or more non-zero elements in the rows outside V .
This means that for every j, e(j) is either all zero on V or has at least δC

2 n non-
zero values on V . If also j ∈ U then e(j) must be zero outside V . We conclude
that if we throw away from the matrix E all the rows corresponding to V and
all the columns corresponding to U , we are left with the zero matrix.

312 I. Dinur, M. Sudan, and A. Wigderson

The fraction of rows thrown away is at most |V |
n ≤ δC/2. The fraction of

columns thrown away is at most δcol(M)
δC/2 ≤ 4ρ(M)

δC
≤ δR/2, where we used

Markov’s inequality and δcol(M) ≤ 2ρ(M) ≤ δCδR

4 .

We now use a standard property of tensor products to claim MR (and MC

and M) is close to a codeword of R × C. Recall that M ∈ {0, 1}n×m and that
δ(MC ,MR) ≤ 2ρ(M).

Proposition 6. Assume there exist sets U ⊆ [m] and V ⊆ [n], |U |/m ≤ δR/2
and |V |/n ≤ δC/2 such that MR(i, j) = MC(i, j) implies j ∈ U or i ∈ V . Then
δ(M) ≤ 8ρ(M).

Proof. This is a standard proposition. First we note that there exists a matrix
N ∈ R⊗C that agrees with MR and MC on V×U (See [6, Proposition 3]3). Recall
also that δ(M,MR) = δrow(M) ≤ 2ρ(M). So it suffices to show δ(MR, N) ≤
6ρ(M). We do so in two steps. First we show that δ(MR, N) ≤ 2ρ(MR). We
then show that ρ(MR) ≤ 3ρ(M) concluding the proof.

For the first part we start by noting that MR and N agree on every row in
V . This is the case since both rows are codewords of R which may disagree only
on entries from the columns of U , but the number of such columns is less that
δRm/2. Next we claim that for every column j ∈ [m] the closest codeword of C
to the MR(·, j), the jth column of MR, is N(·, j), the jth column of N . This is
true since MR(i, j) = N(i, j) implies i ∈ V and so the number of such i is less
than δCn/2. Thus for every j, we have N(·, j) is the (unique) decoding of the
jth column of MR. Averaging over j, we get that δcol(MR) = δ(MR, N). In turn
this yields ρ(MR) ≥ δcol(MR)/2 = δ(MR, N)/2. This yields the first of the two
desired inequalities.

Now to bound ρ(MR), note that for any pair of matrices M1 and M2 we have
ρ(M1) ≤ ρ(M2) + δ(M1,M2). Indeed it is the case that δrow(M1) ≤ δrow(M2) +
δ(M1,M2) and δcol(M1) ≤ δcol(M2)+δ(M1,M2). To see the former, for instance,
note that if the ith row of M2 is within ρi of some codeword of R, then the
ith row of M1 is within ρi + δ(M1(i, ·),M2(i, ·)) of the same codeword of R.
Averaging over i yields δrow(M1) ≤ δrow(M2) + δ(M1,M2). A similar argument
yields δcol(M1) ≤ δcol(M2) + δ(M1,M2), when combined the two yield ρ(M1) ≤
ρ(M2) + δ(M1,M2). Applying this inequality to M1 = MR and M2 = M we
get ρ(MR) ≤ ρ(M)+ δ(MR,M) ≤ 3ρ(M). This yields the second inequality and
thus the proof of the proposition as well as Lemma 1.

In what follows we will show that expander codes, as well as LTCs are smooth.

4 Expander Codes Are Smooth

Lemma 2. Every (c, d, γ, δ)-expander code C is (d, α, β, δ)-smooth, provided γ <
1
6 , α < (1

3 − 2γ)δd and β = α
(1
3−2γ)d .

3 Erase from the matrix MR entries in rows V or columns U . Observe that decoding
from erasures first each row and then each column, must result in the same matrix
as decoding first each column and then each row (due to the distances of the codes).

Robust Local Testability of Tensor Products of LDPC Codes 313

Proof. Let B = (L,R,E) be the (c, d) regular (γ, δ)-expanding parity check
graph of the code C. Let R0 ⊆ R of size |R0| ≤ α · |R| be given. We will construct
sets L′, R′ satisfying L′ ⊆ L, |L′| ≤ β|L| and R0 ⊆ R′ ⊆ R such that every
subset of L−L′ of size at most δn expands sufficiently in the induced subgraph
on (L− L′) ∪ (R −R′). This will suffice to prove that C(R0)|L′ ⊆ C(R′)|L′ has
distance at least δn.

We construct the sets L′ and R′ iteratively. Initially we set L′ = ∅ and R′ =
R0. We then iterate as follows: While there exists a vertex u ∈ L−L′ such that
u has more than 1

3c neighbors in R′, we add u′ to L′ and add all the neighbors
of u′ to R′. We prove below that this process stops in t ≤ βn steps, and that the
induced graph on (L− L′) ∪ (R −R′) is a (good) expander.

We claim that this process must stop after at most βn steps. To see this, we
count the number of unique neighbors of the set L′ in the graph B. Initially this
number is at most |R0|. At each iteration this number goes up by at most 2

3c.
Assume we have completed some t ≤ δn iterations (and recall βn < δn). We have
|L′| = t. Denote Γunique(L′) the set of vertices in R that have exactly one neighbor
in L′. So |Γunique(L′)| ≤ |R0| + 2

3ct. Observe that |Γunique(L′)| ≥ (1 − 2γ)c|L′|,
otherwise L′ couldn’t have (1− γ)c |L′| distinct neighbors (here we use t ≤ δn).
Putting these inequalities together we have

(1 − 2γ − 2
3
)ct ≤ |Γunique(L′)| − 2

3
ct ≤ |R0|

and so t ≤ 1
(1
3−2γ)c |R0| ≤ α

(1
3−2γ)c |R| =

α
(1
3−2γ)d |L| = βn.

Now we claim that the induced subgraph on (L − L′) ∪ (R − R′) is an ex-
pander. For this part consider any set S ⊆ L − L′ with |S| ≤ δn. Let T be the
neighborhood of S in the graph B. Then |T | ≥ (1 − γ)c|S|. Now each vertex of
S may have upto 1

3c neighbors in R′. Even allowing for these neighborhoods to
be disjoint, we get |T ∩ (R − R′)| ≥ (1 − γ)c|S| − 1

3c|S| = (2
3 − γ)c|S|. Since

2
3 − γ > 1

2 , we have that the induced subgraph on (L − L′) ∪ (R − R′) has the
property that every set of size at most δn expands by more than a factor of
c/2, thus implying that C(R′)|L′ is a code of minimum distance at least δn (see
Proposition 2). This concludes the proof.

Proof (Theorem 1). Note that C is a code of distance at least δ (by Proposi-
tion 2). By Lemma 2 it follows that C is (d, α, β, δ)-smooth for any α ≤ (1

3−2γ)dδ
and β = α

(1
3−2γ)d . Set α = (1

3 − 2γ)dδ/2, and so β = α
(1
3−2γ)d = δ/2. The code is

certainly (d, α, δ
2 ,

δ
2)-smooth.

Fix any M ∈ R⊗C, and let us lower bound ρ(M)
δ(M) . Set ρ0 = min

{
α δR

2d2 ,
δRδ
8

}
.

If ρ(M) ≥ ρ0 then surely ρ(M)
δ(M) ≥ ρ0. Otherwise, we note that the conditions

necessary for the application of Lemma 1 are satisfied, and we get δ(M) ≤
8ρ(M). All in all, we have proven that

ρT = min
M �∈R⊗C

ρ(M)
δ(M)

≥ min
{
ρ0,

1
8

}
= ρ0 =

(1
3 − 2γ)δδR

4d

where the last equality follows by plugging the value for α into ρ0 and assuming
d ≥ 2.

314 I. Dinur, M. Sudan, and A. Wigderson

5 LTCs Are Smooth

Lemma 3. Every (d, δ, ε, ρ)-LTC code C is (d, ε, δ′, δ′)-smooth, provided ρ ≤
δ′/4 and δ′ ≤ δ/4.

Proof. Let B = (L,R,E) be a parity check graph for C whose right-hand-side
corresponds to the tests of a tester for C (Proposition 1). Fix R0 ⊆ R of size
|R0| ≤ ε · |R| and consider the code C(R0). If all the non-zero words in C(R0)
have weight at least δ′ then setting L0 = ∅ satisfies the definition of smoothness
and so we have nothing to prove. So we assume C(R0) has some non-zero words
of weight at most δ′. Let {c1, . . . , cm} be the set of all codewords of C(R0) whose
weight is at most 2δ′. Let Si be the set of coordinates where ci is non-zero, and
let L0 = ∪iSi.

If |L0| ≤ δ′n, we claim that C(R0)|L0 has distance at least δ′n as needed. This
is true since every codeword of C(R0) of weight less than 2δ′n is non-zero only
on some subset of L0 and so projects to the zero codeword in C(R0)|L0 . On the
other hand, codewords of weight greater than 2δ′n in C(R0) project to words
of weight at least δ′n when we delete the δ′n coordinates corresponding to L0.
Thus C(R0)|L0 is a code of weight at least δ′n. Thus it remains to show below
that |L0| ≤ δ′n.

Assume for contradiction that |L0| > δ′n. We show first that C(R0) must have
a codeword of weight between δ′

4 n and 2δ′n. We then show that this violates the
local testability of C.

For the first part, note that if one of the ci’s has weight between δ′

2 n and
2δ′n, then we are already done. So we may assume each ci has weight less
than δ′

2 n. Now pick a subset {c1, . . . , cj} of the low weight codewords so that
δ′

2 n ≤ | ∪j
i=1 Si| ≤ δ′n. This is obviously possible since the cardinality of this

union starts at 0, as j varies from 0 to m, ends at |L0| > δ′n and goes up by at
most δ′

2 n in each step. For this setting of j, consider words of the form
∑j

i=1 xici

where xi ∈ {0, 1}. For every choice of xi’s we get a codeword of C(R0) of weight
at most | ∪j

i=1 Si| ≤ δ′n. The expected weight of such a word, when xi ∈ {0, 1}
are chosen uniformly and independently is 1

2 |∪
j
i=1 Si| ≥ δ′

4 n. Thus the maximum
weight codeword in this set has weight between δ′

4 n and δ′n, as desired.
Now let c1 ∈ C(R0) be a codeword of weight between δ′

4 n and 2δ′n. Since
2δ′ < δ/2 we have that c1 is a word at distance more than δ′n ≥ ρn from C but
is rejected only by the tests in R0 which form at most ε fraction of all parity
checks in B, contradicting the assumption that C is a (d, δ, ε, ρ)-LTC.

Theorem 2 follows from Lemma 3 analogous to the way Theorem 1 followed
from Lemma 2.

Proof (Theorem 2). The code C is a (d, δC , ε, ρ)-LTC, with ρ ≤ δC/16. By
Lemma 3, it must be (d, ε, δC

4 , δC

4)-smooth. Fix any M ∈ R ⊗ C, and let us
lower bound ρ(M)

δ(M) .

Robust Local Testability of Tensor Products of LDPC Codes 315

Set ρ0 = min{ εδR

2d2 ,
δRδC

16 }. If ρ(M) ≥ ρ0 then surely ρ(M)
δ(M) ≥ ρ0. Other-

wise, we apply Lemma 1 and deduce that ρ(M) < ρ0 implies that δ(M) ≤
6

max{δR,δC/2}ρ(M).
All in all, we have proven that

ρT = min
M �∈R⊗C

ρ(M)
δ(M)

≥ min
{
ρ0,

1
8

}
= min

{
εδR

2d2 ,
δRδ

16

}
.

References

1. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the
ACM, 45(3):501–555, May 1998.

2. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new charac-
terization of NP. Journal of the ACM, 45(1):70–122, January 1998.

3. Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vad-
han. Robust PCPs of proximity, shorter PCPs and applications to coding. In
Proceedings of the 36th Annual ACM Symposium on Theory of Computing, page
(to appear), 2004.

4. Eli Ben-Sasson, Oded Goldriech, Prahladh Harsha, Madhu Sudan, and Salil Vad-
han. Short PCPs verifiable in polylogarithmic time. In Proceedings of the Twelfth
Annual IEEE Conference on Computational Complexity, pages 120–134, June 12–
15 2005.

5. E. Ben-Sasson and P. Harsha and S. Raskhodnikova, Some 3CNF properties are
hard to test. In SIAM Journal on Computing, 35(1):1-21.

6. E. Ben-Sasson and M. Sudan. Robust locally testable codes and products of codes.
In Proc. RANDOM: International Workshop on Randomization and Approxima-
tion Techniques in Computer Science, pages 286–297, 2004.

7. Eli Ben-Sasson and Madhu Sudan. Short PCPs with poly-log rate and query
complexity. In Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, pages 266–275, 2005.

8. Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness
efficient low-degree tests and short PCPs via ε-biased sets. In Proceedings of the
35th Annual ACM Symposium on Theory of Computing, pages 612–621, 2003.

9. D. Coppersmith and A. Rudra. On the robust testability of product of codes.
ECCC TR05-104, 2005.

10. Irit Dinur. The PCP theorem by gap amplification. In Proceedings of the 38th
Annual ACM Symposium on Theory of Computing, pages 241–250, 2006.

11. Uriel Feige, Shafi Goldwasser, Laszlo Lovasz, Shmuel Safra, and Mario Szegedy.
Interactive proofs and the hardness of approximating cliques. Journal of the ACM,
43(2):268–292, 1996.

12. O. Goldreich and M. Sudan. Locally testable codes and PCPs of almost-linear
length. In Proc. 43rd IEEE Symp. on Foundations of Computer Science, pages
13–22, 2002.

13. P. Valiant. The tensor product of two codes is not necessarily robustly testable.
In APPROX-RANDOM, pages 472–481, 2005.

Subspace Sampling and Relative-Error Matrix
Approximation: Column-Based Methods

Petros Drineas1, Michael W. Mahoney2,�, and S. Muthukrishnan3

1 Department of Computer Science, RPI
2 Yahoo Research Labs

3 Department of Computer Science, Rutgers University

Abstract. Given an m×n matrix A and an integer k less than the rank
of A, the “best” rank k approximation to A that minimizes the error with
respect to the Frobenius norm is Ak, which is obtained by projecting A
on the top k left singular vectors of A. While Ak is routinely used in
data analysis, it is difficult to interpret and understand it in terms of
the original data, namely the columns and rows of A. For example, these
columns and rows often come from some application domain, whereas
the singular vectors are linear combinations of (up to all) the columns or
rows of A. We address the problem of obtaining low-rank approximations
that are directly interpretable in terms of the original columns or rows of
A. Our main results are two polynomial time randomized algorithms that
take as input a matrix A and return as output a matrix C, consisting of
a “small” (i.e., a low-degree polynomial in k, 1/ε, and log(1/δ)) number
of actual columns of A such that∥∥A − CC+A

∥∥
F

≤ (1 + ε) ‖A − Ak‖F

with probability at least 1− δ. Our algorithms are simple, and they take
time of the order of the time needed to compute the top k right singular
vectors of A. In addition, they sample the columns of A via the method of
“subspace sampling,” so-named since the sampling probabilities depend
on the lengths of the rows of the top singular vectors and since they
ensure that we capture entirely a certain subspace of interest.

1 Introduction

1.1 Motivation and Overview

In many applications, the data are represented by a real m× n matrix A. Such
a matrix may arise if the data consist of m objects, each of which is described
by n features. Examples of objects include documents, genomes, stocks, hyper-
spectral images, and web groups, while examples of the corresponding features
are terms, environmental conditions, temporal resolution, frequency resolution,
and individual users. In each of these application areas, practitioners spend vast

� Part of this work was done while at the Department of Mathematics, Yale University.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 316–326, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Subspace Sampling and Relative-Error Matrix Approximation 317

amounts of time analyzing the data in order to understand, interpret, and ul-
timately use this data. Often the central task in this analysis is to develop a
compressed representation of A that may be easier to analyze and interpret.

The most common compressed representation of A used by data analysts is
that obtained by truncating the SVD at some number k , min{m,n} terms,
in large part because this provides the “best” rank-k approximation to A when
measured with respect to any unitarily invariant matrix norm. However, there
is a fundamental difficulty with this representation: the new “dimensions” (the
so-called eigencolumns and eigenrows) of Ak are linear combinations of (up to
all) the original dimensions. As such, they are notoriously difficult to interpret in
terms of the underlying data and processes generating that data. For example,
the vector [(1/2) age - (1/

√
2) height + (1/2) income], being one of the significant

uncorrelated “factors” from a dataset of people’s features is not particularly
informative. From an analyst’s point of view, it would be highly preferable to
have a low-rank approximation that is nearly as good as that provided by the
SVD but that is expressed in terms of a small number of actual columns and/or
actual rows of a matrix, rather than linear combinations of those columns and
rows. For example, consider recent data analysis work in DNA microarray and
DNA Single Nucleotide Polymorphism (SNP) analysis [15, 16, 18], where linear
combinations of genes or loci in the human genome have no clear biological
interpretation.

In this paper, we focus on choosing columns of a matrix A in order to approx-
imate very precisely a data matrix A as the product CX , where C consists of a
few columns of A and where X is a matrix that expresses every column of A in
terms of the basis provided by the columns of C.

1.2 Review of Linear Algebra

Let [n] denote the set {1, 2, . . . , n}. For any matrix A ∈ Rm×n, let A(i), i ∈ [m]
denote the i-th row of A as a row vector, and let A(j), j ∈ [n] denote the j-th
column of A as a column vector. The Singular Value Decomposition (SVD) of
A will be denoted by A = UΣV T , where U ∈ Rm×ρ, Σ ∈ Rρ×ρ, V ∈ Rn×ρ,
and where ρ is the rank of A. The “best” rank-k approximation to A (with
respect to, e.g., the Frobenius norm, ||A||F =

√∑
i,j A2

ij) will be denoted by

Ak = UkΣkV
T
k , where Uk ∈ Rm×k is the first k columns of U , etc. The SVD and

hence the best rank-k approximation of a general matrix A can be computed in
O(min{n2m,nm2}) time, and optimal rank-k approximations to it can be com-
puted more rapidly with, e.g., Lanczos methods. We will use SV D(Ak) to denote
the time to compute Ak. For more details on linear algebra, see [1, 12, 14, 17],
and for more details on notation and our sampling matrix formalism, see [5, 9].

1.3 Problem Definition

We start with the following definition.

Definition 1. Let A be an m× n matrix, and let C be an m× c matrix whose
columns consist of a small number c of columns of the matrix A. Then the m×n

318 P. Drineas, M.W. Mahoney, and S. Muthukrishnan

matrix A′ is a column-based low-rank matrix approximation to A, or a CX
matrix approximation, if it may be explicitly written as A′ = CX for some c×n
matrix X.

We prefer not to provide too precise a characterization of what we mean by a
“small” number of columns, but one should think of c , n. Also, the low-rank
matrix approximation provided by truncating the SVD at some value of k < ρ =
rank(A) will not in general satisfy the conditions of the definition. Finally, given
a set of columns C, the approximation A′ = PCA = CC+A clearly satisfies the
requirements of Definition 1. Indeed, this is the “best” such approximation to
A, in the sense that ‖A− C (C+A)‖F = minX∈Rc×n ‖A− CX‖F .

The quality of a CX matrix approximation depends on the choice of C as well
as on the matrix X . We consider the following problem.

Problem 1 (Column-based low-rank matrix approximation problem.)
Given a matrix A ∈ Rm×n and an integer k , min{m,n}, choose a sufficient
number of columns of A such that∥∥A− CC+A

∥∥
F
≤ (1 + ε) ‖A−Ak‖F . (1)

Here, C is a matrix consisting of the chosen columns of A, CC+A is the pro-
jection of A on the subspace spanned by the chosen columns, and Ak is the best
rank k approximation to A. The number of columns of C should be a function
of k, 1/ε, and – in the case of randomized algorithms – a failure probability δ,
and the running time of the algorithm should be a low-degree polynomial in m
and n.

Note that is not obvious whether there exist, and if so whether one can efficiently
find, a small (depending on k, 1/ε, and 1/δ, but independent of m and n) number
of columns that provide such relative-error guarantees.

1.4 “Subspace Sampling” and Our Main Result

Our main result is the following theorem, which asserts the existence of two
related algorithms to solve Problem 1.

Theorem 1. There exists randomized algorithms that solve Problem 1.

– In one algorithm, exactly c = O(k2 log(1/δ)/ε2) columns of A are chosen to
construct C.

– In the other algorithm, c = O(k log k log(1/δ)/ε2) columns in expectation are
chosen to construct C.

Both algorithms satisfy (1) with probability at least 1 − δ, both run in time
O(SV D(Ak)), and both use the method of “subspace sampling” to sample columns
to form C.

The algorithms of Theorem 1 for constructing a matrix C consisting of a few
columns of A are simple:

Subspace Sampling and Relative-Error Matrix Approximation 319

1. Construct sampling probabilities {pi}ni=1 satisfying the “subspace sampling”
Condition (2) below.

2. Use these probabilities to randomly sample columns from A and construct
a matrix C using one of two sampling procedures.

3. Repeat these two steps O(log(1/δ)) times, and return the set of columns C
such that ‖A− CC+A‖F is smallest over all O(log(1/δ)) trials.

The first sampling procedure, which we call the Exactly(c) sampling algo-
rithm, picks exactly c columns of A to be included in C in c i.i.d. trials, where in
each trial the i-th column of A is picked with probability pi. Notice that some
columns of A may be included in the sample more than once. The second sam-
pling procedure, which we call the Expected(c) sampling algorithm, picks in
expectation at most c columns of A to create C, by including the i-th column of
A in C with probability min {1, cpi}. No column of A is included in the sample
more than once.

The key technical insight that leads to the relative-error guarantees is that
the columns are selected by a novel sampling procedure that we call “subspace
sampling.” Rather than sample columns from A with a probability distribu-
tion that depends on the Euclidean norms of the columns of A (which gives
provable additive-error bounds [5, 6, 7]), in “subspace sampling” we randomly
sample columns of A with a probability distribution that depends on the Eu-
clidean norms of the rows of the top k right singular vectors of A. This allows
us to capture entirely a certain subspace of interest. The “subspace sampling”
probabilities pi, i ∈ [n] will satisfy

pi ≥
β
∣∣∣(Vk)(i)

∣∣∣2
k

∀i ∈ [n], (2)

for some β ∈ (0, 1]. Note that
∑n

j=1

∣∣∣(Vk)(j)
∣∣∣2 = k and that

∑
i∈[n] pi = 1. To

construct sampling probabilities satisfying Condition (2), it is sufficient to spend
O(SV D(Ak)) time to compute (exactly or approximately, in which case β = 1
or β < 1, respectively) the top k right singular vectors of A.

1.5 Related Work

The seminal work of Frieze, Kannan and Vempala [10, 11] can be viewed, in
our parlance, as sampling columns from a matrix A to form a matrix C such
that ‖A− CX‖F ≤ ‖A−Ak‖F + ε ‖A‖F . The matrix C has poly(k, 1/ε, 1/δ)
columns and is constructed after making only two passes over A using O(m+n)
work space. Under similar resource constraints, a series of papers have fol-
lowed [10, 11] in the past seven years [4, 6, 20], improving the dependency of
c on k, 1/ε, and 1/δ, and analyzing the spectral as well as the Frobenius norm,
yielding bounds of the form

‖A− CX‖ξ ≤ ‖A−Ak‖ξ + ε ‖A‖F (3)

320 P. Drineas, M.W. Mahoney, and S. Muthukrishnan

for ξ = 2, F , and thus providing additive-error guarantees for column-based
low-rank matrix approximations.

Most relevant for our relative-error column-based low-rank matrix approxima-
tion of Problem 1 is the recent work of Rademacher, Vempala and Wang [19] and
Deshpande, Rademacher, Vempala and Wang [2]. Using two different methods
(in one case iterative sampling in a backwards manner and an induction on k
argument [19] and in the other case an argument which relies on estimating the
volume of the simplex formed by each of the k-sized subsets of the columns [2]),
they reported the existence of a set of O(k2/ε2) columns that provide relative-
error CX matrix approximation. No algorithmic result was presented, except for
an exhaustive algorithm that ran in Ω(nk) time.

To the best of our knowledge, the first nontrivial algorithmic result for relative-
error low-rank matrix approximation was provided by a preliminary version
of this paper [8]. In particular, an earlier version of Theorem 1 provided the
first known relative-error column-based low-rank approximation in polynomial
time [8]. The major difference between our Theorem 1 and our result in [8] is that
the sampling probabilities in [8] are more complicated. The algorithm of [8] runs
in O(SV D(Ak)) time (although it was originally reported to run in O(SV D(A))
time), and it has a sampling complexity of O(k2 log(1/δ)/ε2) columns.

Subsequent to the completion of the preliminary version of this paper [8],
several developments have been made on relative-error low-rank matrix ap-
proximation algorithms. First, Har-Peled reported an algorithm that in roughly
O(mnk2 log k) time returns as output a rank-k matrix A′ with a relative-error
approximation guarantee [13]. His algorithm uses geometric ideas and involves
sampling and merging approximately-optimal k-flats; it is not clear if this ap-
proximation can be expressed in terms of a small number of columns of A. Then,
Deshpande and Vempala [3] reported an algorithm that also returns a relative-
error approximation guarantee. Their algorithm extends ideas from [19, 2] and
it leads to a CX matrix approximation consisting of O(k log k) columns of A.
The complexity of their algorithm is O(Mk2 log k), where M is the number of
nonzero elements of A, and their algorithm can be implemented with O(k log k)
passes over the data. In light of these developments, we simplified and gener-
alized our preliminary results [8], and we performed a more refined analysis to
improve our sampling complexity to O(k log k).

2 Proof of Theorem 1

Regardless of whether the columns are chosen with the Exactly(c) algorithm
or Expected(c) algorithm, we can construct a column sampling matrix S, such
that C = AS. Similarly, we may introduce a diagonal rescaling matrix D in this
expression, which rescales each sampled column by 1/√cpj for the Exactly(c)
algorithm and 1/min{1,√cpj} for the Expected(c) algorithm. For details on
this formalism, see [9]. Since scaling the columns of a matrix does not change the
subspace spanned by its columns, A−CC+A = A−ASD (ASD)+ A. Our careful
choice for S and D will allow us to apply matrix perturbation results from [5, 21]
to bound this latter expression. For simplicity, we assume that ε ∈ (0, 1].

Subspace Sampling and Relative-Error Matrix Approximation 321

2.1 Constructing C with the Exactly(c) Algorithm

The first claim of Theorem 1 considers the situation when the columns of A
are sampled with the Exactly(c) algorithm. In this subsection, we provide its
proof. The proof of the second claim is similar, and we outline the differences in
the next subsection.

To prove our main result, we must “disentangle” the “top” singular sub-
space of A from the “bottom” singular subspace. To do so, first note that using
the unitary invariance of the Frobenius norm, and since

(
UAΣAV T

A SD
)+ =(

ΣAV T
A SD

)+
UT

A , it follows that

∥∥A− CC+A
∥∥2

F
=
∥∥∥ΣA −

(
ΣAV T

A SD
) (

ΣAV T
A SD

)+
ΣA

∥∥∥2

F
(4)

=
∥∥∥∥[Σk

0

]
−
(
ΣAV T

A SD
) (

ΣAV T
A SD

)+ [Σk

0

]∥∥∥∥2

F

+
∥∥∥∥[0

Σρ−k

]
−
(
ΣAV T

A SD
) (

ΣAV T
A SD

)+ [0
Σρ−k

]∥∥∥∥2

F

. (5)

Next, to upper bound the second term on the right hand side of (5), recall that
since I −

(
ΣAV T

A SD
) (

ΣAV T
A SD

)+ is a projector matrix, it may be dropped
without increasing a unitarily invariant norm, and thus∥∥∥∥(I − (ΣAV T

A SD
) (

ΣAV T
A SD

)+)[0
Σρ−k

]∥∥∥∥2

F

≤ ‖A−Ak‖2F . (6)

Finally, to establish the first claim of Theorem 1, we seek to upper bound the
first term on the right hand side of (5) by ε ‖A−Ak‖2F . That is, we seek an
upper bound that does not depend at all on any of the top k singular values of
A. To this end, note that∥∥∥∥[Σk

0

]
−
(
ΣAV T

A SD
) (

ΣAV T
A SD

)+ [Σk

0

]∥∥∥∥2

F

= min
X∈Rc×k

∥∥∥∥[Σk

0

]
−
(
ΣAV T

A SD
)
X

∥∥∥∥2

F

(7)

≤
∥∥∥∥[Σk

0

]
−
(
ΣAV T

A SD
) (

ΣkV
T
k SD

)+
Σk

∥∥∥∥2

F

. (8)

Equations (7) and (8) follow from least-squares approximation theory: (7) fol-

lows since
(
ΣAV T

A SD
) (

ΣAV T
A SD

)+ [Σk

0

]
is the exact projection of the matrix[

Σk

0

]
on the subspace spanned by the columns of ΣAV T

A SD; and (8) follows

since X =
(
ΣkV

T
k SD

)+
Σk ∈ Rc×k is a suboptimal – but as we will see below

very convenient – choice for X in (7).

322 P. Drineas, M.W. Mahoney, and S. Muthukrishnan

To see that (8) provides the bound we seek, let the rank of the k × c matrix
V T

k SD be k̃, and let its SVD be V T
k SD = UV T

k SDΣV T
k SDV T

V T
k SD

. Clearly k̃ ≤ k.
Among other things, the following lemma states that, given our construction of
S and D, all the singular values of V T

k SD are close to 1 and thus that the rank
of V T

k SD is equal to k.

Lemma 1. If c ≥ 40k2/βε2, then with probability at least 0.9:

– k̃ = k, i.e., rank(V T
k SD) = rank(Vk),

–
∥∥∥(V T

k SD
)+ − (V T

k SD
)T
∥∥∥

2
=
∥∥∥Σ−1

V T
k SD

−ΣV T
k SD

∥∥∥
2
,

–
(
ΣkV

T
k SD

)+ =
(
V T

k SD
)+

Σ−1
k , and

–
∥∥∥ΣV T

k SD −Σ−1
V T

k SD

∥∥∥
2
≤ ε/

√
2.

Proof: Note that for all i ∈ [k̃],∣∣1− σ2
i

(
V T

k SD
)∣∣ =

∣∣σi

(
V T

k Vk

)
− σi

(
V T

k SDDSTVk

)∣∣
≤
∥∥V T

k Vk − V T
k SDDSTVk

∥∥
2 . (9)

Since the probabilities of (2) satisfy the condition of Theorem 1 of [5]

E
[∥∥V T

k Vk − V T
k SDDSTVk

∥∥2
F

]
≤ 1

βc
‖Vk‖4F =

k2

βc
, (10)

where the equality follows since ‖Vk‖2F = k. By applying Markov’s inequality to
(10), taking square roots of both sides, combining it with (9), and using ‖·‖2 ≤
‖·‖F and the assumed choice of c, it follows that

∣∣1− σ2
i

(
V T

k SD
)∣∣ ≤ ε/2 ≤ 1/2,

since ε ≤ 1. This implies that all singular values of V T
k SD are strictly positive,

and thus that k̃ = k. The remainder of the proof is similar to that of Lemma 4.1
of [9].

'
Using Lemma 1, we manipulate the right hand side of (8) as follows:∥∥∥∥[Σk

0

]
−
(
ΣAV T

A SD
) (

ΣkV
T
k SD

)+
Σk

∥∥∥∥2

F

=
∥∥∥∥[Σk

0

]
−
[
Σk 0
0 Σρ−k

] [
V T

k

V T
ρ−k

]
SD

(
V T

k SD
)+∥∥∥∥2

F

=
∥∥∥∥[Σk

0

]
−
[

ΣkV
T
k

Σρ−kV
T
ρ−k

]
SD

(
V T

k SD
)+∥∥∥∥2

F

=

∥∥∥∥∥∥∥Σk −Σk V T
k SD

(
V T

k SD
)+︸ ︷︷ ︸

=Ik

∥∥∥∥∥∥∥
2

F

+
∥∥∥Σρ−kV

T
ρ−kSD

(
V T

k SD
)+∥∥∥2

F
(11)

=
∥∥∥Σρ−kV

T
ρ−kSD

(
V T

k SD
)+∥∥∥2

F
. (12)

Subspace Sampling and Relative-Error Matrix Approximation 323

The first term of (11) is the most important point of the proof. The sampling
probabilities {pi} are carefully constructed to guarantee that the k × c matrix
V T

k SD has full rank; thus its columns – which are k-dimensional vectors – span
Rk. As a result, the projection of Σk on the subspace spanned by the columns of
V T

k SD is equal to Σk. Thus, since Σk does not appear in (12), at this point in
the proof, we have removed any dependency of the error on the top k singular
values of A.

We can combine (5), (6), (8), and (12), and take the square root of both sides
to get ∥∥A− CC+A

∥∥
F
≤ ‖A−Ak‖F +

∥∥∥Σρ−kV
T
ρ−kSD

(
V T

k SD
)+∥∥∥

F
. (13)

From this, the triangle inequality, and the fact that for any two matrices A and
B, ‖AB‖F ≤ ‖B‖2 ‖A‖F , we have that∥∥∥Σρ−kV

T
ρ−kSD

(
V T

k SD
)+∥∥∥

F

≤
∥∥∥XSD

(
V T

k SD
)T
∥∥∥

F
+
∥∥∥XSD

((
V T

k SD
)+ − (V T

k SD
)T)∥∥∥

F

≤
∥∥XSDDSTVk

∥∥
F

+
∥∥∥Σ−1

V T
k SD

−ΣV T
k SD

∥∥∥
2
‖XSD‖F , (14)

where we have let X = Σρ−kV
T
ρ−k. The following lemma will be used to bound

(14); the proof is omitted.

Lemma 2. For any probabilities {pi},
∥∥∥Σρ−kV

T
ρ−kSD

∥∥∥
F
≤ 10 ‖A−Ak‖F , with

probability at least 0.9.

The following lemma will also be used to bound (14).

Lemma 3. If c ≥ 10k/βε2, then
∥∥∥Σρ−kV

T
ρ−kSDDSTVk

∥∥∥
F
≤ ε ‖A−Ak‖F , with

probability at least 0.9.

Proof: Note that Σρ−kV
T
ρ−kVk = 0, and we will view Σρ−kV

T
ρ−kSDDSTVk as

approximating this matrix product. We apply Lemma 4 of [5] (see also Figure 5
of [5]) to get

E
[∥∥Σρ−kV

T
ρ−kSDDSTVk −Σρ−kV

T
ρ−kVk

∥∥2

F

]
≤ 1

βc
‖A−Ak‖2F ‖Vk‖2F

=
k

βc
‖A−Ak‖2F .

The lemma follows by applying Markov’s inequality and taking the square roots
of both sides of the resulting inequality.

'
If c ≥ 40k2/βε2, then Lemmas 1, 2, and 3 hold simultaneously with probability
at least 1 − 3(0.1) = 0.7. We condition on this event. Then, from (14), using
Lemmas 1, 2, and 3, we get∥∥∥Σρ−kV

T
ρ−kSD

(
V T

k SD
)+∥∥∥

F
≤ 9ε ‖A−Ak‖F .

324 P. Drineas, M.W. Mahoney, and S. Muthukrishnan

By combining this with (13), it follows that∥∥A− CC+A
∥∥

F
≤ (1 + 9ε) ‖A−Ak‖F .

The first claim of Theorem 1 follows with probability at least 0.7 by letting
ε′ = ε/9 and adjusting c to O(k2/βε′2); it follows with probability at least 1− δ
by running O(log(1/δ) trials and using standard boosint procedures.

Note that setting c = O(k2/ε2) was required by Lemma 1, but that Lemmas 2
and 3 hold with c = O(k/ε2). In particular, (10) of Lemma 1 required setting c =
O(k2/ε2) in order to bound the error by ε/2. We conjecture that the same bound
holds if c = O(k log k/ε2). This result would follow from a stronger spectral
norm bound than that provided by the Frobenius norm bound of Theorem 1
of [5]. Instead, in the next section, we will reduce c to O(k log k/ε2) by slightly
modifying our sampling technique and using Theorem 3.1 of [21].

2.2 Constructing C with the Expected(c) Algorithm

The second claim of Theorem 1 considers the situation when the columns of A
are sampled with the Expected(c) algorithm. In this subsection, we outline its
proof.

If the columns of A are sampled with the Expected(c) algorithm, then the
number of columns of S, and thus the number of rows and columns of D, is
a random variable with expectation at most c. On the other hand, with this
sampling procedure we can directly bound the spectral norm of (9), as opposed
to bounding it indirectly via the Frobenius norm. To do so, consider the following
theorem, which is a small extension of Theorem 3.1 in [21] to include the β factor;
see also [20].

Theorem 2. Let X ∈ Rm×n and let c ≤ n be a positive integer. If S and D
are constructed with the Expected(c) algorithm using sampling probabilities
pi, i ∈ [n] such that

∑
i pi = 1 and pi ≥ β

∣∣X(i)
∣∣2 / ‖X‖2F , then

E
[∥∥XXT −XSDDSTXT

∥∥
2

]
≤ O

(√
log c

βc

)
‖X‖F ‖X‖2 .

All of the derivations of Section 2.1 up to Lemma 1 hold for this modified sam-
pling procedure. The following lemma is the analog of Lemma 1 with this new
sampling prodecure, and it leads to an improved dependency of c on k.

Lemma 4. (Analog of Lemma 1) If c = O
(
k log k/βε2

)
, then each of the

claims of Lemma 1 holds with probability at least 0.9.

Proof: From Theorem 2 and since ‖Vk‖F =
√

k and ‖Vk‖2 = 1, it follows that

E
[∥∥V T

k Vk − V T
k SDDSTVk

∥∥
2

]
≤ O

(√
log c/βc ‖Vk‖F ‖Vk‖2

)
= O

(√
k log c/βc

)
.

Subspace Sampling and Relative-Error Matrix Approximation 325

Using the assumed value of c, by Markov’s inequality, and since ε ≤ 1,∣∣1− σ2
i

(
V T

k SD
)∣∣ ≤ ε/2 ≤ 1/2 with probability at least 0.9, which implies that

k̃ = k. The rest of the proof is the same as in Lemma 1.
'

The remainder of the proof parallels the proof of Section 2.1.

3 Concluding Remarks

We conclude with three open problems.

– To what extent do the results of the present paper generalize to other matrix
norms?

– What hardness results can be established for the optimal choice of columns?
– Does there exist a deterministic (any factor) approximation algorithm to the

problem we consider?

Acknowledgements. We would like to thank Ravi Kannan for numerous useful
discussions, Sariel Har-Peled for writing up his results amidst travel in India [13],
and Amit Deshpande and Santosh Vempala for graciously providing a copy of [3].

References

1. R. Bhatia. Matrix Analysis. Springer-Verlag, New York, 1997.
2. A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approximation

and projective clustering via volume sampling. In Proceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1117–1126, 2006.

3. A. Deshpande and S. Vempala. Adaptive sampling and fast low-rank matrix ap-
proximation. Technical Report TR06-042, Electronic Colloquium on Computa-
tional Complexity, March 2006.

4. P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering in large
graphs and matrices. In Proceedings of the 10th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 291–299, 1999.

5. P. Drineas, R. Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for
matrices I: Approximating matrix multiplication. To appear in: SIAM Journal on
Computing.

6. P. Drineas, R. Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for
matrices II: Computing a low-rank approximation to a matrix. To appear in:
SIAM Journal on Computing.

7. P. Drineas, R. Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for
matrices III: Computing a compressed approximate matrix decomposition. To
appear in: SIAM Journal on Computing.

8. P. Drineas, M.W. Mahoney, and S. Muthukrishnan. Polynomial time algorithm for
column-row based relative-error low-rank matrix approximation. Technical Report
2006-04, DIMACS, March 2006.

9. P. Drineas, M.W. Mahoney, and S. Muthukrishnan. Sampling algorithms for �2
regression and applications. In Proceedings of the 17th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 1127–1136, 2006.

326 P. Drineas, M.W. Mahoney, and S. Muthukrishnan

10. A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding
low-rank approximations. In Proceedings of the 39th Annual IEEE Symposium on
Foundations of Computer Science, pages 370–378, 1998.

11. A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding
low-rank approximations. Journal of the ACM, 51(6):1025–1041, 2004.

12. G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, 1989.

13. S. Har-Peled. Low rank matrix approximation in linear time. Manuscript. January
2006.

14. R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, New
York, 1985.

15. F.G. Kuruvilla, P.J. Park, and S.L. Schreiber. Vector algebra in the analysis of
genome-wide expression data. Genome Biology, 3:research0011.1–0011.11, 2002.

16. Z. Lin and R.B. Altman. Finding haplotype tagging SNPs by use of principal
components analysis. American Journal of Human Genetics, 75:850–861, 2004.

17. M.Z. Nashed, editor. Generalized Inverses and Applications. Academic Press, New
York, 1976.

18. P. Paschou, M.W. Mahoney, J.R. Kidd, A.J. Pakstis, S. Gu, K.K. Kidd, and
P. Drineas. Intra- and inter-population genotype reconstruction from tagging
SNPs. Manuscript submitted for publication.

19. L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and projec-
tive clustering via iterative sampling. Technical Report MIT-LCS-TR-983, Mas-
sachusetts Institute of Technology, Cambridge, MA, March 2005.

20. M. Rudelson and R. Vershynin. Approximation of matrices. Manuscript.
21. R. Vershynin. Coordinate restrictions of linear operators in ln2 . Manuscript.

Dobrushin Conditions and Systematic Scan�

Martin Dyer1, Leslie Ann Goldberg2, and Mark Jerrum3

1 School of Computing
University of Leeds, Leeds LS2 9JT, UK

2 Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
3 School of Informatics, University of Edinburgh, Edinburgh EH9 3JZ, UK

Abstract. We consider Glauber dynamics on finite spin systems. The
mixing time of Glauber dynamics can be bounded in terms of the influ-
ences of sites on each other. We consider three parameters bounding these
influences — α, the total influence on a site, as studied by Dobrushin;
α′, the total influence of a site, as studied by Dobrushin and Shlosman;
and α′′, the total influence of a site in any given context, which is related
to the path-coupling method of Bubley and Dyer. It is known that if any
of these parameters is less than 1 then random-update Glauber dynam-
ics (in which a randomly-chosen site is updated at each step) is rapidly
mixing. It is also known that the Dobrushin condition α < 1 implies
that systematic-scan Glauber dynamics (in which sites are updated in
a deterministic order) is rapidly mixing. This paper studies two related
issues, primarily in the context of systematic scan: (1) the relationship
between the parameters α, α′ and α′′, and (2) the relationship between
proofs of rapid mixing using Dobrushin uniqueness (which typically use
analysis techniques) and proofs of rapid mixing using path coupling. We
use matrix-balancing to show that the Dobrushin-Shlosman condition
α′ < 1 implies rapid mixing of systematic scan. An interesting question
is whether the rapid mixing results for scan can be extended to the α = 1
or α′ = 1 case. We give positive results for the rapid mixing of systematic
scan for certain α = 1 cases. As an application, we show rapid mixing
of systematic scan (for any scan order) for heat-bath Glauber dynamics
for proper q-colourings of a degree-Δ graph G when q ≥ 2Δ.

1 Introduction

A spin system consists of a set of sites and a set of spins. In this paper, both
sets will be finite. We use [n] = {1, . . . , n} to denote the set of sites, and C to
denote the set of spins. A configuration is an assignment of spins to sites, and Ω+

denotes the set of all configurations. Sites interact locally, and these interactions
specify the relative likelihood of possible (local) sub-configurations.
� Partially supported by the EPSRC grant Discontinuous Behaviour in the Complexity

of Randomized Algorithms. Some of the work was done while the authors were
visiting the Mathematical Sciences Research Institute in Berkeley. A full version,
with all proofs, appears at http://www.eccc.uni-trier.de/eccc-reports/2005/TR05-
075/index.html

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 327–338, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

328 M. Dyer, L.A. Goldberg, and M. Jerrum

Taken together, these give a well-defined probability distribution, π, on the
set of configurations Ω+. Glauber dynamics is a random walk on configurations
that updates spins one site at a time, and converges to π. Before giving some
examples, we formalise these concepts in a way that will be useful for this paper.

We use the following notation. If x is a configuration and j is a site then
xj denotes the spin at site j in x. For each site j, Sj denotes the set of pairs
of configurations that agree off of site j. That is, Sj is the set of pairs (x, y) ∈
Ω+×Ω+ such that, for all i = j, xi = yi. For each site j, we will have a transition
matrix P [j] on the state space Ω+ which satisfies two properties: P [j] moves from
one configuration to another by updating site j. That is, if P [j](x, y) > 0, then
(x, y) ∈ Sj . Also, π is invariant with respect to P [j].

Most theoretical results about Glauber dynamics consider random updates,
in which the random walk on configurations proceeds as follows. At each step,
a site j is chosen uniformly at random. The configuration is then updated ac-
cording to transition matrix P [j]. Formally, random-update Glauber dynamics
corresponds to a Markov chain M with state space Ω+ and transition matrix
P = (1/n)

∑n
j=1 P [j].

For example, consider the spin system corresponding to proper q-colourings
of an n-vertex graph G with maximum degree Δ ≤ q − 2. The sites are the
vertices 1, . . . , n. C is the set of colours C = {1, . . . , q}. The distribution π assigns
equal probability to all proper colourings (colourings with no monochromatic
edges) and it assigns zero probability to all improper colourings. In so-called
“heat-bath” Glauber dynamics, the transition matrix P [j] makes the following
transition from a configuration x. Let Cx denote the set of colours that are
not assigned to neighbours of site j in x. Let x→jc denote the configuration
obtained from x by changing the spin at site j to c. P [j] makes a transition to
a uniformly-chosen configuration in {x→jc | c ∈ Cx}. Another example is the
“Metropolis” Glauber dynamics for proper q-colourings of G. In this case, the
transition matrix P [j] makes the following transition from x. A colour c ∈ C
is chosen uniformly at random. If c ∈ Cx then a transition is made to x→jc
otherwise the new configuration is x. Further examples include corresponding
dynamics for the Potts model and for the hard-core lattice gas model.

There has been much work on analyzing the mixing time of random-update
Glauber dynamics. The mixing time from a specified initial configuration x (as
a function of the deviation ε from stationarity) is τx(M, ε) = min

{
t > 0 :

dTV(P t(x, ·), π(·)) ≤ ε
}
, where dTV denotes total variation distance. The mixing

time of M is τ(M, ε) = maxx∈Ω+ τx(M, ε). M is said to be “rapidly mixing” if
τ(M, ε) is at most a polynomial in n and log(ε−1).

It is well-known that the mixing time can be bounded in terms of the influences
of sites on each other. To be more precise, let μj(x, ·) be the distribution on
spins at site j induced by P [j](x, ·) and let ρi,j be the influence of site i on
site j which is given by ρi,j = max(x,y)∈Si

dTV(μj(x, ·), μj(y, ·)). We will be
interested in three quantities. Let α be the total influence on a site, defined by
α = maxj∈[n]

∑
i∈[n] ρi,j . Let α′ be the total influence of a site, defined by α′ =

Dobrushin Conditions and Systematic Scan 329

maxi∈[n]
∑

j∈[n] ρi,j . Finally, let α′′ be the total influence of a site in any given
context, defined by α′′ = maxi∈[n] max(x,y)∈Si

∑
j∈[n] dTV(μj(x, ·), μj(y, ·)).

The Dobrushin condition α < 1, which says that the total influence on
a site is small, implies that M is rapidly mixing. In particular, τ(M, ε) =
O(n

1−α log(nε−1)). Dobrushin’s original result [7] was not stated in terms of rapid
mixing — instead, he was concerned with a closely related issue — uniqueness
of the Gibbs measure for countable (not finite) spin systems. For a proof that
the condition implies rapid mixing see, for example, Weitz’s paper [20].

An easy application of the path coupling method of Bubley and Dyer [2] shows
that α′′ < 1 implies rapid mixing. In particular, τ(M, ε) = O(n

1−α′′ log(nε−1)).
Path coupling can also be used to show rapid mixing for the case α′′ = 1 pro-
vided the change in path length has enough variance. For details, see Dyer and
Greenhill’s survey paper [11].

An inspection of the definition of α′ reveals that

α′ = max
i

∑
j

max
(x,y)∈Si

dTV(μj(x, ·), μj(y, ·)) ≥ α′′.

Therefore, α′ < 1 implies τ(M, ε) = O(n
1−α′ log(nε−1)). Dobrushin and Shlos-

man [8] were the first to derive uniqueness from the condition α′ < 1, which says
that the total influence of a site is small. (As Weitz points out [20], Dobrushin
and Shlosman stated their result in terms of the total influence on a site but
they worked in a translation-invariant setting and what they used is that the
total influence of a site is small. In fact, Dobrushin and Shlosman worked in a
more general block-dynamics setting. This will be discussed below.)

While theoretical results about Glauber dynamics typically consider random
updates, experimental work is often carried out using systematic strategies that
cycle through sites in a deterministic manner, a dynamics we refer to as system-
atic scan. Formally, systematic scan corresponds to a Markov chain M→ with
state space Ω+ and transition matrix P→ =

∏n
j=1 P [j].

The Dobrushin condition implies that systematic scan is rapidly mixing. In
particular, τ(M→, ε) = O(1

1−α log(nε−1)). A proof follows easily from the ac-
count of Dobrushin uniqueness in Simon’s book [18], some of which is derived
from the account of Föllmer [12].

This paper explores two related issues, primarily in the context of systematic
scan. (1.) What is the relationship between conditions bounding the influence
on a site (upper bounds on α) and conditions bounding the influence of a site
(upper bounds on α′ or α′′)? Do they imply rapid mixing in the same circum-
stances? (2.) What is the relationship between proofs of rapid mixing using
Dobrushin uniqueness, which typically use analysis techniques and proofs of
rapid mixing using path coupling? Can they be used to prove rapid mixing in
the same circumstances?

The second of these issues was first raised by Sokal [19], who shows how to
translate a proof based on a Markovian coupling to analytic language. The first
of these issues was highlighted by Weitz [20] who elucidated the dual nature of
the Dobrushin condition α < 1 and the Dobrushin-Shlosman condition α′ < 1.

330 M. Dyer, L.A. Goldberg, and M. Jerrum

A preliminary issue is the relationship between the parameters α, α′ and
α′′. We have observed above that the two “influence of a site” parameters, α′

and α′′ are related by α′′ ≤ α′. Weitz [20, Section 5.3] gives an example in a
block-dynamics context where the parameter analogous to α′′ is less than one
(allowing one to infer rapid mixing), but the other parameters are greater than
one. In the full version we give a similar example in our (single-site) context.
The example is a spin system for which α′′ < 1 but α > 1 and α′ > 1. In fact,
α′′ can be made arbitrarily smaller than the other parameters. We also give an
example where the “influence of a site” parameters α′ and α′′ are less than one
but the “influence on a site” parameter α is greater than one. Also, we give an
example where the “influence on a site” parameter α is less than one but the
other parameters are greater than one.

The primary motivation for our work was the observation that Dobrushin’s
condition (the influence on a site is small) implies rapid mixing for systematic
scan. There are some known coupling results for systematic scan using the fact
that the influence of a site is small, but only in very special circumstances, for
example, proper colourings of a path, where the scan is left-to-right along the
path [9]. When Dobrushin’s condition is satisfied then systematic scan is rapidly
mixing regardless of the order in which vertices are scanned. In this paper we
show that rapid mixing also occurs (for every scan order) if the influence of a
site is small. In particular, we prove the following theorem.

Theorem 1. Suppose α′ < 1. Then τ(M→, ε) ≤ 2
1−α′ log(4n2(1− α′)−1

ε−1).

Theorem 1 is proved in Section 2. The main ingredient in the proof is matrix
balancing. This enables us to translate the Dobrushin-Shlosman condition (the
influence of a site is small) into the Dobrushin condition (the influence on a site is
small). The matrix-balancing can be viewed as a generic way of deriving weights.
Simon’s version of Dobrushin uniqueness corresponds to showing convergence in
the L1 norm of a particular vector. This convergence occurs for α < 1. The
matrix-balancing approach corresponds to showing convergence in a weighted
L1 norm. Weights have been used previously in mixing results, for example
[2, 9, 20]. The point here is that the weights are derived automatically by the
balancing. Then convergence holds for α′ < 1.

The statement of Theorem 1 can be generalised. In particular, the proof does
not require each of the sites to be updated the same number of times. All that
is really required is that the sequence of updates contains a subsequence of at
least 2

1−α′ log(4n2(1− α′)−1ε−1) scans. The same generalisation holds for the
Dobrushin case. It will be useful to record the following corollary. Let P← =∏n

k=1 P [n−k+1] and let P→← = P→P←. Let M→← be the Markov chain with
state space Ω+ and transition matrix P→←.

Corollary 1. Suppose α′ < 1. Then τ(M→←, ε) ≤ 2
1−α′ log(4n2(1− α′)−1

ε−1).

The mixing time of a Markov chain is closely related to its spectral gap —
the gap between the largest eigenvalue of its transition matrix and the second-
largest eigenvalue. In the full version, we prove the following theorem, which
applies when the eigenvalues of the transition matrix are real.

Dobrushin Conditions and Systematic Scan 331

Theorem 2. Suppose α′ < 1. Let β1 be the second-largest eigenvalue of P→. If
β1 and its associated eigenvector are real then 1− β1 ≥ (1 − α′)/2.

Having seen that the Dobrushin condition and the Dobrushin-Shlosman condi-
tion imply rapid mixing for systematic scan, an interesting question is whether
these results can be extended to the α = 1 or α′ = 1 case. In the full version
we provide an example where α = 1 and random-update Glauber dynamics is
rapidly mixing, but systematic scan is not even ergodic. The example indicates
that perhaps Dobrushin-like arguments cannot be extended to the α = 1 case.
The reason for this is that Dobrushin-like arguments imply rapid mixing for
systematic scan, as well as for random updates. But we have an example where
systematic scan is clearly not rapidly mixing. Nevertheless, we give positive re-
sults for the rapid-mixing of systematic scan for certain α = 1 cases, particularly
some cases for which there are symmetric upper bounds on the dependencies cor-
responding to a bound of 1, both on the total influence of a site, and on the total
influence on a site.

A dependency matrix for a spin system is an n× n matrix R in which Ri,j ≥
ρi,j (so Ri,j is an upper bound on the influence of site i on site j. We will
be particularly interested in the case in which R is symmetric. In this case
we can view R as a weighted adjacency matrix, and we refer to the resulting
(undirected) graph on sites as the dependency graph of R. We say that R is
connected if the resulting dependency graph is connected in the sense that there
is a positive-weight path from every site to every other. In Section 3.1 we prove
the following result, which says that systematic scan is rapidly mixing if there is
a dependency matrix which (1) is symmetric, (2) has row and column sums at
most 1 (corresponding to total influence at most 1 for every site), and (3) every
connected component has a site with a row sum less than 1 (corresponding to
total influence less than 1).

The mixing bound given in the theorem is a function of n, the number of
sites, and also of N , the “precision” of R. We say that a dependency matrix R
has precision N (for a positive integer N) if every entry Ri,j can be expressed
as a fraction of integers with denominator N .

Theorem 3. Suppose that a spin system has a precision-N symmetric depen-
dency matrix R with row sums and column sums at most 1. Suppose that every
connected component has a site whose row sum is less than 1. Then τ(M→, ε) =
O(n3N log(n2ε−1)) and τ(M→←, ε) = O(n3N log(n2ε−1)).

We now apply Theorem 3 to an example considered previously. Suppose that
G is an n-vertex connected graph with maximum degree Δ ≥ 2. Let q = 2Δ
and consider the spin system corresponding to heat-bath Glauber dynamics for
proper q-colourings of G. If G is not Δ-regular then there is a connected symmet-
ric dependency matrix R in which some vertex s of degree less than Δ has small
total influence so its row sum is less than 1. As we will see in Section 3, Theo-
rem 3 implies that systematic scan is rapidly mixing. Using the decomposition
method of Martin and Randall, we can extend the result to the case in which G
is Δ-regular (and every vertex has total influence 1), proving the following.

332 M. Dyer, L.A. Goldberg, and M. Jerrum

Theorem 4. Let G be an n-vertex connected graph with maximum degree Δ ≥ 2
and let q = 2Δ. Consider the spin system corresponding to heat-bath updates
on proper colourings and let x be any proper colouring. Then τx(M→←, ε) =
O(n3 log(n) log((επ(x))−1)).

Theorem 4 is proved in Section 3.2 and a generalisation (to more general spin
systems) is stated and proved in Section 4.

It would be nice to have a full characterisation of the situations in which
α = 1 (or α′ = 1) implies rapid mixing for systematic scan. Another interesting
open question is whether bounds on the path-coupling parameter α′′ imply rapid
mixing for systematic scan.

All of our mixing results build upon the methods used in Simon’s account
of Dobrushin uniqueness (using analysis techniques). Thus, we might ask the
question whether path coupling is a less useful technique for proving rapid mixing
for systematic scan. In Section 5 we show that this may not be the case. In
particular, we provide an alternative proof that the Dobrushin condition implies
rapid mixing of systematic scan. This proof uses path coupling.

An issue that is not treated in this paper is how these methods generalise
to dynamics other than Glauber. Dobrushin and Shlosman’s result [8] actually
applied to block-dynamics rather than just to single-site dynamics, though only
when the underlying dependency graph is Zd. For random-update Glauber dy-
namics, Weitz [20] shows rapid mixing both when the influence of a site is small
and when the influence on a site is small. Weitz’s results apply to “block dy-
namics” and to an arbitrary dependency graph. Both results are proved using
coupling. Our results about systematic scan can be similarly generalised. This
work, by Pedersen [15], is in preparation.

2 Rapid Mixing for α′ < 1

In this section, we prove rapid mixing of systematic scan for the case α′ < 1.
We prove Theorem 1, Corollary 1, and Theorem 2. Consider a spin system with
dependency matrix R. Suppose that some entry of R is non-zero and that the
row sums of R are less than 1. Let γ = 1 − maxi∈[n]

∑
j∈[n] Ri,j . Note that

γ ∈ (0, 1]. Also, if a spin system is non-trivial in the sense that it has sites i
and j with ρi,j > 0 and it has α′ < 1 then it has such a dependency matrix with
γ = 1− α′.

2.1 Matrix Balancing

In this section we prove the following lemma.

Lemma 1. There is an n × n diagonal matrix W such that, for every i ∈ [n],
(γ/4n) ≤Wi,i ≤ 1 and every column sum of WRW−1 is at most 1− γ/2.

Proof. Let R′ be the matrix which is the same as R except that we add a new
column n + 1 and a new row n + 1. For i ∈ [n], let R′

i,n+1 = 1 − ri where ri is
the row sum of R. Note that R′

i,n+1 ≥ γ and that the row sums of R′ are 1. For
j ∈ [n], let R′

n+1,j be a quantity xj ∈ (1/(2n), 1] which will be chosen later so

Dobrushin Conditions and Systematic Scan 333

that
∑n

j=1 xj = 1. Let R′[n+1, n+1] = 0. Note that R′ is the transition matrix
of a Markov chain which is ergodic and every state (including state n + 1) has
positive probability. Let π′ be its stationary distribution.

Now let W = diag(π′
1, . . . , π

′
n+1) and let R′′ = WR′W−1 (this is multiplying

row i by π′
i and dividing column j by π′

j). Note by stationarity of π′ that the

columns of R′′ have sum 1. That is
∑n+1

i=1 R′
i,j

π′
i

π′
j

= 1
π′

j

∑n+1
i=1 π′

iR
′
i,j = 1. We

will choose xj = 1
2n + 1

2
π′

j

(1−π′
n+1)

. Now R′
n+1,j

π′
n+1
π′

j
= xj

π′
n+1
π′

j
≥ 1

2
π′

n+1
(1−π′

n+1)
and

π′
n+1 ≥

∑n
i=1 π′

i(1 − ri) ≥ γ(1 − π′
n+1), so R′

n+1,jπ
′
n+1/π

′
j ≥ γ/2 and (if we

remove the extra row and column from W) the column sums of WRW−1 are at
most 1− γ/2. Finally, Wj,j = π′

j ≥ π′
n+1xj ≥ γ

1+γ
1
2n ≥ γ 1

4n . ��

2.2 The Effect of a Applying P [j] or P→

Let M [j] be the matrix constructed from the identity matrix by replacing col-
umn j with the jth column of R. For any function f from Ω+ to R, let
δi(f) = max(x,y)∈Si

|f(x) − f(y)| and let δ(f) be the column vector δ(f) =
(δ1(f), . . . , δn(f)). Let P [j]f be the function from Ω+ to R given by P [j]f(x) =∑

y P [j](x, y)f(y). The following lemma is (a slight generalisation of one) in Si-
mon’s book [18].

Lemma 2. The vector δ(P [j]f) is component-wise less than or equal to the vec-
tor M [j]δ(f).

Now let W be the matrix from Lemma 1. Let Q[j] = WM [j]W−1 and note
that Q[j] is the matrix constructed from the identity matrix by replacing col-
umn j with the vector (q1,j , . . . , qn,j), where qi,j = Ri,jwi/wj . From Lemma 1,∑n

i=1 qi,j ≤ 1− γ/2. Now let ki(f) = wiδi(f) and let k(f) be the column vector
k(f) = (k1(f), . . . , kn(f)). Let K(f) =

∑n
i=1 ki(f). The following lemma is a

weighted version of a lemma in Simon’s book (using the weights from the matrix
balancing). It is proved in the full version of the paper.

Lemma 3. For any m ∈ {0, . . . , n},
K(P [1] · · ·P [m]f) ≤

∑m
i=1(1− γ/2)ki(f) +

∑n
i=m+1 ki(f).

Corollary 2. K(P→f) ≤ (1 − γ/2)K(f).

2.3 The Bound on the Mixing Time - Proof of Theorem 1 and
Corollary 1

For a test function f , let ft(x) =
∑

z P t→(x, z)f(z). Thus, Corollary 2 gives
K(ft) ≤ (1−γ/2)K(ft−1). Now let f be the indicator variable for being in some
subset A of Ω+. Then

max
x

ft(x) −min
y

ft(y) ≤
∑

i

ki(ft)
wi

≤
(

1
mini Wi,i

)
K(ft) ≤

4n
γ

K(ft)

≤ 4n
γ

(1− γ/2)tK(f0) ≤
4n2

γ
(1− γ/2)t,

334 M. Dyer, L.A. Goldberg, and M. Jerrum

which is at most ε for t ≥ (2/γ) log(4n2γ−1ε−1). Also, miny ft(y) ≤ Eπft ≤
maxx ft(x) and Eπft = π(A), which gives us τ(M→, ε) ≤ 2

γ log(4n2γ−1ε−1).
This proves Theorem 1. Corollary 1 comes from the fact that the right-hand side
of the expression in Lemma 3 is at most K(f). Thus, extra updates do no harm.

Remark 1. The argument in Sections 2.2 and 2.3 gives an upper bound on the
mixing tome ofM→ using the assumption that there is a weighting W so that the
weighted column sums of R are bounded below 1. In particular, the assumption
is that the column sums of WRW−1 are at most 1−γ′ for some γ′ ∈ (0, 1] (here
γ′ = γ/2) where W is an n×n diagonal matrix with 1/w ≤Wi,i ≤ 1 for some w
(here w = γ/(4n)). The mixing time bound is (1/γ′) log(wnε−1). Lemma 1 shows
that a suitable W can be found provided only that the system has a dependency
matrix in which the maximum row sum is bounded below 1 (in particular, 1−
2γ′). It is easy to see that the same argument would apply if the weighted row
sums of R are bounded below 1, where of course the resulting mixing time
depends on the weights as above. Thus, the argument essentially shows how to
automatically translate any weighting in which row sums are bounded below 1
into one in which column sums are bounded below 1.

2.4 Remarks - Contraction in Various Norms

Lemma 2 tells us that δ(P [j]f) ≤M [j]δ(f). We are interested in the effect of M
on the vector δ(f) where M =

∏n
j=1 M [j]. Lemma 3 shows that δ(f) is contract-

ing in the weighted L1 distance K(f). The contraction comes from the fact that
the column sums of the weighted matrix Q[j] are less than 1. Simon’s proof of
Dobrushin’s result for α < 1 corresponds to taking W to be the identity matrix
(so it is L1 contraction). Our proof uses contraction in weighted L1 distance,
but there are other possibilities. For example, in the full version we revisit the
random-updates Markov chain M and we prove mixing by observing a contrac-
tion in the L∞ norm. This is possible when the row sums of the appropriate
weighted matrix are less than 1.

3 Positive Results for α = 1

3.1 Symmetric Dependency Matrices with a Row Sum Less
Than 1

In this section we prove Theorem 3, which says that systematic scan is rapidly
mixing if there is a dependency matrix which (1) is symmetric, (2) has row and
column sums at most 1 (corresponding to total influence at most 1 for every
site), and (3) every connected component has a site with a row sum less than 1
(corresponding to total influence less than 1). We start with the connected case.
Recall that a matrix has precision N if every entry in it can be expressed as a
fraction of integers with denominator N .

Theorem 5. Suppose that a spin system has a precision-N symmetric connected
dependency matrix R with row sums and column sums at most 1. Suppose that

Dobrushin Conditions and Systematic Scan 335

there is a site s with row sum less than 1. Then τ(M→, ε) = O(n3N log(n2ε−1))
and τ(M→←, ε) = O(n3N log(n2ε−1)).

Remark 2. The dependence of the running time on the precision N is one way
to express the condition that the dependency matrix R needs to be sufficiently
“mixing”. There are other possible choices. See [4].

Proof. Without loss of generality assume that for i = s we have
∑

j Ri,j = 1.
If this is not the case then Ri,i can be increased until it is. Note that increas-
ing Ri,i to make the row sum 1 does not increase the precision of the matrix.
Let γ = 1 −

∑
j∈[n] Rs,j . Since the sum of row s is less than 1, γ is positive.

Also, γ is less than 1 (otherwise sites in [n] do not depend upon s, contradicting
connectivity). Construct R[2] from R by adding an extra row and column. Set
R

[2]
s,n+1 = R

[2]
n+1,s = γ and R

[2]
n+1,n+1 = 1−γ and make the rest of the entries in the

new row and column equal to zero. Note that the row and column sums of R[2]

are 1. It is the transition matrix of an ergodic Markov chain. Its stationary dis-
tribution, π[2], is uniform (by symmetry). Let H(i, j) denote the hitting time of j
from i and let H denote the maximum hitting time. Note that H ≤ (n + 1)2N .
(To see this, view the Markov chain with transition matrix R[2] as a random
walk on a N -regular undirected graph (with multiple edges and loops allowed).
Then H(G) is at most the number of vertices times the number of (directed)
edges [13].) Note also that H(i, i) = 1/π[2]

i = (n + 1). Now let R[3] = R[2] − E,
where E is the all-zero matrix except that row n + 1 of E is (−ξ, . . . ,−ξ, nξ)
where ξ = 1

n(n+1)2N
. Note that γ can be expressed as a fraction of integers

with denominator N . Since it is less than 1, γ ≤ N−1
N < 1 − nξ, so R

[3]
n+1,n+1 is

non-negative. It is clear that the other entries of R[3] are also non-negative. Fur-
thermore, R[3] is the transition matrix of an ergodic Markov chain. Let π[3] be its
stationary distribution. We now use Theorem 2.1 of [3]. This says that for all j,
|π[2]

j − π
[3]
j | ≤

||E||∞
2

maxi�=j H(i,j)
Hj,j

≤ 1
2(n+1) . Now let W = diag(π[3]

1, . . . , π
[3]

n+1)

and let R[4] = WR[3]W−1 (this is multiplying row i by π
[3]
i and dividing col-

umn j by π
[3]
j). Note by stationarity of π[3] that the columns of R[4] have sum

1. That is,
∑n+1

i=1 R
[3]
i,j

π
[3]
i

π
[3]
j

= 1
π

[3]
j

∑n+1
i=1 π

[3]
i R

[3]
i,j = 1. Also for j ∈ [n], we have

R
[4]
n+1,j = R

[3]
n+1,j

π
[3]
n+1

π
[3]
j

≥ 1
3R

[3]
n+1,j ≥

ξ
3 , so

∑n
i=1 R

[4]
i,j ≤ 1 − ξ/3. Finally, observe

that for i and j in [n], R[4]
i,j = R

[3]
i,j

π
[3]
i

π
[3]
j

= Ri,j
π

[3]
i

π
[3]
j

, so W (with row and column n+1

deleted) can be used as a weight matrix for R. Also Wj,j = π
[3]
j ≥ 1/(2(n + 1)).

Now we proceed as in Section 2 and to get the variation distance down to ε, this
takes 3

ξ log(2n(n + 1)ε−1) = 3n(n + 1)2N log(2n(n + 1)ε−1) scans. This proves
the bound on τ(M→, ε) in the theorem. The bound on τ(M→←, ε) is established
in the same way as Corollary 1.

336 M. Dyer, L.A. Goldberg, and M. Jerrum

To prove Theorem 3, apply Theorem 5 to each connected component individually.
Suppose that t is the maximum, over the components, of τ(M→, ε/n). Then
dTV(P t→(x, ·), π) ≤ ε. The same argument applies to τ(M→←, ε).

3.2 Heat-Bath Updates and Proper Colourings with 2Δ Colours

Let G be a connected graph with maximum degree Δ ≥ 2 and let q = |C| = 2Δ.
Let Ω be the set of proper q-colourings of G. Let π be the uniform distribution on
Ω (so π(x) = 0 for all configurations x ∈ Ω+−Ω) . Let P [j] be the transition ma-
trix for a “heat-bath” update on site j. To be precise, μj(x, ·) is the uniform dis-
tribution on colours that are not used at neighbours of site j in configuration x.
For all edges (i, j) of G, ρi,j = 1/(q−d(j)), where d(j) is the degree of site j, so
we take Ri,j = 1/(q −Δ) = 1/Δ. If (i, j) is not an edge then Ri,j = 0 ([16]).

In the full version, we prove Theorem 4. If G is not Δ-regular, then the
theorem follows from the observations that we have just made about Ri,j and
from Theorem 5. Some vertex has degree less than Δ, so has row sum less than 1.
The difficult case is when G is Δ-regular.

The proof uses the decomposition theorem of Martin and Randall [14]. The
“restriction” chain leaves the spin of a particular vertex fixed. The “projection
chain” chains the spin of this vertex. The key point is that the mixing time
of the restriction time can be bounded, using comparison, by The analysis in
Section 3.1. See the full version for details.

4 A Generalised α = 1 Case

The following is a generalisation of Theorem 4 which is proved in the full version.
Consider a general spin system. Let Ω = {x ∈ Ω+ | π(x) > 0}. As in Section 3.2
let Ωc = {x ∈ Ω | xn = c} and let P→←c be the Markov chain on Ωc defined
by P→←c(x, y) = P→←(x, y) for distinct x and y in Ωc with P→←c(x, x) =
1−

∑
y∈Ωc:y �=x P→←c(x, y).

Theorem 6. Suppose that a spin system has a precision-N symmetric connected
dependency matrix R with row sums equal to 1. Suppose there is a positive real
ξ such that

[(1)] For every site j, P [j] is reversible with respect to π. For every spin c,
P→←c is irreducible. For every configuration x and every site j, P [j](x, xj) ≥
ξ. For every configuration x and every colour c, Pr(τn = c) ≥ ξ when τ is
drawn from P→←(x, ·).

Then τx(M→←, ε) ≤ O(ξ−3n3N log(n)) log(1/(επ(x))).

1.2.3.4. Remark 3. It is easy to see that Theorem 6 implies Theorem 4, though the
implicit constants are slightly worse since Condition 4 gives a slightly worse
analysis than the analysis given in Section 3.2. The theorem also applies to
Glauber-dynamics on spin systems such as the Potts model or the hard-core
lattice gas model.

Remark 4. The connectivity requirement in Theorem 6 can be removed by con-
sidering the connected components separately as in the proof of Theorem 3.

Dobrushin Conditions and Systematic Scan 337

5 Proving Rapid Mixing for Systematic Scan
Using Path Coupling

All of the mixing results so far have built upon Dobrushin uniqueness. We con-
clude by sketching an alternate proof, based on path coupling [2], that the Do-
brushin condition α < 1 implies rapid mixing of systematic scan. Similar ideas
are implicit in [20], though this does not explicitly consider systematic scan.

We consider coupled chains Xt, Yt. Let the (path) coupling be given by choos-
ing the same vertex wt in both chains, and then coupling the choice of spin
maximally. Suppose the initial states X0, Y0 have shortest path P0. The length
of P0 is the Hamming distance H(X0, Y0). Consider the evolution of this path at
time t to P = (Z0, Z1, . . . , Z�−1, Z�), with length � ≥ H(Xt, Yt). (Note that we
do not optimise the path length after each step, but assume instead that the path
evolves naturally.) We will call any edge of P (Zr−1, Zr) (r ∈ [�]) an edge in Si if
(Zr−1, Zr) ∈ Si. Note that P0 has at most one edge in Si for each i = 1, 2, . . . , n.
Suppose νi is the total number of edges of P in Si. Clearly � =

∑n
i=1 νi, so

E[�] ≤ nmaxi E[νi].
Suppose wt = j. For every edge in Si (i = j), an edge in Si will persist,

and a new edge in Sj will appear with probability at most ρi,j . Every edge
in Sj will either disappear, or persist with probability at most ρj,j . Thus, de-
noting the quantities at time t + 1 with primes, E[ν′

i] = E[νi] (i = j) and
E[ν′

j] ≤
∑n

i=1 ρi,j E[νi] ≤ αmaxi E[νi]. In a complete scan we have wt = j
for every j and some t. Hence the resulting values −→ν i after the scan will satisfy
maxi E[−→ν i] ≤ αmaxi E[νi]. Since maxi E[νi] ≤ 1 initially, after s complete scans
maxi E[νi] ≤ αs, and thus dTV(Xns, Yns) ≤ Pr(Xns = Yns) ≤ E[H(Xns, Yns)] ≤
E[�] ≤ nαs.

Acknowledgements

We are very grateful to Alan Sokal for pointing out to us that Dobrushin’s
condition implies mixing of systematic scan, and for referring us to [18], and to
Christian Borgs for bringing Föllmer’s work to our attention.

References

1. D. Aldous, Some inequalities for reversible Markov chains, J. London Math Society
(2) 25 (1982), pp. 564–576.

2. R. Bubley and M. Dyer, Path coupling: a technique for proving rapid mixing in
Markov chains, FOCS 38, 1997, 223–231.

3. G.E. Cho and C.D. Meyer, Markov chain sensitivity measured by mean first passage
times, Linear Algebra and its Applications vol 316 number 1–3, pages 21–28, 2000.

4. G.E. Cho and C.D. Meyer, Comparison of perturbation bounds for the stationary
distribution of a Markov chain, Linear Algebra and its Applications vol 335 number
1–3, pages 137–150, 2001.

5. P. Diaconis and L. Saloff-Coste, Comparison theorems for reversible Markov chains,
Annals of Applied Probability 3 (1993), pp. 696–730.

338 M. Dyer, L.A. Goldberg, and M. Jerrum

6. P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of Markov chains,
Annals of Applied Probability 1 (1991), pp. 36–61.

7. R.L. Dobrushin, Prescribing a system of random variables by conditional distribu-
tions, Theory Prob. and its Appl. 15 (1970) 458–486.

8. R.L. Dobrushin and S.B. Shlosman, Constructive criterion for the uniqueness of
a Biggs field, in J. Fritz, A. Jaffe, D. Szasz, Statistical mechanics and dynamical
systems, Birkhauser, Boston (1985) 347–370.

9. M. Dyer, L.A. Goldberg and M. Jerrum, Systematic scan for sampling colourings,
To appear, Annals of Applied Probability.

10. M. Dyer, L.A. Goldberg, M. Jerrum and R. Martin, Markov chain comparison,
Pre-print. 2004.

11. M. Dyer and C. Greenhill. Random walks on combinatorial objects. In J.D.
Lamb and D.A. Preece, editors, Surveys in Combinatorics, volume 267 of London
Mathematical Society Lecture Note Series, pages 101–136. Cambridge University
Press, 1999.

12. H. Föllmer, A covariance estimate for Gibbs measures, J. Funct. Analys. 46 (1982)
387–395.

13. L. Lovśz and P. Winkler, Mixing of random walks and other diffusions on a graph,
Surveys in Combinatorics, 1995, P. Rowlinson (editor), pp. 119-154, London Math.
Soc. Lecture Note Series 218.

14. R. Martin and D. Randall, Sampling adsorbing staircase walks using a new Markov
chain decomposition method, Proc. of the 41st Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS 2000), pp. 492–502.

15. K. Pedersen, personal communication.
16. J. Salas and A.D. Sokal, Absence of phase transition for antiferromagnetic Potts

models via the Dobrushin uniqueness theorem, J. Statistical Physics 86 (1997),
pp. 551–579.

17. A. Sinclair, Improved bounds for mixing rates of Markov chains and multicom-
modity flow, Combinatorics, Probability and Computing 1 (1992), pp. 351–370.

18. B. Simon, The Statistical Mechanics of Lattice Gases, Princeton University Press
1993

19. A. Sokal, A personal list of unsolved problems concerning lattice gases and anti-
ferromagnetic potts models, to appear in Markov Processes and Related Fields.

20. D. Weitz, Combinatorial Criteria for Uniqueness of Gibbs Measurs, Random Struc-
tures and Algorithms, to appear, 2005.

Complete Convergence of Message Passing
Algorithms for Some Satisfiability Problems

Uriel Feige1, Elchanan Mossel2, and Dan Vilenchik3

1 Micorosoft Research and The Weizmann Institute
urifeige@microsoft.com

2 U.C. Berkeley
mossel@stat.berkeley.edu

3 Tel Aviv University
vilenchi@post.tau.ac.il

Abstract. Experimental results show that certain message passing al-
gorithms, namely, survey propagation, are very effective in finding satis-
fying assignments in random satisfiable 3CNF formulas. In this paper we
make a modest step towards providing rigorous analysis that proves the
effectiveness of message passing algorithms for random 3SAT. We ana-
lyze the performance of Warning Propagation, a popular message pass-
ing algorithm that is simpler than survey propagation. We show that
for 3CNF formulas generated under the planted assignment distribu-
tion, running warning propagation in the standard way works when the
clause-to-variable ratio is a sufficiently large constant. We are not aware
of previous rigorous analysis of message passing algorithms for satisfia-
bility instances, though such analysis was performed for decoding of Low
Density Parity Check (LDPC) Codes. We discuss some of the differences
between results for the LDPC setting and our results.

1 Introduction and Results

The effectiveness of some message passing algorithms, in particular Survey Prop-
agation, was experimentally shown for ”hard” formulas with clause-variable ratio
below (yet rather close to) the conjectured satisfiability threshold, ∼ 4.2 [3]. In
this paper we analyze the performance of Warning Propagation (WP for brevity),
a simple popular message passing algorithm, when applied to random satisfi-
able formulas generated under the planted distribution with a constant clause-
variable ratio. We show that the standard way of running message passing algo-
rithms – run message passing until convergence, simplify the formula according
to the resulting assignment, and satisfy the remaining subformula (if nonempty),
if possible, using a simple “off the shelf” heuristic – works for planted random
satisfiable formulas with a sufficiently large yet constant clause-variable ratio.
We are not aware of previous rigorous analysis of message passing algorithms
for non-trivial SAT distributions.

1.1 Different SAT Distributions

A CNF formula over the variables x1, x2, ..., xn is a conjunction of clauses C1,
C2, ..., Cm where each clause is a disjunction of one or more literals. Each literal

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 339–350, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

340 U. Feige, E. Mossel, and D. Vilenchik

is either a variable or its negation. A formula is said to be in k-CNF form if
every clause contains exactly k literals. A CNF formula is satisfiable if there
is a boolean assignment to the variables s.t. every clause contains at least one
literal which evaluates to true. 3SAT is the language of all satisfiable 3CNF for-
mulas. Although 2SAT is known to be in P, 3SAT is one of the most famous
NP-complete problems. In [12] it is proved that it is NP-hard to approximate
MAX-3SAT (the problem of finding an assignment that satisfies as many clauses
as possible) within a ratio better than 7/8. Given the difficulty of designing algo-
rithms that work well in the worst case, we consider the average case performance
of algorithms. One possibility for rigorously modeling average-case instances is
to use random models.

Algorithmic theory of random structures has been the focus of extensive re-
search in recent years (see [10] for a survey). As part of this trend, uniformly
random 3CNFs (generated by selecting at random m = m(n) clauses over the
variables {x1, ..., xn}) have attracted much attention. Random 3SAT is known
to have a sharp satisfiability threshold in the clause-to-variable ratio [9]. Namely,
a random 3CNF with clause-to-variable ratio below the threshold is satisfiable
whp (with high probability, meaning with probability tending to 1 as n goes
to infinity) and one with ratio above the threshold is unsatisfiable whp. This
threshold is not known exactly (and not even known to be independent of n).
The threshold is known to be at least 3.52 [14] and at most 4.506 [5].

In this work we mainly consider formulas with large clause-variable ratio. At
such ratios almost all 3CNF formulas are not satisfiable, therefore more refined
definitions are due. We consider three distributions on 3SAT instances. The first,
analogous to the well known random graph model Gn,p, is the distribution in
which every clause, out of 23

(
n
3

)
possible clauses, is included with probability p =

p(n). We denote this distribution by Pn,p. The second distribution is obtained
from Pn,p by conditioning on satisfiability, namely Psat

n,p[F] = Pn,p[F |S] where
S is the event that F is satisfiable. Lastly, we consider the planted distribution,
Pplant

n,p , which is obtained form Pn,p by conditioning on satisfiability by a specific
”planted” assignment ϕ. Equivalently, in Pplant

n,p , first an assignment ϕ to the
variables is picked uniformly at random. Then, every clause satisfied by ϕ is
included with probability p = p(n). Throughout, we use ϕ to denote the planted
assignment when the relevant instance is clear from context.

In the context of satisfiability algorithms, Psat
n,p is arguably the most interest-

ing and natural distribution to study. However, as pointed out frequently, Psat
n,p

seems hard to tackle rigorously and experimentally. The planted 3SAT distribu-
tion is an intermediate step towards analyzing Psat

n,p, and is an interesting, quite
natural distribution on its own right, the analog the of planted clique, planted
bisection, planted coloring, and planted bipartite hypergraphs studied e.g. in
[2, 13, 6] The planted 3SAT distribution is also discussed e.g. in [8, 7]. Our main
result (Theorem 2) relates to the planted 3SAT model, but some of our other
results (such as Proposition 1 and Corollary 1) are relevant to the Psat

n,p setting
as well.

Convergence of Message Passing Algorithms for Some SAT Problems 341

1.2 3SAT and Factor Graphs

Let F be a 3CNF formula on n variables and m clauses. The factor graph
(e.g. [16]) of F , denoted by FG(F), is the following graph representation of
F . The factor graph is a bipartite multigraph, FG(F) = (V1 ∪ V2, E) where
V1 = {x1, x2, ..., xn} (the set of variables) and V2 = {C1, C2, ..., Cm} (the set
of clauses). (xi, Cj) ∈ E iff xi appears in Cj . For a 3CNF F with m clauses it
holds that #E = 3m (as every clause contains exactly 3 variables). To make
presentation clearer, we denote by #A the size of a set A and by |a| the absolute
value of a real number a. For simplicity we assume that every clause contains
three distinct variables, therefore FG is a graph (no parallel edges).

1.3 Warning Propagation

Warning Propagation (WP) is a simple iterative message passing algorithm, and
serves as an excellent intuitive introduction to more involved message passing
algorithms such as Belief Propagation [19] and Survey Propagation [3]. These
algorithms are based on the cavity method in which the messages that a clause
(or a variable) receives are meant to reflect a situation in which a ”cavity” is
formed, namely, the receiving clause (or variable) is no longer part of the formula.
Messages in the WP algorithm can be interpreted as ”warnings”, telling a clause
the values that variables will have if the clause ”keeps quiet” and does not
announce its wishes, and telling a variable which clauses will not be satisfied if
the variable does not commit to satisfying them. We now present the algorithm
in a formal way.

Let F be a CNF formula. For a variable x, let N+(x) be the set of clauses in
F in which x appears positively (namely, as the literal x), and N−(x) be the set
of clauses in which x appears negatively. For a clause C, let N+(C) be the set
of positively appearing variables and respectively N−(C) the set of negatively
appearing ones. There are two types of messages involved in the WP algorithm.
Messages sent from a variable xi to a clause Cj in which it appears:

xi → Cj =
∑

Ck∈N+(xi),k �=j

Ck → xi −
∑

Ck∈N−(xi),k �=j

Ck → xi

If xi appears only in Cj then we set the message to 0. The intuitive interpretation
of this message should be xi signals Cj what is currently its favorable assignment
by the other clauses it appears in (a positive message means TRUE, negative one
means FALSE and a 0 message means undecided). The second type are messages
sent from a clause Cj to a variable xi appearing in Cj :

Cj → xi =
∏

xk∈N+(Cj),k �=i

I<0(xk → Cj)
∏

xk∈N−(Cj),k �=i

I>0(xk → Cj)

where I<0(b) equals 1 if b < 0 and 0 otherwise (and symmetrically I>0(b) for the
case b > 0). If Cj contains only xi (which cannot be the case in 3CNF formulas)
then the message is set to 1. Cj → xi = 1 can be intuitively interpreted as Cj

342 U. Feige, E. Mossel, and D. Vilenchik

sending a warning to xi asking it to satisfy Cj (as all other literals signaled Cj

that currently they evaluate to FALSE). Lastly, we define the current assignment
of a variable xi to be

Bi =
∑

Cj∈N+(xi)

Cj → xi −
∑

Cj∈N−(xi)

Cj → xi

If Bi > 0 then x is assigned TRUE, if Bi < 0 then xi is assigned FALSE,
otherwise xi is UNASSIGNED. Assume some order on the clause-variable mes-
sages (e.g. the lexicographical order on pairs of the form (j, i) representing
the message Cj → xi). Given a vector α ∈ {0, 1}3m in which every entry is
the value of the corresponding Cj → xi message, a partial assignment ψ ∈
{TRUE,FALSE,UNASSIGNED}n can be generated according to the corre-
sponding Bi values (as previously explained).

It would be convenient to think of the messages in terms of the corresponding
factor graph. Every undirected edge (xi, Cj) of the factor graph is replaced with
two anti-parallel directed edges, (xi → Cj) associated with the message xi → Cj

and respectively the edge (Cj → xi).

Warning Propagation(CNF formula F) :
1. construct the corresponding factor graph FG(F).
2. randomly initialize the clause-variable messages to 0 or 1.
3. repeat until no clause-variable message changed from the

previous iteration:
3.a randomly order the edges of FG(F).
3.b update all clause-variable messages Cj → xi according

to the random edge order.
4. compute a partial assignment ψ according to the Bi messages.
5. return ψ.

Note that in line 3.b. above, when evaluating the clause-variable message along
the edge C → x, C = (x ∨ y ∨ z), the variable-clause messages concerning this
calculation (z, y → C) are evaluated on-the-fly using the last updated values
Ci → y, Cj → z (allowing feedback from the same iteration). We allow the
algorithm not to terminate (the clause-variable messages may keep changing
every iteration). If the algorithm does return an assignment ψ then we say that it
converged. In practice it is common to limit in advance the number of iterations,
and if the algorithm didn’t converge by then, return a failure.

1.4 Related Work and Techniques

The Survey Propagation algorithm [3] experimentally outperforms all known al-
gorithms in finding satisfying assignments to Pn,p formulas with clause-variable
ratio ρ close to the satisfiability threshold (4 ≤ ρ ≤ 4.25). However, theoretical
understanding of Survey Propagation and other message passing algorithm for
random SAT problems is still lacking. This should be compared with the success
of message passing algorithms for decoding low-density-parity-check (LDPC)

Convergence of Message Passing Algorithms for Some SAT Problems 343

codes [11]. Here, the experimental success of message passing algorithms [11]
was recently complemented rigourously by a large body of theoretical work, see
e.g. [17, 20, 18]. Some important insights emerge from this theoretical work. In
particular, it is shown that the quality of decoding improves exponentially with
the number of iterations – thus all but a small constant fraction of the received
codeword can be decoded correctly using a constant number of iterations. Our
analysis of WP shows that much of the coding picture is valid also for Pplant

n,p thus
providing important insights as to the success of message passing algorithms for
random satisfiability problems. The planted 3SAT model is similar to LDPC in
many ways. Both constructions are based on random factor graphs. In codes, the
received corrupted codeword provides noisy information on a single bit or on the
parity of a small number of bits of the original codeword. In Pplant

n,p , ϕ being the
planted assignment, the clauses containing a variable xi contain noisy informa-
tion on the polarity of ϕ(xi) in the following sense – each clause contains xi in
a polarity coinciding with ϕ(xi) with probability 4/7. Our results are similar in
flavor to the coding results. However, the combinatorial analysis provided here
allows to recover an assignment satisfying all clauses, whereas in the random
LDPC codes setting, message passing allows to recover only 1− o(1) fraction of
the codeword correctly. In [18] it is shown that for the erasure channel, all bits
may be recovered correctly using a message passing algorithm, however in this
case the LDPC code is designed so that message passing works for it. We on the
other hand take a well known SAT distribution and analyze the performance of a
message passing algorithm on it. Moreover, the SAT setting is more involved, as
there are many assignments satisfying the formula, while for the erasure channel
there is a unique codeword satisfying the combinatorial constraints given by the
message.

As for relevant results in random graph theory, the seminal work of [2] paved
the road towards dealing with large-constant-degree planted distributions. [2]
present an algorithm that whp k-colors planted k-colorable graphs with a suffi-
ciently large constant expected degree. Building upon the techniques introduced
by [2], [13] present an algorithm that 2-colors sparse planted 3-uniform bipartite
hypergraphs and [8], solving an open question posed in [15], presents an al-
gorithm for satisfying large constant degree planted 3SAT instances. Though
in our analysis we use similar techniques to the aforementioned works, our
result is conceptually different in the following sense. In [2, 13, 8] the starting
point is the planted distribution, and then one designs an algorithm that works
well under this distribution. The algorithm may be designed in such a way
that makes its analysis easier. In contrast, our starting point is a given mes-
sage passing algorithm (WP), and then we ask for which input distributions it
works well. We cannot change the algorithm in ways that would simplify the
analysis.

Another difference between our work and that of [2, 13, 8] is that unlike the
algorithms analyzed in those other papers, WP is a randomized algorithm which
makes its analysis more difficult. We could have simplified our analysis had we
changed WP to be deterministic (for example, by initializing all clause-variable

344 U. Feige, E. Mossel, and D. Vilenchik

messages to 1 in step 2 of the algorithm), but there are good reasons why WP
is randomized. For example, it can be shown that (the randomized version) WP
converges with probability 1 on 2CNF formulas that form one cycle of implica-
tions, but might not converge if step 4 does not introduce fresh randomness in
every iteration of the algorithm (details omitted).

1.5 Notation

Given a 3CNF F , simplify F according to ψ, when ψ is a partial assignment,
means: in every clause substitute every assigned variable with the value given
to it by ψ. Then remove all clauses containing literals which evaluate to true.
In all remaining clauses, remove all literals which evaluate to false (the resulting
instance is not necessarily in 3CNF form). Denote by F|ψ the 3CNF F simplified
according to ψ. For a set of variables A ⊆ V , denote by F [A] the set of clauses
in which all variables belong to A.

Given a 3CNF formula F , we say that a variable x is pure in F if it appears
only in one polarity (namely, always appears as the literal x or always as the
literal x̄). Let P0 be the set of pure variables in F , and C0 be the set of clauses
containing a pure variable. Let L0 = F , and L1 = L0 \ C0. Let P1 be the
pure variables in L1, namely the variables that become pure after setting the
pure variables in a satisfying manner and simplifying F . Similarly, define C1
to be the set of clauses in L1 containing a variable from P1. Generally, define
Li = Li−1 \ Ci−1, Pi to be the pure variables in Li, and Ci to be the clauses in
Li containing a variable from Pi. We say that a 3CNF F is r-pure if Lr = ∅ .
The following theorem is implicitly proved in [4].

Theorem 1. Let F be randomly sampled according to Pn,p, p = d/n2, d <
1.225, then whp F is O(n)-pure.

Note that if there exists an r s.t. F is r-pure then in particular F is satisfiable.
To better understand our results it would be convenient to have the somewhat
informal notion of a simple formula in mind. We call a CNF formula simple, if it
can be satisfied using simple well-known heuristics (examples include formulas
whose factor graph is tree-like and r-pure formulas – both solvable using the
pure-literal heuristic [4], formulas with small weight terminators – to use the
terminology of [1] – efficiently solvable whp using a RWalkSat, etc).

1.6 Our Results

Theorem 2. Let F be a 3CNF formula randomly sampled according to Pplant
n,p ,

where p ≥ d/n2, d a sufficiently large constant, and let ϕ be its planted assign-
ment. Then the following holds with probability 1− e−Θ(d) (the probability taken
over the choice of F , the random choices in line 2 of the WP algorithm, and the
random order in the first time line 4 executes):

1. WP(F) converges after at most O(log n) iterations.
2. Let ψ be the partial assignment returned by WP(F), let VA denote the vari-

ables assigned to either TRUE or FALSE in ψ, and VU the variables left

Convergence of Message Passing Algorithms for Some SAT Problems 345

UNASSIGNED. Then for every variable x ∈ VA, ψ(x) = ϕ(x). Moreover,
#VA ≥ (1 − e−Θ(d))n.

3. F|ψ[VU] is a simple formula which can be satisfied in time O(n).

Remark 1. We also have a proof of Theorem 2 with ‘1 − o(1)’ instead of ‘1 −
e−Θ(d)’. This however involves a somewhat more complicated analysis exceeding
the scope of this abstract (further discussion in Section 3). For the full details
the reader is referred to the journal version.

Proposition 1. Let F be a 3CNF formula randomly sampled according to Pplant
n,p ,

where p ≥ c logn/n2, with c a sufficiently large constant, and let ϕ be its planted
assignment. Then whp after at most 2 iterations WP(F) converges, and the
returned ψ equals ϕ. (This result can be extended to Psat

n,p, see below.)

Proposition 2. Let F be an r-pure CNF formula. Then after at most O(r)
iterations of WP(F), regardless of the initial messages and the order of execution,
the following holds:

1. WP(F) converges.
2. Let ψ be the assignment returned by WP(F). If ψ(x) = UNASSIGNED,

then in every satisfying assignment x is assigned according to ψ(x).
3. If F contains no unit clauses then ψ is the all-UNASSIGNED vector.

Corollary 1. In the setting of Theorem 1, whp WP(F) converges after at most
O(n) iterations and the returned ψ is the all-UNASSIGNED vector.

The corollary follows immediately from Theorem 1 and Proposition 2.

Proposition 3. Let F be a satisfiable CNF formula whose corresponding factor
graph contains no cycles. Then F is O(n)-pure.

The main idea behind the proof of Theorem 2 is to show that the formula is dense
enough so that whp there exists a large subformula forcing WP to point in the
correct direction. The rest of the formula induces a factor graph containing only
trees, which are also ”easy” for WP. We note that formulas in Pplant

n,p , with n2p
some large constant, are not known to be simple (in the sense that we defined
above). On the contrary, ”hardness” evidence can be found in works such as
[1], showing that RWalkSat is very unlikely to hit a satisfying assignment in
polynomial time when running on a random Pplant

n,p instance in the setting of
Theorem 2. In the setting of Proposition 1, the formula is already dense enough
so that whp it forces entirely WP to point to the planted assignment.

Proposition 2 combined with Proposition 3 provide a proof to the convergence
of WP on trees. Our proof of this known result gives an explicit characterization
of the fixed point to which WP converges (which is implicit for trees in [3]).

The remainder of the paper is structured as follows. In Section 2 we discuss
some properties that a typical instance in Pplant

n,p possesses, and outline the proof
of Theorem 2 and Proposition 1. In Section 3 we discuss a stronger version of
Theorem 2. Most details of the proofs are omitted and can be found in the
journal version.

346 U. Feige, E. Mossel, and D. Vilenchik

2 Properties of a Random Pplant
n,p Instance

In this section we discuss relevant properties of a random Pplant
n,p instance. To

simplify presentation, we assume w.l.o.g. (due to symmetry) that the planted
assignment ϕ is the all-one vector.

2.1 Stable Variables

Definition 1. A variable x supports a clause C with respect to a partial as-
signment ψ, if it is the only variable to satisfy C under ψ, and the other two
variables are assigned by ψ.

Proposition 4. Let F be as in the setting of Theorem 2 and let FSUPP be a
random variable counting the number of variables in F whose support w.r.t. ϕ
is less than d/3. Then, E[FSUPP] ≤ e−Θ(d)n.

This follows from concentration arguments as every variable is expected to sup-
port d

n2 ·
(
n
2

)
= d

2 + O(1
n) clauses.

Following the definitions in Section 1.3, given a CNF F and a variable x, we
let N++(x) be the set of clauses in F in which x appears positively but doesn’t
support w.r.t. ϕ. Let Ns(x) be the set of clause in F which x supports w.r.t. ϕ.
Let π = π(F) be some ordering of the clause-variable message edges in the factor
graph of F . For an index i and a literal �x (by �x we denote a literal over the
variable x) let π−i(�x) be the set of clause-variable edges (C → x) that appear
before index i in the order π and in which x appears in C as �x. For a set of
clause-variable edges E and a set of clauses C we denote by E ∩ C the subset of
edges containing a clause from C as one endpoint.

Definition 2. A variable x is stable in F w.r.t. an edge order π if the following
holds for every clause-variable edge C → x (w.l.o.g. assume C = (�x ∨ �y ∨ �z),
C → x is the i’th message in π):

1. |#π−i(y) ∩N++(y)−#π−i(ȳ) ∩N−(y)| ≤ d/30.
2. |#N++(y)−#N−(y)| ≤ d/30.
3. #Ns(y) ≥ d/3

and the same holds for z.

Proposition 5. LetF be as in the setting of Theorem 2, and let π be a random or-
dering of the clause-variable messages. Let FUNSTAB be a random variable count-
ing the number of variables in F which are not stable. Then, E[FUNSTAB] ≤
e−Θ(d)n.

This follows from concentration arguments since E[#π−i(y) ∩ N++(y) −
#π−i(ȳ)∩N−(y)] = 0, E[#N++(y)−#N−(y)] = 0, and since every variable is
expected to appear in at most O(d) clauses.

Let α ∈ {0, 1}3#F be a clause-variable message vector. For a set of clause-
variable message edges E let 1α(E) be the set of edges along which the value is
1 according to α. For a set of clauses C, 1α(C) denotes the set of clause-variable
message edges in the factor graph of F containing a clause from C as one endpoint
and along which the value is 1 in α.

Convergence of Message Passing Algorithms for Some SAT Problems 347

Definition 3. A variable x is violated by α in π if there exists a message
C → x, C = (�x ∨ �y ∨ �z), in place i in π s.t. one of the following holds:

1. |#1α(π−i(y) ∩N++(y))−#1α(π−i(ȳ) ∩N−(y))| > d/30
2. |#1α(N++(y))−#1α(N−(y))| > d/30
3. #1α(Ns(y)) < d/7.

Or one of the above holds for z.

Proposition 6. Let F be as in the setting of Theorem 2, and let X be a set of
stable variables w.r.t. an arbitrary ordering π. Let α be a random clause-variable
message vector. Let FV IO be a random variable counting the number of violated
variables in X. Then, E[FV IO] ≤ e−Θ(d)#X.

The proof again uses concentration arguments.

2.2 Dense Subformulas

The next property we discuss is analogous to a property proved in [2] for random
graphs. Loosely speaking, [2] prove that whp a random graph doesn’t contain a
small induced subgraph with a large average degree. Using first moment calcu-
lations we show:

Proposition 7. Let c > 1 be an arbitrary constant. Let p ≥ d/n2, d = d(c)
a sufficiently large constant. Then whp over F ∈ Pplant

n,p there exists no subset
of variables U , s.t. #U ≤ e−Θ(d)n and there are at least c#U clauses in F
containing two variables from U .

2.3 The Core Variables

We describe a subset of the variables, denoted throughout by H and referred to
as the core variables, which plays a crucial role in the analysis. Loosely speaking,
a variable is considered ”safe” if it is stable w.r.t. the initial random order π,
and it is not violated by the initial clause-variable message assignments α. If in
addition, a safe variable xi supports many clauses w.r.t. ϕ (whose correspond-
ing message is ’1’ in α), then its corresponding Bi value will agree with ϕ(xi)
after the first iteration. This invariant needs to be preserved however in later
iterations. The set H captures the notion of such variables with a self-preserving
quality. There are several ways to obtain these desired properties. Formally,
H = H(F , ϕ, α, π) is constructed using the following iterative procedure:

LetA1 be the set of variables whose support w.r.t.ϕ is at most d/3.
Let A2 be the set of non-stable variables w.r.t. π.
Let A3 be the set of stable variables w.r.t. π violated by α.
1. set H0 = V \ (A1 ∪A2 ∪A3).
2. while ∃ai ∈ Hi supporting less than d/4 clauses in F [Hi] OR

appearing in d/30 or more clauses not in F [Hi] : let Hi+1 ← Hi\{ai}.
3. define H = Hm+1 where am is the last variable removed in step 2.

348 U. Feige, E. Mossel, and D. Vilenchik

Proposition 8. If both α and π are chosen uniformly at random then whp
#H ≥ (1− e−Θ(d))n.

The main idea of the proof is to observe that to begin with we eliminate very
few variables (using the discussion in Section 2.1 to bound #A1 ∪ A2 ∪ A3).
If too many variables were removed in the iterative step then a small but
dense subformula exists. Proposition 7 bounds the probability of the latter
occurring.

2.4 The Factor Graph of the Non-core Variables

Proposition 8 implies that for p = c logn/n2, c a sufficiently large constant, whp
H contains already all variables. The following analysis is needed for the setting
of Theorem 2. The non-core factor graph is the factor graph of the formula F
simplified according to the partial assignment that assigns all core variables their
planted assignment.

Proposition 9. Whp every connected component in the non-core factor graph
contains O(log n) variables.

Proposition 9 will not suffice to prove Theorem 2, and we need a further char-
acterization of the non-core factor graph.

Proposition 10. With probability 1− e−Θ(d), there exists no cycle in the non-
core factor graph.

2.5 Outline of Proof of Theorem 2 and Proposition 1

We start with Theorem 2 and derive Proposition 1 as an easy corollary of the
analysis. The outline of the proof is as follows. We assume that the formula F
and the run of WP are typical in the sense that Propositions 8, 9 and 10 hold.
First we prove that after one iteration WP sets the core variables H correctly (Bi

agrees with ϕ in sign) and this assignment does not change in later iterations.
Therefore from iteration 2 and onwards WP is basically running on F in which
variables belonging to H are substituted with their planted assignment. This
subformula is satisfiable and its factor graph is a forest (namely, composed of
disjoint trees). Therefore, convergence is guaranteed. The set VA of Theorem 2
is composed of all variables from H and those variables from the forest that
get assigned. The set VU is composed of the UNASSIGNED variables from the
forest.

We say that a message C → x, C = (�x ∨ �y ∨ �z), is correct if its value is the
same as it is when y → C and z → C agree in sign with their planted assignment
(in other words, C → x is 1 iff x supports C w.r.t. ϕ).

Proposition 11. If xi ∈ H and all messages C → xi, C ∈ F [H] are correct at
the beginning of an iteration (line 3 in the WP algorithm), then this invariant is
kept by the end of that iteration.

Convergence of Message Passing Algorithms for Some SAT Problems 349

Proposition 12. If xi ∈ H and all messages C → xi, C ∈ F [H] are correct by
the end of a WP iteration, then Bi agrees in sign with ϕ(xi) by the end of that
iteration.

Proposition 12 follows immediately from the definition of H and the message
Bi. It remains to show then that after the first iteration all messages C → xi,
C ∈ F [H] are correct.

Proposition 13. If F is a typical instance in the setting of Theorem 2, then
after one iteration of WP(F), for every variable xi ∈ H, every message C → xi,
C ∈ F [H] is correct.

Proposition 14. Let F be a typical instance in the setting of Theorem 2, then
for every variable xj ∈ V \ H, after O(log n) iterations either Bj = 0 or Bj

agrees in sign with ϕ(xj).

As for satisfying the set of unassigned variables in time O(n), Propositions 3
and 10 imply that the pure-literal procedure [4] solves the subformula induced
by the unassigned variables in linear time. Theorem 2 then follows.

To prove Proposition 1, observe that when p = c logn/n2, with c a sufficiently
large constant, Proposition 8 implies H = V . Combing this with Proposition 13,
Proposition 1 readily follows.

3 Discussion

Theorem 2 establishes correct convergence of WP with high-constant probability.
It is desirable to replace this with convergence whp. The constant probability
in Theorem 2 follows from the fact that only with constant probability the non-
core factor graph is a forest (Proposition 10 provides a lower bound on this
probability, and one can prove that with constant probability the non-core fac-
tor graph indeed contains a cycle). Nevertheless, using similar arguments one
can prove that whp every connected component in the non-core factor graph
contains at most one cycle. Proving convergence of WP then boils down to prov-
ing converges on factor graphs with at most one cycle. This is more involved a
task than proving convergence on tree-like factor graphs. In fact, convergence
of WP on tree-like factor graphs is guaranteed with probability 1. However, the
convergence of WP on cycles crucially relies on the random ordering of the mes-
sages (line 3.a. in WP). Moreover, the number of iterations to convergence is an
unbounded random variable whose expectation is bounded by the square of the
component’s size, and whose tails decay exponentially. The stronger version of
Theorem 2 with a complete proof is available in the journal version of this paper.

Acknowledgements. We thank Eran Ofek for many useful discussions. This
work was done while the authors were visiting Microsoft Research, Redmond,
Washington. E.M is supported by a Sloan fellowship in Mathematics, by NSF
Career award DMS-0548249 and NSF grants DMS-0528488 and DMS-0504245.

350 U. Feige, E. Mossel, and D. Vilenchik

References

1. M. Alekhnovich and E. Ben-Sasson. Linear upper bounds for random walk on small
density random 3-cnf. In Proc. 44th IEEE Symp. on Found. of Comp. Science,
pages 352–361, 2003.

2. N. Alon and N. Kahale. A spectral technique for coloring random 3-colorable
graphs. SIAM J. on Comput., 26(6):1733–1748, 1997.

3. A. Braunstein, M. Mezard, and R. Zecchina. Survey propagation: an algorithm for
satisfiability. Random Structures and Algorithms, 27:201–226, 2005.

4. A. Z. Broder, A. M. Frieze, and E. Upfal. On the satisfiability and maximum
satisfiability of random 3-cnf formulas. In Proc. 4th ACM-SIAM Symp. on Discrete
Algorithms, pages 322–330, 1993.

5. O. Dubois, Y. Boufkhad, and J. Mandler. Typical random 3-sat formulae and the
satisfiability threshold. In Proc. 11th ACM-SIAM Symp. on Discrete Algorithms,
pages 126–127, 2000.

6. U. Feige and R. Krauthgamer. Finding and certifying a large hidden clique in a
semirandom graph. Random Structures and Algorithms, 16(2):195–208, 2000.

7. U. Feige and D. Vilenchik. A local search algorithm for 3SAT. Technical report,
The Weizmann Institute of Science, 2004.

8. A. Flaxman. A spectral technique for random satisfiable 3CNF formulas. In Proc.
14th ACM-SIAM Symp. on Discrete Algorithms, pages 357–363, 2003.

9. E. Friedgut. Sharp thresholds of graph properties, and the k-sat problem. J. Amer.
Math. Soc., 12(4):1017–1054, 1999.

10. A. M. Frieze and C. McDiarmid. Algorithmic theory of random graphs. Random
Structures and Algorithms, 10(1-2):5–42, 1997.

11. T. G. Gallager. Low-density parity-check codes. IRE. Trans. Info. Theory, IT-
8:21–28, January 1962.

12. J. H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
13. C. Hui and A. M. Frieze. Coloring bipartite hypergraphs. In Proceedings of the 5th

International Conference on Integer Programming and Combinatorial Optimiza-
tion, pages 345–358, 1996.

14. A. C. Kaporis, L. M. Kirousis, and E. G. Lalas. The probabilistic analysis of
a greedy satisfiability algorithm. In Proc. 10th Annual European Symposium on
Algorithms, volume 2461 of Lecture Notes in Comput. Sci., pages 574–585. Springer,
Berlin, 2002.

15. E. Koutsoupias and C. H. Papadimitriou. On the greedy algorithm for satisfiability.
Info. Process. Letters, 43(1):53–55, 1992.

16. F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and the sum-
product algorithm. IEEE Transactions on Information Theory, 47(2):498–519,
2001.

17. M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. Spielman. Analysis of
low density parity check codes and improved designs using irregular graphs. In
Proceedings of the 30th ACM Symposium on Theory of Computing, pages 249–258,
1998.

18. M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. Spielman. Efficient erasure
correcting codes. IEEE Trans. Info. Theory, 47:569–584, February 2001.

19. J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

20. T. Richardson, A. Shokrollahi, and R. Urbanke. Design of capacity-approaching
irregular low-density parity check codes. IEEE Trans. Info. Theory, 47:619–637,
February 2001.

Robust Mixing

Murali K. Ganapathy

University of Chicago, Chicago, IL 60637, USA
gmkrishn@cs.uchicago.edu

Abstract. In this paper, we develop a new “robust mixing” framework
for reasoning about adversarially modified Markov Chains (AMMC). Let
P be the transition matrix of an irreducible Markov Chain with stationary
distribution π. An adversary announces a sequence of stochastic matrices
{At}t>0 satisfying πAt = π. An AMMC process involves an application
of P followed by At at time t. The robust mixing time of an irreducible
Markov Chain P is the supremum over all adversarial strategies of the
mixing time of the corresponding AMMC process. Applications include
estimating the mixing times for certain non-Markovian processes and for
reversible liftings of Markov Chains.

Non-Markovian card shuffling processes: The random-to-cyclic
transposition process is a non-Markovian card shuffling process, which
at time t, exchanges the card at position t (mod n) with a random card.
Mossel, Peres and Sinclair (2004) showed that the mixing time of this
process lies between (0.0345 + o(1))n log n and Cn log n + O(n) (with
C ≈ 4 × 105). We reduce the constant C to 1 by showing that the
random-to-top transposition chain (a Markov Chain) has robust mixing
time ≤ n log n+O(n) when the adversarial strategies are limited to those
which preserve the symmetry of the underlying Markov Chain.

Reversible liftings: Chen, Lovász and Pak showed that for a reversible
ergodic Markov Chain P, any reversible lifting Q of P must satisfy T (P) ≤
T (Q) log(1/π∗) where π∗ is the minimum stationary probability. Look-
ing at a specific adversarial strategy allows us to show that T (Q) ≥ r(P)
where r(P) is the relaxation time of P. This helps identify cases where re-
versible liftings cannot improve the mixing time by more than a constant
factor.

1 Introduction

In this paper, we develop a “robust mixing” framework which allows us to reason
about adversarially modified Markov Chains (AMMC). This framework can be
used to bound mixing times of some non-Markovian processes in terms of the
robust mixing time of related Markov Chains. Another type of application is to
estimate mixing times of complex Markov Chains in terms of that of simpler
ones. We also use this framework to give an alternate proof of a reversible lifting
result due to Chen et al. [4].

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 351–362, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

352 M.K. Ganapathy

1.1 Robust Mixing

All stochastic processes considered here are discrete time processes with a finite
state space. Markov Chains we consider here are not assumed to be reversible,
unless otherwise specified. All logarithms are natural logarithms unless otherwise
specified.

Let P be the transition probability matrix of an irreducible Markov chain on
X and stationary distribution π. By abuse of notation we identify P with the
associated Markov Chain.

Definition 1. Let P be an irreducible Markov Chain with stationary distribution
π. A stochastic matrix A (not necessarily irreducible) is said to be compatible
with P if πA = π. Notation: π∗ = minx π(x).

Definition 2. An adversarially modified Markov Chain (AMMC) P is a pair
(P, {At}t>0), where P is an irreducible Markov Chain and At are stochastic ma-
trices compatible with P. Given an AMMC and an initial distribution μ0, the
AMMC process evolves as follows:

– At time t = 0, pick X0 ∈ X according to μ0,
– Given Xt, pick Yt according to the distribution P(Xt, ·),
– Given Yt, pick Xt+1 according to the distribution At(Yt, ·)

An application of P followed by At is called a round. We use μt and νt to denote
the distribution of Xt and Yt respectively. Note that μt is the distribution after
t-rounds.

Definition 3. Let P be an AMMC. Its mixing time and L2-mixing time are
defined by the equations

T (P , ε)= max
μ0

min
t
{||μt−π||TV ≤ ε} and T2(P , ε)=max

μ0
min

t
{||μt−π||2,π ≤ ε}

(1)
respectively. Here ||μ − π||TV =

∑
x |μ(x) − π(x)|/2 is the total variation norm

and ||μ − π||22,π =
∑

x(μ(x) − π(x))2/π(x) is the L2(π) norm. When ε is not
specified, we take it to be 1/4 for T and 1/2 for T2.

The standard mixing times T (P, ε) and T2(P, ε) are defined as the mixing times
of the AMMC where At = I for all t > 0.

Definition 4. Let P be an irreducible Markov Chain. An adversarially modified
version of P is an AMMC (P, {At}t>0).

Definition 5. Let P be an ergodic Markov Chain. The robust mixing time and
robust L2-mixing time of P are defined by the equations

R(P, ε) = sup
P
T (P , ε) and R2(P, ε) = sup

P
T2(P , ε) (2)

respecitively, where the suprema are taken over adversarially modified versions
P of P. When P is clear from context, we drop it and when ε is not specified we
take it to be 1/4 for R and 1/2 for R2.

Robust Mixing 353

Since the set of stochastic matrices compatible with P is a bounded polytope it
follows that the worst case for robust mixing time is achieved when each At is a
vertex of the polytope.

When we need to distinguish between the standard notion of mixing time and
robust mixing time, we refer to the standard notion as “standard mixing time.”
Note that our adversary is oblivious.

1.2 Properties of Robust Mixing Time

Like standard mixing time, robust mixing time is also sub-multiplicative. The
proof for standard mixing time can be adapted to the Robust setting.

Theorem 1. (Submultiplicativity) Let P be an ergodic Markov Chain. For
ε, δ > 0,

R(P, εδ/2) ≤ R(P, ε/2)+R(P, δ/2) and R2(P, εδ) ≤ R2(P, ε)+R2(P, δ) (3)

A useful property enjoyed by Robust mixing time not shared by the standard
mixing time is the following convexity property.

Theorem 2. (Convexity) Let P be an ergodic Markov Chain with stationary
distribution π and Q any Markov Chain compatible with P. Let 0 < a = 1−b < 1.
Then for R′ ∈ {R,R2}, we have R′(aP + bQ) ≤ R′(P) + R′(Q)− 1. Moreover,

– if R(P) ≥ 11, then R(aP + bQ) ≤ 3R(P)/a
– If π∗ ≤ 1/16 and R2(P) ≥ log(1/π∗)/2 then R2(aP + bQ) ≤ 7R2(P)/a

This result is proved in Section 2. Convex combinations of Markov Chains are
considered by [2]. For reversible chains P and Q, using standard results, one can
show that (P + Q)/2 mixes in time O(min(T (P), T (Q)) log(1/π∗)). Our result
allows us to eliminate the log(1/π∗) factor under some conditions. See Theorem 8
for one such instance.

1.3 Relation to Classical Parameters of Markov Chains

We now relate the robust mixing time of Markov chains to classical mixing
parameters.

Definition 6. Let P be an ergodic Markov Chain with stationary distribution π.

– S(P) =
√

Π−1P
√

Π, where Π is the diagonal matrix with Π(x, x) = π(x),
–
←−
P = Π−1PTΠ denotes the reverse of P, where PT is the transpose of P.

Definition 7. Let A be any N ×N real matrix. By a singular value decomposi-
tion of A, we mean two orthonormal bases {x0, . . . ,xN−1} and {y0, . . . ,yN−1}
and scalars σ0 ≥ σ1 ≥ · · · ≥ σN−1 ≥ 0 which satisfy xiA = σiyi and yiAT =
σixi for all 0 ≤ i ≤ N − 1. The σi are called the singular values of P.

354 M.K. Ganapathy

See Horn and Johnson [7, Chapter 3] for basic results about singular values.
If A is the transition matrix of a reversible chain or a real symmetric matrix,
let λ0(A) ≥ λ1(A) ≥ · · · ≥ λN−1(A) denote its eigenvalues and put λ∗(A) =
max(λ1(A), |λN−1(A)|).

Definition 8. Let P be an ergodic reversible Markov Chain. Its relaxation time
is defined by r(P) = −1

log λ∗(P) .

For reversible ergodic Markov Chains P, r(P)≤T (P)≤T2(P)≤ r(P)(log(1/π∗)/
2 + 1).

Like mixing time for reversible chains, the robust mixing time of a Markov
Chain (not necessarily reversible) is determined by the second largest singular
value of S(P) up to a log(1/π∗) factor. More specifically, we have

Theorem 3. Let P be an ergodic Markov Chain with stationary distribution π.
Then

max(T (P
←−
P), T (P)) ≤ R(P) ≤ 2r(P

←−
P)(log(1/π∗)/2 + 1) (4)

In particular if P is reversible, we have r(P)≤T (P)≤R(P)≤r(P)
(

log(1/π∗)
2 + 1

)
.

Proof. Considering the adversarial strategy At = I and At =
←−
P , gives the lower

bounds. For the upper bound, observe that for non-constant function f on X ,
||Pf ||2,π ≤ σ2(S(P))||f ||2,π and for any A compatible with P, ||Af ||2,π ≤ ||f ||2,π.

Many techniques used to establish upper bounds on mixing time show that an
appropriate “distance” measure between the t-step distribution and π falls by a
factor γ < 1 for each application of P. For many such “distance” measures one
can also show that the adversary cannot increase the distance. Hence the upper
bound obtained on the standard mixing time holds for the robust mixing time
also.

Thus upper bounds on mixing time established using spectral gap estimation,
conductance methods, congestion bounds [10], spectral profiling [5] as well as
log-Sobolev inequalities for P

←−
P [8] immediately yield the same upper bounds

on Robust mixing time as well. The most notable exceptions are coupling and
entropy constant [3].

1.4 Cayley Walks with Restricted Adversaries

We now turn to a much-studied class of walks on groups.

Definition 9. Let G be a finite group and P a probability distribution over G.
By a Cayley walk on G induced by P we mean a Markov Chain on G with
transition probability matrix P given by P(h, h · s) = P (s) for all h, s ∈ G. By a
Cayley walk on G, we mean a Cayley walk on G induced by P for some probability
distribution P over G.

In case of a Cayley walk, one can look at the robust mixing time when the
adversary’s strategies are restricted to preserving the symmetries of the group.
We consider two natural restrictions.

Robust Mixing 355

Definition 10. Let G be a group. A Cayley strategy is the transition probability
matrix of some Cayley walk (not necessarily irreducible) on G. Denote by C the
set of all Cayley strategies for the group G. A Cayley adversary is an adversary
whose strategies are limited to Cayley strategies.

Definition 11. Let G be a group. A permutation J on G is said to be a holo-
morphism if it is the composition of a right translation and an automorphism
of G. Note that holomorphisms are closed under composition and left transla-
tions are also holomorphisms. A holomorphic strategy is a convex combination
of holomorphisms of G. Denote by H the set of all holomorphic strategies of G
(G will be clear from the context). A holomorphic adversary is one who is limited
to holomorphic strategies.

We now turn to defining the robust mixing time against restricted adversaries.

Definition 12. Let P be an irreducible Markov Chain. A set S of stochastic
matrices is said to be a valid set of strategies against P if all elements of S are
compatible with P, I ∈ S and S is closed under products and convex combina-
tions.

Definition 13. Let P be an irreducible Markov Chain and S a valid set of strate-
gies against P. The S-robust mixing time and S-robust L2-mixing time are
defined by the equations

RS(P, ε) = sup
P
T (P , ε) and RS

2 (P, ε) = sup
P
T2(P , ε) (5)

where P = (P, {At}t>0) ranges over adversarially modified versions of P where
At ∈ S for all t.

In case P is a Cayley walk on a group G, define the holomorphic robust mixing
time and holomorphic robust L2-mixing time by taking S = H. Similarly taking
S = C define Cayley robust mixing time and Cayley robust L2-mixing time.

Theorem 1 as well as Theorem 2 can be extended to work with any valid set of
strategies against P. Hence we also have the following

Theorem 4. (Submultiplicativity for Cayley walks) Let P be an ergodic
random walk on a group G and Q any random walk on G. All conclusions of
Theorem 1 hold when R is replaced by RH and RC and R2 replaced by RH

2
and RC

2 .

Theorem 5. (Convexity for Cayley walks) Let P be an ergodic random walk
on a group G and Q any random walk on G. All conclusions of Theorem 2 hold
when R is replaced by RH and RC and R2 replaced by RH

2 and RC
2 .

Theorem 3 shows that R(P) and R2(P) are determined up to a log(1/π∗) factor
by the second largest singular value of S(P). However, it turns out that RC

2 and
RH

2 are within a factor of 2 of T2(P
←−
P). In fact we have,

356 M.K. Ganapathy

Theorem 6. Let P denote an irreducible Cayley walk on a group G. Then

max(T2(P), T2(P
←−
P)) ≤ RC

2 (P) ≤ RH
2 (P) ≤ 2T2(P

←−
P) (6)

In particular if P is reversible and ergodic, T2(P) ≤ RC
2 (P) ≤ RH

2 (P) ≤ 2T2(P2) ≤
T2(P) + 1.

The proof of Theorem 6 will be given in Section 3. One consequence of Theorem 6
is that for a reversible ergodic Cayley walk, a holomorphic adversary cannot
change the L2-mixing time.

1.5 Applications: Card Shuffling

In this section we give some applications of the foregoing results in this paper.
Let PRC denote the (non-Markovian) random-to-cyclic transposition

process. The problem of estimating the mixing time of PRC was raised by Aldous
and Diaconis [1] in 1986. Mironov [9] used this process to analyze a cryptographic
system known as RC4 and showed that PRC mixes in time O(n log n). Mossel
et al. [11] showed that T (PRC) = Θ(n logn). They showed a lower bound of
(0.0345+o(1))n logn and an upper bound of Cn logn+O(n) where C ≈ 4×105.
We are able to reduce C to 1.

Theorem 7. Let PRC denote the (non-Markovian) random-to-cyclic transposi-
tion process and PRT denote the (Markovian) random-to-top transposition chain,
where we exchange a random card with the top card. Then T2(PRC) ≤ T2(PRT)+
1 ≤ n logn + O(n)

Proof. Let αt := t (mod n). For k, r ∈ {1, . . . , n}, (k r) = (1 k)(1 r)(1 k). Hence
if we let At correspond to right multiplication by (1αt)(1αt+1), it follows that
the given adversarial modification of PRT simulates PRC. Since the simulation
was done by a Cayley adversary, we have T2(PRC) ≤ RC

2 (PRT) ≤ RH
2 (PRT). From

Theorem 6 and reversibility of PRT it follows that RH
2 (PRT) ≤ T2(PRT) + 1. But

T2(PRT) ≤ n logn + O(n) ([12, Theorem 9.9]).

Another application of Theorem 6 is in estimating the mixing time of a convex
combination of reversible Cayley walks on a group G. This allows us to eliminate
the log |G| factor which would arise if we only use the second largest singular
value of the chains.

Theorem 8. Let P1 and P2 be two reversible ergodic Cayley walks on a group
G and put Q = a1P1 + a2P2 where 0 < a1 = 1 − a2 < 1. Then assum-
ing T2(Pi) ≥ log(|G|)/2 for i = 1, 2 and |G| ≥ 16, we have T2(Q) ≤ 1 +
min

(
7T2(P1)

a1
, 7T2(P2)

a2
, T2(P1) + T2(P2)

)
.

This follows from Theorem 5 and Theorem 6.

Robust Mixing 357

1.6 Applications: Reversible Lifting

Definition 14. Let P and Q be Markov Chains on state spaces X and Y with
stationary distributions π and μ respectively. P is said to be a collapsing of Q if
there is a mapping f : Y → X such that

– π(x) = μ(Yx) for all x ∈ X where Yx = f−1(x), and
– For all x1, x2 ∈ X ,P(x1, x2) =

∑
y1∈Yx1

∑
y2∈Yx2

μx1(y1)Q(y1, y2) where
μx is the conditional distribution of y ∈ Y given f(y) = x, i.e. μx(y) =
μ(y)/π(x).

A lifting of P is a chain Q such that P is the collapsing of Q.

Chen et al. [4] showed that if Q is a reversible lifting of a Markov chain P, then
T (Q) ≥ T (P)/ log(1/π∗). We give an alternate proof of the same result which is
motivated by adversarial strategies. The crucial observation is the following

Theorem 9. Let Q be a lifting of P. Then R(Q) ≥ T (P).

If Q is reversible, using Theorem 3 we immediately have T (Q) log(1/μ∗) ≥ T (P)
where μ∗ = miny μ(y). When μ∗ is only polynomially smaller than π∗, we have
an alternate proof of the reversible lifting result. To fine tune the result, we use
the adversarial strategy used in Theorem 9 to show

Theorem 10. Let Q be a reversible lifting of P. Then T (Q) ≥ r(P).

As a consequence, when T (P) = O(r(P)) no reversible lifting Q of P can mix
faster than P (ignoring constant factors). Theorem 9 and Theorem 10 are proved
in Section 4.

2 Convexity

We now prove Theorem 2 and Theorem 5. We start with a consequence of Ho-
effding’s inequality [6, Theorem 1].

Lemma 1. Let S = CT/p for C > 1 and 0 < p < 1. Let Z1, . . . , ZS be in-
dependent Bernoulli random variables with Pr{Zi = 1} = p. Let Z =

∑
i Zi.

Then
Pr{Z < T} ≤ exp {−T ((C − 1)− logC)}

Lemma 2. Let P be an ergodic Markov Chain and Q be compatible with P. Let
S be a valid set of strategies against P. Assume Q ∈ S. Let 0 < a = 1 − b < 1.
Then RS(aP+bQ) ≤ 2(1+δ)RS(P)/a, as long as 2RS(P)(δ− log(1+δ)) ≥ log 8.
If RS(P) ≥ 11, then δ may be taken to be 1/2.

Proof. Let S = 2(1+δ)T/a, where T = RS(P) and δ > 0 to be determined later.
Put P′ = aP + bQ. Fix an adversarial strategy At and an initial distribution μ0.
The S-round distribution the adversarially modified P′ is then given by

μS = μ0R1A1R2A2 . . .RSAS

358 M.K. Ganapathy

where each Ri is P with probability a, Q with probability b and the choices of
Ri for different i are independent. Let Z = |{i : Ri = P}|. Then E[Z] = Sa =
2(1 + δ)T .

If Z ≥ 2T , ||μS−π||TV ≤ 1/8 since RS(P, 1/8) ≤ 2T (by sub-multiplicativity)
and all stochastic matrices unequal to P can be considered as an adversarial
choice. By Lemma 1,

Pr{Z < 2T } ≤ exp (−2T (δ − log(1 + δ)))

Thus if 2T (δ − log(1 + δ)) ≥ log 8, we have

||μS − π||TV ≤ Pr{Z ≥ 2T } ∗ 1/8 + 1/8 ∗ 1 ≤ 1/4

where we used the fact that ||μ− π||TV ≤ 1 always.

Lemma 3. Let P be an ergodic Markov Chain and S a valid set of strategies
against P. Let Q be compatible with P and Q ∈ S. Let 0 < a = 1−b < 1. Assume
that RS

2 (P) ≥ log(1/π∗)/2 and π∗ ≤ 1/16. Then RS
2 (aP+bQ) ≤ 2(1+δ)RS

2 (P)/a,
as long as RS

2 (P)(δ − log(1 + δ)) ≥ log(1/π∗)/2. In particular δ may be taken to
be 5/2.

Proof. This proof is similar to Lemma 2. Put T = RS
2 (P) and S = 2T (1 + δ)/a

for δ > 0 to be determined later. Fix an adversarial strategy At and an initial
distribution μ0. The S-round distribution is then given by

μS = μ0R1A1R2A2 . . .RSAS

where the Ri are independent and equal to P with probability a and Q with
probability b. Let Z = |{i : Ri = P}| so that E[Z] = Sa = 2(1 + δ)T .

Going along the same lines as Lemma 2, we have

||μS − π||2,π ≤ Pr{Z ≥ 2T } ∗ 1/4 + exp (−2T (δ − log(1 + δ))) · 1√
π∗

(7)

since the worst value for ||μ − π||2,π = 1/
√

π∗. Substituting T = α log(1/π∗)/2
for α ≥ 1, we have

||μS − π||2,π ≤ 1/4 +
√

π∗
(2α(δ−log(1+δ)))−1 (8)

Since π∗ ≤ 1/16, we have ||μS − π||2,π ≤ 1/2 if α(δ − log(1 + δ)) ≥ 1.

The final bound RS(aP + (1 − a)Q) ≤ RS(P) + RS(Q) − 1 follows from the
fact that after RS(P) + RS(Q) − 1, either P occurs ≥ RS(P) times or Q occurs
≥ RS(Q) times.

3 Cayley Walks on Groups

In this section, we consider Cayley walks driven by a probability measure P
over a group G. The chain is irreducible iff the support of P generates G and
aperiodic if P (id) > 0 where id is the identity element of G.

Robust Mixing 359

It is well known that the knowledge of all the singular values of the transition
matrix P can give good bounds on the standard mixing time. In this section
we show that the same conclusion holds for the robust mixing time against
holomorphic adversaries.

Definition 15. For a group G, the holomorph of G, denoted Hol(G) is the semi-
direct product of G and Aut(G), where Aut(G) acts naturally on G. Elements
of Hol(G) are called holomorphisms.

Holomorphisms of G can be identified with permutations of G as follows: Ele-
ments of G act by right translation and those of Aut(G) act naturally. Since this
permutation representation of Hol(G) is faithful, we can identify holomorphisms
of G by the permutation they induce on G.

Definition 16. A permutation J : G→ G is said to be G-respecting if for some
permutation K : G→ G, and all g, h ∈ G, J(h)−1J(g) = K(h−1g).

Lemma 4. A permutation J of G is G-respecting iff it is a holomorphism of G.

Holomorphic strategies H are precisely convex combinations of Hol(G) (viewed
as permutations on G) while Cayley strategies C are convex combinations of
G ≤ Hol(G).

We now look at the holomorphic robust mixing time of a Cayley walk on
G. We identify a permutation on G with the |G| × |G| permutation matrix
representing it.

Let P be the transition matrix of a Cayley walk on G and fix a holomorphic
strategy {At}t>0. Define Q0 = I and for k > 0, put Qk+1 = QkPAk+1. If μt

denotes the distribution after t rounds we have μt = μ0Qt, where μ0 is the
initial distribution.

Lemma 5. If μ0 is supported only at g ∈ G then ||μt − π||22 = (QtQt
T)(g, g)−

1/N , where N = |G| and || · ||2 denotes the Euclidean norm.

Definition 17. A matrix B whose rows and columns are indexed by elements of
G is said to be a G-circulant if B(g, h) = P (g−1h) for some function P : G→ R.

Lemma 6. If J is a holomorphism of G and B is G-circulant, then so is J−1BJ .

Theorem 11. Let P be the transition probability matrix of an ergodic Cayley
walk on a finite group G. Let 1 = σ0 ≥ σ1 ≥ . . . σN−1 ≥ 0 denote the singular
values of P. Let {At}t>0 denote the moves of a holomorphic adversary. Then
||μt−π||22,π ≤

∑N−1
i=1 σ2t

i where μt denotes the distribution after t-rounds and μ0
is any initial distribution.

Proof. Assume w.l.o.g. that all the At are holomorphisms of G and also that μ0
is supported on one element g of G.

Let Qt = PA1PA2 . . .PAt. By Lemma 5, and the relation || · ||22,π = |G||| · ||2,
we have ||μt − π||22,π ≤ N · QtQt

T(g, g) − 1. Consider evaluating QtQt
T inside

out, i.e. put

Ct+1 = I and for k ≤ t Ck = P(AkCk+1Ak
T)PT (9)

360 M.K. Ganapathy

From Lemma 6 and closure properties of G-circulant matrices it follows that
C1 = QtQt

T is G-circulant and NQtQt
T(g, g) = tr(QtQt

T) =
∑

i≥0 σi(Qt)2.
Hence we have

||μt − π||22,π =
N−1∑
i=1

σi(Qt)2 ≤
N−1∑
i=1

t∏
j=1

σi(PAj)2 ≤
N−1∑
i=1

σi(P)2t (10)

where the first equality follows from σ0(Qt) = 1, the second inequality from [7,
Chapter 3] and the third inequality from σi(PAj) ≤ σi(P)σ1(Aj) = σi(P).

Now we prove Theorem 6 and show that that holomorphic robust L2-mixing
time of P is within a factor 2 of the standard mixing time of P

←−
P .

Proof (of Theorem 6). Let P be the transition matrix of a Cayley walk on G.
Considering the adversarial strategy where At = I and the one where At =

←−
P ,

we have max(T2(P), T2(P
←−
P)) ≤ RC

2 (P) ≤ RH
2 (P).

Let σi denote the singular values of P. Let vt = v0Qt denote the t-step distri-
bution of the Markov chain Q = P

←−
P starting from v0. From Lemma 5 and the

relation || · ||22,π = |G||| · ||22, we have

||vt − π||22,π = |G|Q2t(g, g)− 1 = tr(Q2t)− 1 =
N−1∑
i=1

σ4t
i (11)

Now consider a run of an adversarially modified version of P for 2t-steps. Let μ2t

be the distribution after 2t-rounds starting from μ0. Theorem 11 together with
(11) implies ||μ2t − π||2,π ≤ ||vt − π||2,π. Hence RH

2 (P) ≤ 2T2(P
←−
P).

4 Reversible Liftings

In this section we reprove a result due to Chen et al. [4] on reversible liftings of
Markov Chains. The proof is inspired by considering the Robust mixing time of
a Markov Chain and looking at a particular adversarial strategy. We start with
a proof of Theorem 9.

Proof (of Theorem 9). We prove R(Q) ≥ T (P) by exhibiting an adversarial
strategy which allows the adversary to simulate the evolution of P.

Consider the following adversarial strategy A: Given y ∈ Y, the adversary
picks a state y′ ∈ Y according to the distribution μx where x = f(y). Recall
that μx is the conditional distribution of μ given that f(y) = x.

Since μ =
∑

x∈X π(x)μx, it follows that this strategy fixes the stationary
distribution μ of Q. We now claim that with this strategy the adversary can
simulate the evolution of P on Y.

For a distribution ν on X , consider the distribution F (ν) =
∑

x∈X ν(x)μx

on Y. One can verify that F (ν)QA = F (νP) and in particular it follows that
||F (ν)(QA)t − μ||TV = ||νPt − π||TV for any t > 0. Hence R(Q) ≥ T (P).

Robust Mixing 361

Now if Q were reversible, Theorem 3 implies R(Q) ≤ T (Q)(1 + log(1/μ∗)/2).
Hence

T (Q) ≥ T (P)
log(1/μ∗)

(12)

When μ∗ is only polynomially smaller than π∗, this gives our result. We now
improve the result by looking at the adversarial strategy in more detail and show
T (Q) ≥ r(P).

Proof (of Theorem 10). Let A denote the stochastic matrix representing the
adversarial strategy. Note that A is reducible and reversible.

Let α denote the eigenvector (of length |X |) corresponding to λ∗(P) and define
β =

∑
x α(x)μx(y) (of length |Y|). One can easily check that β(QA) = λ∗(P)β.

Thus λ∗(QA) ≥ λ∗(P).
Since A is a contraction (it is stochastic), we have

λ∗(Q) ≥ λ∗(QA) ≥ λ∗(P) (13)

hence T (Q) ≥ r(Q) ≥ r(QA) ≥ r(P).

[4] gives an example Q of a reversible random walk on a tree (with π∗ exponen-
tially small) and its collapsing P for which

T (Q) = Θ(T (P))
log log(1/π∗)

log(1/π∗)
(14)

Since we know that R(Q) ≥ T (P) it shows that Theorem 3 is almost tight, even
for reversible chains.

5 Questions

Question 1. Is is true that for reversible P, with uniform stationary distribution
R(P) = O(T (P))?

Question 2. Is the robust mixing time of random-to-top O(n log n)? More gen-
erally, if P is a Cayley walk on a group G, is it true that R(P) = O(T (P

←−
P))?

Using log-Sobolev constants one can show R((PRT + I)/2) = O(n log2 n).
In all the examples we have seen, the adversarial strategy which achieves the

robust mixing time can be taken to be homogenous. Is this always the case?

Question 3. Is it true that R(P) = maxA T (PA) where the maximum is taken
over all A compatible with P?

Acknowledgements

I would like to thank László Babai for introducing me to the fascinating area of
Markov Chains and for very helpful discussions and suggestions.

362 M.K. Ganapathy

References

[1] David Aldous and Persi Diaconis. Shuffling cards and stopping times. The Amer-
ican Mathematical Monthly, 93(5):333–348, May 1986.

[2] Ivona Bezakova and Daniel Stefankovic. Convex combinations of markov chains
and sampling linear orderings. In preperation.

[3] Sergey Bobkov and Prasad Tetali. Modified log-sobolev inequalities, mixing and
hypercontractivity. In STOC ’03: Proceedings of the thirty-fifth annual ACM sym-
posium on Theory of computing, pages 287–296, New York, NY, USA, 2003. ACM
Press. ISBN 1-58113-674-9. doi: http://doi.acm.org/10.1145/780542.780586.

[4] Fang Chen, László Lovász, and Igor Pak. Lifting markov chains to speed up
mixing. In Proceedings of the thirty-first annual ACM symposium on Theory of
computing, pages 275–281. ACM Press, 1999.

[5] Montenegro R. Tetali P. Goel, S. Mixing time bounds via the spectral pro-
file. Electronic Journal of Probability, 11:1–26, 2006. URL http://www.
math.washington.edu/~ejpecp/EjpVol11/paper1.abs.html.

[6] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
American Statistical Association Journal, pages 13–30, 1963.

[7] Roger Horn and Charles Johnson. Topics in Matrix Analysis. Cambridge Univer-
sity Press, 1991.

[8] Laurent Miclo. Remarques sur l’hypercontractivité et l’évolution de l’entropie
pour des chanes de markov finies. Séminaire de probabilités de Strasbourg, 31:
136–167, 1997.

[9] Ilya Mironov. (Not so) random shuffles of RC4. In Crypto ’02, pages 304–319,
2002.

[10] Ravi Montenegro. Duality and evolving set bounds on mixing times. preprint. URL
http://www.ravimontenegro.com/research/evosets.pdf.

[11] Elchanan Mossel, Yuval Peres, and Alistair Sinclair. Shuffling by semi-random
transpositions, 2004.

[12] Laurent Saloff-Coste. Random walks on finite groups. URL www-stat.

stanford.edu/~cgates/PERSI/papers/rwfg.pdf.

Approximating Average Parameters of Graphs�

In Memory of Shimon Even (1935–2004)

Oded Goldreich1,�� and Dana Ron2,���

1 Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel
oded.goldreich@weizmann.ac.il

2 Department of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv Israel

Abstract. Inspired by Feige (36th STOC, 2004), we initiate a study of sublinear
randomized algorithms for approximating average parameters of a graph. Specifi-
cally, we consider the average degree of a graph and the average distance between
pairs of vertices in a graph. Since our focus is on sublinear algorithms, these al-
gorithms access the input graph via queries to an adequate oracle.

We consider two types of queries. The first type is standard neighborhood
queries (i.e., what is the ith neighbor of vertex v?), whereas the second type are
queries regarding the quantities that we need to find the average of (i.e., what is
the degree of vertex v? and what is the distance between u and v?, respectively).

Loosely speaking, our results indicate a difference between the two problems:
For approximating the average degree, the standard neighbor queries suffice and
in fact are preferable to degree queries. In contrast, for approximating average
distances, the standard neighbor queries are of little help whereas distance queries
are crucial.

1 Introduction

In a recent work [8], Feige investigated the problem of estimating the average degree of
a graph when given direct access to the list of degrees (of individual vertices). He ob-
served two interesting (“phase transition”) phenomena. Firstly, in contrast to the prob-
lem of estimating the average value of an arbitrary function d : [n] → [n−1] (where

[n] def= {1, . . . , n}), sublinear-time approximations can be obtained when the function
d represents the degree sequence of a simple graph over n vertices.1 Secondly, whereas
a (2 + ε)-approximation can be obtained in O(

√
n)-time, for every constant ε > 0,

a better approximation factor cannot be achieved in sublinear time (i.e., a (2 − o(1))-
approximation requires time Ω(n)).

Feige’s work views the problem of estimating the average degree of a graph as a
special case of estimating the average value of an arbitrary function d : [n] → [n−1].

� The research was supported in part by the Israel Internet Association (ISOC-IL).
�� Part of this work was done while being a fellow of the Radcliffe Institute for Advanced

Study, Harvard University.
��� Part of this work was done while being a fellow of the Radcliffe Institute for Advanced

Study, Harvard University.
1 Here we also assume that there are no isolated vertices in the graph (i.e., each vertex has

degree at least 1).

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 363–374, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

364 O. Goldreich and D. Ron

Our perspective is different: We view Feige’s work as a sublinear algorithm for a natural
graph theoretic problem, which brings up two (open-ended) questions:

1. What type of operations (i.e., direct access queries to the input graph) are natural
to consider for such an algorithm?

2. What other natural “average graph parameters” (i.e., averages of vertex-based quan-
tities) are of interest?

In the following two subsections we briefly address these questions, and afterwards we
present our results that refer to various combinations of “answers” to these questions.

1.1 Types of Direct Access Queries

When viewing the problem of estimating the average degree in a graph as a special case
of the problem of estimating the average value of an arbitrary function d : [n]→ [n−1],
it seems natural to restrict the algorithm to “degree queries”. However, from the point
of view of sublinear-time algorithms for graphs (cf., e.g., [10, 11, 15, 3, 14]), it is natural
to allow also other types of queries to the graph. The most natural queries are neighbor
queries; that is, queries of the form (v, i) that are answered by the ith neighbor of v (or
by a special symbol that indicates that v has less than i neighbors). In case of relatively
dense graphs, it is also natural to consider adjacency queries (i.e., are vertices u and v
adjacent in the graph). Thus, we consider two basic types of queries:

1. Standard neighbor (and adjacency) queries, which are natural in any algorithmic
problem regarding graphs.

2. Problem-specific queries that associate values to vertices (or to sets of vertices),
where our aim is to compute the average of these values. For example, in the case
of approximating the average degree we consider degree queries.

We comment that degree queries can be emulated by a logarithmic number of neighbor
queries (i.e., via binary search).

1.2 Other Natural Averaging Problems

In addition to the average degree of a graph, we consider two problems regarding dis-
tances in a graph. The first is approximating the all-pairs average distance in the graph,
and the second is approximating the average distance of a fixed vertex to all the graph
vertices. We refer to these problem by the terms all-pairs and single-source, respec-
tively.

In addition to the standard neighbor queries, for the average distance approximation
problems, we will also consider distance queries. That is, in both cases, we will con-
sider queries of the form (u, v) that are answered by the distance between u and v in
the graph.

1.3 Our Results

Our results indicate that for one problem (i.e., approximating the average degree) aug-
menting the problem-specific oracle with neighbor queries helps, whereas for the other

Approximating Average Parameters of Graphs 365

problems (i.e., approximating average distances) such an augmentation does not help.
Moreover, as noted above, degree queries are not of great help (for approximating the
average degree), whereas distance queries are crucial to approximating average dis-
tances in sublinear-time. In both cases, our algorithms do not use adjacency queries
(and our lower bounds show that these queries do not help).

Approximating the Average Degree of a Graph. We present a sublinear algorithm
that obtains an arbitrarily good approximation of the average degree, while making
only neighbor queries.2 Specifically, for every constant ε > 0, we obtain a (1 + ε)-
approximation to the average degree of a simple graph G = (V,E) in Õ(

√
|V |)-time,

where the O-notation hides a polynomial dependence on ε.
Our result should be contrasted with Feige’s results [8]: Recall that Feige showed

that, when using only degree queries, a (2 − o(1))-approximation (of the average de-
gree of G = (V,E)) requires time Ω(|V |). Thus, neighbor queries are essential for
sublinear-time algorithms that provide a (2 − o(1))-approximation. On the other hand,
he showed that (for every constant ε > 0) a (2 + ε)-approximation can be obtained in
O(
√
|V |)-time (using only degree queries).

The running-time of our algorithm is essentially optimal: any constant-factor ap-
proximation of the average degree requires making Ω(

√
|V |) queries of some graph

G = (V,E), even when allowed both neighbor and degree queries. Furthermore, a
(1 + ε)-approximation requires Ω(

√
|V |/ε) queries.

The above represents a simplified account of the results. We recall that Feige [8]
provides his algorithm with a lower bound on the average degree of the input graph.
This auxiliary input allows also to handle graphs that have isolated vertices (rather than
assuming that each vertex has degree at least 1) and yields an improvement whenever
the lower bound is better (than the obvious value of 1). Specifically, given a lower bound
of � (on the average degree), the complexity of Feige’s algorithm is related to

√
|V |/�

rather than to
√
|V |. The same improvement holds also for our algorithms. Furthermore,

we observe that our algorithms (as well as Feige’s) can be adapted to work without this
lower bound. Specifically, the complexity of the modified algorithm, which obtains no
a priori information about the average degree, is related to (|V |/d)1/2, where d denotes
the actual average degree (which is, of course, not given to the algorithm). Thus, we get:

Theorem 1. There exists an algorithm that makes only neighbor queries to the input
graph and satisfies the following condition. On input G = (V,E) and ε ∈ (0, 1), with
probability at least 2/3, the algorithm halts within Õ((|V |/d)1/2 ·poly(1/ε)) steps and
outputs a value in [d, (1 + ε) · d], where d = 2|E|/|V |.

Again, this running-time is essentially optimal in the sense that a (1+ ε)-approximation
requires Ω((|V |/(εd))1/2) queries, for every value of |V | and d ∈ [2, o(|V |)] and ε ∈
[ω(|V |−1/4), o(|V |/d)].

Approximating Average Distances. We present a sublinear algorithm that obtains an
arbitrarily good approximation of the average (all-pairs and single-source) distances,

2 Note that a degree query can be emulated using O(log |V |) neighbor queries, by performing
a kind of binary search.

366 O. Goldreich and D. Ron

while making (only) distance queries. Specifically, we obtain a (1 + ε)-approximation
of the (relevant) average distance of a simple unweighted graph G = (V,E) in time
O(
√
|V |) · poly(1/ε). Actually, as in the case of approximating the average degree, we

obtained an improved performance as a function of the actual average distance.

Theorem 2. There exists an algorithm that makes only distance queries to the input
graph and satisfies the following condition. On input G = (V,E) and ε ∈ (0, 1), with
probability at least 2/3, the algorithm halts within O((|V |/dG)1/2 · poly(1/ε)) steps
and outputs a value in [dG, (1 + ε) · dG], where dG is the average of the all-pairs
distances in G. A corresponding algorithm exists for the average distances to a given
vertex s ∈ V .

This running time is essentially optimal: any constant-factor approximation of the av-
erage distance in G = (V,E) requires making Ω((|V |/dG)1/2) queries, even when
allowed both distance and neighbor queries. Furthermore, a (1 + ε)-approximation
requires Ω((|V |/(εdG))1/2) queries, for every value of |V | and dG = o(|V |) and
ε = ω(|V |−1).

We show that distance queries are essential for sublinear-time algorithms that pro-
vide any constant-factor approximation of the average distances. Specifically, when us-
ing only neighbor queries, a k-approximation of the average distance in G = (V,E)
requires making Ω(|E|/k2 log k) queries. In the case of the single-source problem, this
means that (when using only neighbor queries) a constant-factor approximation is as
hard to obtain as the exact value. In the case of the all-pairs problem, by emulating
distance queries in a straightforward manner, we can obtain a (1 + ε)-approximation
in time O(

√
|V | · |E|) · poly(1/ε) when using only neighbor queries. For moderately

sparse graphs, this yields an improvement over the straightforward approach of com-
puting (or approximating) all pair-distances and computing the average of these |V |2
values. Details follow.

If |E| , |V |7/2 then our O(
√
|V | · |E|) · poly(1/ε)-time (1 + ε)-approximation

is definitely preferable to computing the average of |V |2 approximate values regard-
less of how the latter are obtained. On the other hand, if |E| > |V |emm−0.5, where
emm ∈ [2, 2.376) is the matrix multiplication exponent (cf. [4]), then one can find all
pair-distances as well as their average faster than the time it takes our algorithm approx-
imates the latter (cf. [9, 16]). In the intermediate range3 (of |V |3/2 ! |E| ! |V |emm−0.5,
where emm− 0.5 < 1.876), our algorithm should be compared against a host of all-pairs
approximate distance algorithms and the preference may depend on additional param-
eters (e.g., the approximation sought and a priori bounds on the average all-pairs dis-
tance). Specific algorithms that may be relevant include those of [6, 5]. (The interested
reader is referred to Zwick’s survey [17] of algorithms for finding exact and approxi-
mate distances in graphs.)

1.4 Related Work

In addition to the work of Feige [8], we are aware of two other related results on esti-
mating average parameters of graphs. Indyk [13] considers the problem of estimating

3 Indeed, the intermediate range exists provided emm > 2 (or rather, that emm = 2 is not known).

Approximating Average Parameters of Graphs 367

the average distance in a distance metric over n points. In particular, such a metric is
defined by the shortest distances in a connected weighted graph. Indyk gives a (1 + ε)-
approximation algorithm that runs in time O(n/ε7/2). This algorithm is linear in the
number of points, but sublinear in the size of the input, which is an n× n matrix.

Bădoiu et. al. [2] consider the problem of computing the optimal cost of the metric
facility location problem in sublinear time. It follows from their analysis that it is possi-
ble to obtain a (1 + ε)-approximation of the average degree of a graph in time Õ(n/ε2)
in the following model: The algorithm does not have access to degree queries nor to
neighbor queries, but rather is only allowed to traverse the incidence list of a vertex ac-
cording to a fixed order. By definition, in this model it takes Θ(d(v)) time to compute
the degree d(v) of a vertex v. This algorithm is sublinear in the size of the input when
the graph is not sparse.

2 Preliminaries

Throughout the work, all algorithms are probabilistic and have direct access to their in-
put. That is, such algorithms are actually probabilistic oracle machines that have access
to one or more oracles. These oracles will typically represent a graph in a way to be un-
derstood from the context. For example, we consider oracles that answer queries such as
neighbor queries and degree queries. The explicit input to these algorithms will consist
of relevant parameters that always include the number of vertices in the graph, which
in turn determines the vertex set (i.e., for simplicity, we assume that all n-vertex graphs

have [n] def= {1, . . . , n} as their vertex set). As the basic definition of approximation
algorithms, we use the following standard one.

Definition 1. For ε > 0, a (1 + ε)-approximation of a quantity q : {0, 1}∗ → (0,∞)
is an algorithm that on input x, with probability at least 2/3, outputs a value in the
interval [q(x), (1 + ε) · q(x)].

The error probability can be decreased to 2−k by invoking the basic algorithm for O(k)
times and outputting the median value. At times, when ε, 1, for simplicity of presen-
tation we allow the algorithm to output a value in the interval [(1−ε)·q(x), (1+ε)·q(x)].
(Indeed, the output can be “normalized” by division (by 1− ε).) Our algorithms will all
be uniform in the sense that we actually present an algorithm that takes ε as a parameter.

When stating lower bounds that depend on several parameters, we mean that these
bounds hold uniformly for all choices of these parameters (or all choices satisfying
explicitly stated conditions). That is, when we say that a (1 + ε)-approximation of q
requires Ω(f(n, ε, p)) queries, we means that there exists a constant c > 0 such for any
possible value of the parameters n, ε and p and any (1 + ε)-approximation algorithm A
of the quantity q, there exists an n-vertex graph G with q(G) = p such that A makes at
least c · f(n, ε, p) queries. (Since all our lower bounds refer to the query complexity of
algorithms, linear speed-up phenomena do not arise.)

Throughout this work, we assume that the neighbors of each vertex are listed in
arbitrary order. This reasonable assumption facilitates the proofs of the lower bound,
which can be modified to handle also the case where the said lists are sorted.

In all that follows, when we say “with high probability” we mean with probability at
least 1− δ for some small constant δ > 0.

368 O. Goldreich and D. Ron

3 Approximating the Average Degree of a Graph

Let G = (V,E) be a simple graph (i.e., having no parallel edges and no self-loops),
where |V | = n, and let d(v) denote the degree of vertex v ∈ V in G. We denote by

d
def= 1

n

∑
v∈V d(v) the average degree in G. An algorithm for estimating d is allowed

to perform two types of queries: degree queries and neighbor queries. Namely, for any
vertex v of its choice the algorithm can obtain d(v), and for any v and j ≤ d(v), the
algorithm can obtain the jth neighbor of v. Actually, when degree queries are allowed
then it suffices to allow the algorithm to obtain a random neighbor of any desired (i.e.,
queried) vertex.

We start by describing an algorithm that is provided with an a priori known lower
bound � on the value of d. We later eliminate the need for this a priori knowledge. We
close this section by establishing that our algorithm has almost optimal running-time
(when referring to its dependence on the size of the graph). All missing proofs can be
found in the full version of this paper [12]

3.1 The Algorithm

Our algorithm is inspired by the work of Kaufman et. al. [14], and more specifically, by
a subroutine presented in [14] for sampling edges “almost uniformly”. The basic idea
of our algorithm is to sample vertices and to put them into “buckets” according to their
degrees such that in bucket Bi we have vertices with degree between (1 + β)i−1 and
(1 + β)i (where β = ε/c for some constant c > 1). If S is the sample, then we denote
by Si the subset of sampled vertices that belong to Bi. We will focus on the sets Si that
are sufficiently large, because we want |Si|/|S| to be a good approximation of |Bi|/n.
Let us denote the set of the corresponding i’s by L.

Suppose we take (1/|S|)
∑

i∈L |Si|(1 + β)i−1 as our estimate for the average
degree of the graph. Note that the expected value of |Si|/|S| is |Bi|/n and that
(1/n)

∑
i |Bi|(1 + β)i−1 ≤ d. Hence, with high probability, for a sufficiently large

sample S, we would be overestimating the average degree by a factor of at most (1+ε).
The source of the overestimation is only the error in approximating |Bi|/n by |Si|/|S|.
However, we may underestimate d by a factor of roughly 2. The reason is that the edges
between large buckets and small buckets are only counted once, rather than twice, and
the edges with both endpoints in small buckets are not counted at all. The “threshold of
largeness” is set such that the number of vertices in small buckets is so small that we
can discard all possible edges that have both end-points in small buckets. (This calls
for taking a sample of size Õ(

√
n), setting the threshold at poly(log n), and concluding

that the number of vertices in small buckets is at most
√

n.)
So far we have described a procedure that approximates d up to a factor of 2 + ε

while using only degree queries (i.e., we obtain Feige’s result [8] using a different
analysis). To get beyond the “factor 2 barrier” we observe that the main source of ap-
proximation error is due to edges with one endpoint in a large bucket and the other
endpoint in a small bucket. These edges were counted once (in our estimate for d),
whereas they need to be counted twice. Thus, it suffices to estimate the number of such
edges, which can be done by estimating, for each large bucket, the fraction of edges
that are incident to vertices in the bucket and whose other endpoint is in a small bucket.

Approximating Average Parameters of Graphs 369

This estimate cannot be obtained using degree queries, but it can be obtained using
“random neighbor” queries. Specifically, for every vertex v in a large Si, we select
uniformly a neighbor of v and check whether this neighbor resides in a small bucket.
Adding our estimate of the number of edges between large buckets and small buckets
to (n/|S|)

∑
i∈L |Si|(1 + β)i−1 yields a (1 + ε)-approximation of 2|E| (and hence a

(1 + ε)-approximation of d = 2|E|/n).
We are now ready to present the algorithm in full detail. For t = �log(1+β) n� + 1,

we define a partition of V into the following buckets:

Bi =
{
v : d(v) ∈

(
(1 + β)i−1, (1 + β)i

]}
, for i = 0, 1, . . . , t− 1 . (1)

The algorithm refers to an a priori lower bound � on d, and the reader may think of
� = 1 as in the foregoing motivating discussion. We will consider Bi to be large (and

put i ∈ L) if the sample S contains at least Ω

(√
ε

t ·
|S|√
n/�

)
representatives of Bi.

Otherwise it is considered small. For a large Bi, we let α̃i denote our approximation of
the fractions of edges incident at Bi that have their other endpoint in a small bucket.

Average Degree Approximation Algorithm

1. Uniformly and independently select K = Θ̃
(√

n/� · poly(1/ε)
)

vertices from V ,

and let S denote the (multi-)set of selected vertices.
2. For i = 0, 1, . . . , �log(1+β) n�, let Si = S ∩Bi.

3. Let L =
{
i : |Si|

|S| ≥
1
t ·
√

ε
6 ·

�
n

}
, where t

def= �log(1+β) n�+ 1.

4. For every i ∈ L and every v ∈ Si, select at random a neighbor u of v, and let
χ(v) = 1 if u ∈

⋃
j /∈L Bj , and χ(v) = 0 otherwise. For every i ∈ L, let α̃i =

|{v∈Si : χ(v)=1}|/|Si|.
5. Output d̃ = 1

K ·
∑

i∈L(1 + α̃i) · |Si| · (1 + β)i.

Lemma 1. For every ε < 1/2 and β ≤ ε/8, the above algorithm outputs a value d̃
such that, with probability at least 2/3, it holds that (1− ε) · d < d̃ < (1 + ε) · d.

Working without a degree lower bound. For sake of simplicity, we start by modifying
the algorithm so that when given a valid lower bound �, it does not output an overes-
timation of the average degree (except with small probability). This is done by simply
decreasing the output by a factor of 1 + ε. Thus, the output, d̃, of the algorithm satisfies
Pr[(1− 2ε)d < d̃ < d] ≥ 2/3). Furthermore, by O(1) + log logn repetitions, we may
reduce the probability of error to below 1/(6 logn).

An interesting feature of our algorithm is that, with high probability, it does not
output an overestimate of d even in case it is invoked with a parameter � that is higher
than the average degree d (i.e., is not a valid lower bound). To verify this feature, observe
that the only place in the analysis where we rely on the assumption � ≤ d is in bounding
the underestimation error (i.e., when bounding the total number of edges with both
endpoints in U). (We comment that also Feige’s algorithm [8] has this feature, but for
different reasons.)

370 O. Goldreich and D. Ron

This feature allows us to present a version of our algorithm that does not require an
a priori lower bound on the average degree. Specifically, let our algorithm be denoted
by A. Then, starting with � = n/2, we may proceed in at most 2 log2 n iterations as
follows. We invoke A with the current value of �, and let d̃ denote the output obtained.
If d̃ ≥ � then we halt and output d̃, otherwise we proceed to the next iteration while
setting �← �/2. In case all iterations were completed and still d̃ < � in the last iteration
(i.e., d̃ < 1/2n) then the graph must have no edges and we halt outputting d̃ = 0.

Let �j = n/2j be the parameter used in the j-th invocation of algorithm A, and
let d̃j denote the corresponding output. Then, with probability at least 2/3, for every
iteration j that took place, it holds that d̃j ≤ d and if d ≥ �j then d̃j ≥ (1−2ε)d. In this
case, assuming the graph contains any edges at all,4 the algorithm will stop after at most
log(n/d) +O(1) iterations, and will output a value that is in the interval [(1− 2ε)d, d].

Thus, the overall running-time of the algorithm is poly(ε−1 logn) ·
√

n/d. Theorem 1
follows.

3.2 A Lower Bound

We observe that any constant approximation algorithm must perform Ω(
√

n) queries.
A more general bound, which depends also on the approximation parameter ε > 0 and
on the actual degree of the graph, is stated next.

Theorem 3. For any n, d ∈ [2, o(n)] and ε ∈ (ω(1/dn), o(n/d)), a (1 + ε)-
approximation of the average degree of G = (V,E) requires Ω

(
(n/(εd))1/2

)
queries,

where d = 2|E|/n. This holds even if the algorithm is allowed neighbor and adjacency
queries as well as degree queries.

4 Approximating the Average Distance from a Single Source

Let G = (V,E) be a simple undirected unweighted connected graph, where n = |V |
and m = |E|. For some given (“designated”) vertex s ∈ V we are interested in the
average distance of s to the graph’s vertices. That is, suppose we have access to an
oracle that for any vertex v ∈ V provides us with the distance, denoted distG(s, v),
between s and v (in G). We would like to estimate the average distance, denoted dG(s),
of vertices in the graph from s; that is, dG(s) = 1

n

∑
v∈V distG(s, v).

We first consider algorithms that make only distance queries. We present an algo-
rithm (in Section 4.1) and a roughly matching lower bound (in Section 4.2). We later
discuss the case in which the algorithm is also allowed neighbor queries (resp., only
allowed neighbor queries); see Section 4.3 (resp., Section 4.4). All missing proofs can
be found in the full version of this paper [12].

4 In case the graph contains no edges, the algorithm will complete all iterations with no output
(because d = 0 < �j whereas d̃j = 0 for each j ≤ 2 log n), and thus output the cor-
rect value (i.e., 0) at the last step. In this case, the overall running-time of the algorithm is
poly(ε−1 log n) · n. Clearly one can modify the algorithm so that its complexity is never
more that O(n) (i.e., the complexity of computing the exact average degree), by stopping
once �j goes below poly(ε−1 log n)/n for an appropriate polynomial in log n and ε−1.

Approximating Average Parameters of Graphs 371

4.1 An Algorithm

We start with the basic version of our result.

Theorem 4. There exists an algorithm that, for any given ε ∈ (0, 1), makes O
(√

n/ε2
)

distance queries and provides a (1+ε)-approximation of the average distance of a given
vertex to all graph vertices.

The algorithm selects uniformly and independently q = Θ
(√

n/ε2
)

vertices v1, . . . , vq ,
performs the distance queries distG(s, vi) for i = 1, . . . , q, and outputs the average of
the answers received. We show that, with high probability, the algorithm’s output is an
(1 + ε)-approximation of dG.

Let dmax be the maximum distance of any vertex v from s. For each value i =
0, . . . , dmax let pi denote the fraction of vertices at distance i from s. Let η be a random
variable that takes value i with probability pi, and let η1, . . . , ηq be independent random
variables that are distributed the same as η. By definition, Exp[η] = dG(s), and the
output of our algorithm is distributed as 1

q

∑q
j=1 ηj . Hence, we are interested in upper

bounding the probability that 1
q

∑q
j=1 ηj deviates from its expected value, dG(s), by

more than ε · dG(s). By Chebyshev’s inequality

Pr

⎡⎣∣∣∣∣∣∣1q
q∑

j=1

ηj − Exp[η]

∣∣∣∣∣∣ ≥ ε · Exp[η]

⎤⎦ ≤ Var[η]
q · ε2 · Exp[η]2

(2)

Since q = Θ
(√

n/ε2
)
, it suffices to show that the ratio between Var[η] = Exp[η2] −

Exp[η]2 and Exp[η]2 is O(
√

n). This follows from the next lemma, by using � = 1/2.

Lemma 2. For η and pi as defined above, Exp[η2] ≤
√

2n/� · Exp[η]2, for any � ≤
Exp[η].

Since all distances are integers, and all are non-negative with the exception of
dist(s, s) = 0, we know that Exp[η] ≥ n−1

n ≥ 1/2, which means that � = 1/2
can always be used. Thus, Theorem 4 follows from Lemma 2 (when specialized to the
obvious case of � = 1/2), but we will use the more general statement of the lemma
later.

Proof: By the definitions of η and dmax,

Exp[η2] =
dmax∑
i=0

pi · i2 ≤ dmax · Exp[η] (3)

We next observe that by definition of dmax, for every i ≤ dmax we have that pi ≥ 1/n,
and so

Exp[η] =
dmax∑
i=0

pi · i >
d2
max

2n
(4)

By multiplying the bound Exp[η] ≥ � (provided in the lemma’s hypothesis) by Eq. (4),
we get that Exp[η]2 ≥ �·d2

max
2n and so

372 O. Goldreich and D. Ron

√
� · dmax√

2n
≤ Exp[η] (5)

Finally, we multiply Eq. (3) & (5) and get that

Exp[η2] ·
√

� · dmax√
2n

≤ dmax · Exp[η]2 (6)

and the lemma follows. ��

An improved algorithm. As in Section 3, a better algorithm can be obtained, provided
we are given an a priori lower bound on the average distance. Denoting such a lower
bound by �, Lemma 2 implies that using a sample of size q = Θ(ε−2 ·

√
n/�) will do.

Actually, as in Section 3, we do not actually need this lower bound, and the algorithm
can function without it and perform as well. That is:

Theorem 5. There exists an algorithm that, on input a graph G = (V,E), a vertex s
and parameter ε ∈ (0, 1), makes O(ε−2(n/dG(s))1/2) distance queries and provides a
(1 + ε)-approximation of the average distance of vertices in G to s (i.e., dG(s)).

4.2 A Lower Bound

In this subsection we establish the essential optimality of the algorithm presented in the
previous subsection.

Theorem 6. For any n, d ∈ (2, o(n)) and ε ∈ (ω(1/dn), o(n/d)), any algorithm
that performs only distance queries and provides a (1 + ε)-approximation of the av-
erage distance of vertices in G = (V,E) from s ∈ V , where dG(s) = d, must ask
Ω((n/(εd))1/2) queries.

Proof: For parameters n and k ∈ (ω(1), o(n)), consider a (randomly labeled version
of a) graph, denoted Gn,k, consisting of a star of n− k vertices centered at s and a path
of length k also starting at vertex s. (The reader may think of such a graph as a broom;
see Figure 1.)

. . .
s v1 v2 vk−1 vk

...

w1

w2

wn−k−1

Fig. 1. An illustration of the “broom-like” graph Gn,k

By definition, the average distance of Gn,k from s is

dGn,k
(s) =

(n− k − 1) · 1 +
∑k

i=1 i

n
= 1+

k2 − k − 2
2n

= 1+(1−o(1))· k
2

2n
(7)

Approximating Average Parameters of Graphs 373

Given d ∈ (2, o(n)) and ε ∈ (1/
√

dn, o(n/d)), we set k so that 1 + (k2/2n) = d (i.e.,
k ≈ (2(d− 1)n)1/2) and k′ ≈ (2((1 + ε) · d− 1)n)1/2. Thus, dGn,k

(s) = (1−o(1))·d
and dGn,k′ (s) = (1+ ε) ·d. First, we observe that any (1+ ε)-approximation algorithm

must make Ω(n/k′) = Ω((n/(1 + ε)d)1/2) queries in order to hit a vertex on the path
(which is a necessary condition for distinguishing Gn,k from Gn,k′). This establishes
the claim for (say) ε > 1/10. For the case of ε ≤ 0.1, we note that in order to distinguish
Gn,k from Gn,k′ the algorithm must hit one of the k′ − k vertices that are at distance
greater than k from s in Gn,k′ , which yields the lower bound of Ω(n/(k′ − k)) =
Ω((n/εd)1/2). ��

4.3 Adding Access to Neighbor and Adjacency Queries

A natural question is whether providing access to neighbor and adjacency queries, in
addition to distance queries, can improve the query complexity of the average degree
estimation problem. We answer this question negatively.

Theorem 7. Let d ∈ (2, o(n)) and ε ∈ (ω(1/dn), o(n/d)), and consider algorithms
that are allowed distance queries, neighbor queries, adjacency queries and degree
queries. Any such algorithm that provides a (1 + ε)-approximation of the average
distance of vertices in G = (V,E) from s ∈ V where dG(s) = d, must perform
Ω((n/εd)1/2) queries.

4.4 Using Only Neighbor and Adjacency Queries

If we allow only neighbor and adjacency queries, then the problem becomes signifi-
cantly harder.

Theorem 8. Let k > 1 be a given approximation factor. Every algorithm that is
allowed only neighbor, adjacency and degree queries must perform Ω(m/(k log k))
queries in order to obtain a k-approximation of dG(s) in graphs G with m edges, pro-
vided m ∈ (Ω(n), O(n2/k log k)).

5 Approximating All-Pairs Average Distance

In continuation to Section 4, we now turn to the question of estimating the average
distance between all pairs of vertices. That is, for any given graph G over n vertices,
let dG = 1

n2

∑
u,v∈V dist(u, v) denote the average distance between pairs of vertices

in the graph.

Theorem 9. There exists an algorithm that, on input a graph G = (V,E) an a pa-
rameter ε ∈ (0, 1), makes O((n/dG)1/2/ε2) distance queries and provides a (1 + ε)-
approximation of dG.

We also note that lower bounds analogous to the ones stated in Theorems 7 and 8 hold
also for approximating the average of all-pairs distances (i.e., dG). That is, for a graph
G = (V,E), any (1+ ε)-approximation algorithm that uses distance queries must make
Ω((n/εdG)1/2) queries, whereas any constant factor approximation algorithm that uses
only standard queries must make Ω(|E|) such queries.

374 O. Goldreich and D. Ron

6 Extensions

The results of Sections 4 and 5 extend to the directed versions of these averaging prob-
lems: For the all-pairs problem, we require that the directed graph be strongly connected
(so that all distances are defined). For the case of the single-source problem, it suffices
to require that all vertices are reachable from the source.

Our algorithms for degree approximation have been recently extended to k-regular

hypergraphs [1]. The complexity in this case is Θ̃
(
|V | k−1

k

)
.

Acknowledgments

We thank the anonymous referees of RANDOM for their comments. We also thank Kfir
Barhum for pointing out an inaccuracy in a previous version.

References

1. K. Barhum. MSc. thesis, Weizmann Institute of Science. In preparation.
2. M. Bădoiu, A. Czumaj, P. Indyk, and C. Sohler. Facility Location in Sublinear Time. In

Proc. of the 32nd ICALP, 2005.
3. B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the Minimum Spanning Tree

Weight in Sublinear Time. In SIAM Journal on Computing, Vol. 34, pages 1370–1379, 2005.
4. D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progression. Journal

of Symbolic Computation, Vol. 9, pages 251–280, 1990.
5. D. Dor, S. Halperin, and U. Zwick. All Pairs Almost Shortest Paths. SIAM Journal on

Computing, Vol. 29, pages 1740–1759, 2000.
6. M. L. Elkin. Computing Almost Shortest Paths. Technical Report MCS01–03, Faculty of

Mathematics and Computer Science, Weizmann Institute of Science, 2001.
7. S. Even. Graph Algorithms. Computer Science Press, 1979.
8. U. Feige. On sums of independent random variables with unbounded variance, and estimat-

ing the average degree in a graph. In Proc. of the 36th STOC, pages 594–603, 2004.
9. Z. Galil and O. Margalit. All Pairs Shortest Paths for Graphs with Small Integer Length

Edges. Information and Computation, Vol. 54, pages = 243–254, 1997.
10. O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica,

Vol. 32 (2), pages 302–343, 2002.
11. O. Goldreich and D. Ron. A Sublinear Bipartitness Tester for Bounded Degree Graphs.

Combinatorica, Vol. 19 (3), pages 335–373, 1999.
12. O. Goldreich and D. Ron. Approximating Average Parameters of Graphs. ECCC, TR05-073.
13. P. Indyk. Sublinear Time Algorithms for Metric Space Problems. in Proc. of the 31st STOC,

pages 428–434, 1999.
14. T. Kaufman, M. Krivelevich, and D. Ron. Tight Bounds for Testing Bipartiteness in General

Graphs. In SIAM Journal on Computing, Vol. 33, pages 1441–1483, 2004.
15. M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures and Algorithms,

Vol. 20 (2), pages 165–183, 2002.
16. R. Siedel. On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs. Jour-

nal of Computer and System Sciences, Vol. 51, pages 400–403, 1995.
17. U. Zwick. Exact and approximate distances in graphs - a survey. Proceedings of the 9th

Annual European Symposium on Algorithms (ESA), pages 33–48, 2001.

Local Decoding and Testing for
Homomorphisms�

Elena Grigorescu, Swastik Kopparty, and Madhu Sudan

Massachusetts Institute of Technology, Cambridge, MA, USA
{elena g, swastik, madhu}@mit.edu

Abstract. Locally decodable codes (LDCs) have played a central role
in many recent results in theoretical computer science. The role of finite
fields, and in particular, low-degree polynomials over finite fields, in the
construction of these objects is well studied. However the role of group
homomorphisms in the construction of such codes is not as widely stud-
ied. Here we initiate a systematic study of local decoding of codes based
on group homomorphisms. We give an efficient list decoder for the class
of homomorphisms from any abelian group G to a fixed abelian group
H . The running time of this algorithm is bounded by a polynomial in
log |G| and an agreement parameter, where the degree of the polynomial
depends on H . Central to this algorithmic result is a combinatorial re-
sult bounding the number of homomorphisms that have large agreement
with any function from G to H . Our results give a new generalization of
the classical work of Goldreich and Levin, and give new abstractions of
the list decoder of Sudan, Trevisan and Vadhan. As a by-product we also
derive a simple(r) proof of the local testability (beyond the Blum-Luby-
Rubinfeld bounds) of homomorphisms mapping Zn

p to Zp, first shown by
M. Kiwi.

1 Introduction

Given a pair of finite groups G = (G,+) and H = (H, ·), the class of homomor-
phisms between G and H forms an “error-correcting code”. Namely, for any two
distinct homomorphisms φ, ψ : G→ H , the fraction of elements α ∈ G such that
φ(α) = ψ(α) is at most 1/2. This observation has implicitly driven the quest
for many “homomorphism testers” [3, 2, 8, 1, 13], which test to see if a function
f : G→ H given as an oracle is close to being a homomorphism. In this paper,
we investigate the complementary “decoding” question: Given oracle access to
a function f : G→ H find all homomorphisms φ : G→ H that are close to f .

To define the questions we study more precisely, let agree(f, g) denote the
agreement between f, g : G → H , i.e., the quantity Prx←U G[f(x) = g(x)]. Let
Hom(G,H) = {φ : G → H | φ(x + y) = φ(x)φ(y)} denote the set of homomor-
phisms from G to H . We consider the combinatorial question: Given G, H and
ε > 0, what is the largest “list” of functions that can have ε-agreement with some

� Research supported in part by NSF Award CCR-0514915.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 375–385, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

376 E. Grigorescu, S. Kopparty, and M. Sudan

fixed function, i.e, what is maxf :G→H |{φ : G→ H |φ ∈ Hom(G,H), agree(f, g) ≥
ε}|?

We also consider the algorithmic question: Given G, H , ε > 0 and oracle access
to a function f : G → H , (implicitly) compute a list of all homomorphisms
φ : G → H that have agreement ε with f . (A formal definition of implicit
decoding will be given later. For now, we may think of this as trying to compute
the value of φ on a set of generators of G.) We refer to this as the “local decoding”
problem for homomorphisms.

Local decoding of homomorphisms for the special case of G = Zn
2 and H = Z2

was the central technical problem considered in the seminal work of Goldreich
and Levin [4]. They gave combinatorial bounds showing that for ε = 1

2 + δ,
the list size is bounded by poly(1/δ), and gave a local decoding algorithm with
running time poly(n/δ).

The work of Goldreich and Levin was previously abstracted as decoding the
class of degree one n-variate polynomials over the field of two elements. This led
Goldreich, Rubinfeld, and Sudan [5] to generalize the decoding algorithm to the
case of degree one polynomials over any finite field. (In particular, this implies a
decoding algorithm for homomorphisms from G = Zn

p to H = Zp, that decodes
from 1

p + ε agreement and runs in time poly(n/ε), where Zp denotes the additive
group of integers modulo a prime p.) Later Sudan, Trevisan, and Vadhan [11],
generalized the earlier results to the case of higher degree polynomials over finite
fields . This generalization, in turn led to some general reductions between worst-
case complexity and average-case complexity.

Our work is motivated by the group-theoretic view of Goldreich and Levin, as
an algorithm to decode group homomorphisms. While the group-theoretic view
has been applied commonly to the complementary problem of “homomorphism
testing”, the decoding itself does not seem to have been examined formally be-
fore.

To motivate we start with a simple example.
Consider the case where G = Zn

p and H = Zm
p . How many homomorphisms

can have agreement 1
p + δ with a fixed function f : G→ H? Most prior work in

this setting used (versions) of the Johnson bound in coding theory. Unfortunately
such a bound only works for agreement greater than 1√

p in this setting.1 An ad-

hoc counting argument gives a better bound on the list size of δ−O(m). While
better bounds ought to be possible, none are known, illustrating the need for
further techniques. Our work exposes several such questions. It also sheds new
light on some of the earlier algorithms.

Our results. Our results are restricted to the case of abelian groups G and H .
Let Λ = ΛG,H denote the maximum possible agreement between two homomor-
phisms from G to H . Our main algorithmic result is an efficient algorithm, with
running time poly(log |G|, 1

ε) to decode all homomorphisms with agreement Λ+ε

1 For those familiar with the application of the Johnson bound in the setting of m = 1,
we point out that it relied crucially on the fact that the agreement of any pair of
homomorphisms was 1

|H| which is no longer true when m �= 1.

Local Decoding and Testing for Homomorphisms 377

with a function f : G→ H given as an oracle, for any fixed group H . Note that
in such a case the polynomial depends on H . See Theorem 2 for full details.

Crucial to our algorithmic result is a corresponding combinatorial one showing
that there are at most poly(1

ε) homomorphisms with agreement ΛG,H + ε with
any function f : G→ H , for any fixed group H . Once again, the polynomial in
the bound depends on H . See Theorem 1 for details.

Finally, we also include a new proof of a result of Kiwi [8] on testing homo-
morphisms from Zn

p to Zp. This is not related to our main quests, but we include
it since some of the techniques we use to decode homomorphisms yield a simple
proof of this result. See Theorem 3.

Organization of this paper. In Section 2 we present basic terminology and our
main results. In Section 3 we exploit the decomposition theorem for abelian
groups to reduce the proofs of the main theorems to the special case of p-groups.
In Section 4 we tackle the combinatorial problem of the list-size for p-groups. In
Section 5 we consider the corresponding algorithmic problem. Section 6 analyzes
a homomorphism tester for functions from Zn

p to Zp using some techniques of
the previous sections.

2 Definitions and Main Results

Let G,H be abelian groups, and let Hom(G,H) = {h : G → H | h is a homo-
morphism}. Note that Hom(G,H) forms a code. Indeed, if f, g ∈ Hom(G,H),
then G′ = {x | f(x) = g(x)} is a subgroup of G. Since the largest subgroup of
G has size at most |G|

2 , it follows that f and g differ in at least 1
2 of the domain.

For two functions f, g : G→ H , define

agree(f, g) = Prx←U G[f(x) = g(x)],

and
ΛG,H = max

f,g∈Hom(G,H),f �=g
{agree(f, g)}.

In the case when Hom(G,H) contains only the trivial homomorphism we define
ΛG,H = 0.

The notions of decodability and local list decoders are standard in the con-
text of error correcting codes. Below we formulate them for the case of group
homomorphisms.

Definition 1. [11] (List decodability) The code Hom(G,H) is (δ, l)-list decod-
able if for every function f : G → H, there exist at most l homomorphisms
h ∈ Hom(G,H) such that agree(f, h) ≥ δ.

Definition 2. [14](Local list decoding) A probabilistic oracle algorithm A is a
(δ, T) local list decoder for Hom(G,H) if given oracle access to any function
f : G→ H, (notation Af), the following hold:

378 E. Grigorescu, S. Kopparty, and M. Sudan

1. With probability 3
4 over the random choices of Af , Af outputs a list of

probabilistic oracle machines M1, . . . ,ML s.t., for any homomorphism h ∈
Hom(G,H) with agree(f, h) ≥ δ,

∃j ∈ [L], ∀x, Pr[Mf
j (x) = h(x)] ≥ 3

4
,

where the probability is taken over the randomness of Mf
j (x).

2. A and each Mf
j run in time T .

The model of computation with respect to groups is as follows. An abelian group
G can be represented (see Sect. 3) by its cyclic decomposition Zp

e1
1
× . . .×Zp

ek
k

,
where pi’s are prime. An element of G is given by a vector α = (α1, α2, . . . , αk),
with αi ∈ Zp

ei
i

.
Our main results are the list decodability and local list decodability of group

homomorphism codes.

Theorem 1. Let H be a fixed finite abelian group. Then for all finite abelian
groups G, Hom(G,H) is

(
ΛG,H + ε, poly|H|(

1
ε)
)

list decodable.

Remark: The exact polynomial bound on the list size that our proof gives, in gen-
eral, depends on the structure of the groups in an intricate way, but can neverthe-
less be uniformly bounded by O

(1
ε4 log |H| |H |5

)
. Still, the precise bounds obtained

by the proof are not optimal. For example, our proof gives that Hom(Zn
2 ,Z2

2) is
(1
2 + ε, O(1

ε4)) list decodable, while it can be shown (via alternate means) that
it is (1

2 + ε, O(1
ε2)) list decodable.

Theorem 2. Let H be a fixed finite abelian group. Then for all finite abelian
groups G there is a (ΛG,H+ε, poly|H|(log |G|, 1

ε)) local list decoder for Hom(G,H).

3 Decomposition and Reduction

We will embark on our quest by first decomposing the groups involved into
slightly smaller but better-behaved groups. In this section we will see how these
decompositions can be done and thereby reduce our main theorems to state-
ments about list decoding on “p-groups”. These statements will be proved in the
following two sections by some Fourier analytic machinery and by generalizing
the STV-style list decoders.

The structure theorem for finite abelian groups states that every abelian group
G is of the form

∏k
i=1 Zp

ei
i

, where the pi’s are primes and the ei’s are positive
integers. A p-group is a group of order pr, for some positive integer r. The
structure theorem implies that for any prime p, any finite abelian group G can
be written as Gp × G′, where Gp is a p-group and gcd(p, |G′|) = 1 (take Gp =∏

pi=p Zp
ei
i

). This decomposition will play a crucial role in what follows.

Local Decoding and Testing for Homomorphisms 379

Remark 1. ΛG,H behaves well under decomposition of G and H :

1. If gcd(|G|, |H |) = 1 then Hom(G,H) contains only the trivial homomorphism
and therefore, ΛG,H = 0.

2. Otherwise, let p be the smallest prime s.t. p | gcd(|G|, |H |). Then ΛG,H = 1
p .

Indeed, it is enough to bound agree(h,0), for any nontrivial homomorphism
h : G → H . Let d = |image (h)| and note that d | |H |, since image(h) is a
subgroup of H . Since G/ ker(h) ∼= image(h), it follows that | ker(h)|/|G| =
1/d ≤ 1/p, and thus ΛG,H ≤ 1

p .
Finally, if G = Zpt × G′, and H = Zpr × H ′, then the homomorphism
h : G → H definde by h(a, b) = (apr−1, 0) satisfies agree(h,0) = 1

p . Hence,
ΛG,H = 1

p .
3. The above observations imply ΛG1×G2,H = max{ΛG1,H , ΛG2,H} and

ΛG,H1×H2 = max{ΛG,H1, ΛG,H2}.

3.1 The Decompositions G → H1 × H2 and G1 × G2 → H

The following two propositions (whose proofs are omitted from this version)
say that list decoding questions for Hom(G,H) can be reduced to list decoding
questions on summands of G or H .

Proposition 1. Let G, H1, H2 be abelian groups. Let ai = ΛG,Hi . Suppose for
all ε > 0, Hom(G,Hi) is (ai + ε, �i(ε))-list decodable, with (ai + ε, Ti(ε)) local list
decoders, for i = 1, 2. Then Hom(G,H1×H2) is (max{a1, a2}+ ε, �1(ε)�2(ε)) list
decodable and has a (max{a1, a2}+ ε, O ((T1(ε)T2(ε))) local list decoder, for all
ε > 0.

Proposition 2. Let G1, G2, H be abelian groups. Let ai = ΛGi,H . Suppose for
all ε > 0, Hom(Gi, H) is (ai + ε, �i(ε))-list decodable, with a (ai + ε, Ti(ε))
local list decoder, for i = 1, 2. Then Hom(G1 × G2, H) is (max{a1, a2} + ε,

O(1
ε2 �1(ε)�2(ε) |H |2)) list decodable, and has a (max{a1, a2}+ε, O(|H|

ε2 (T1(ε)+
T2(ε)) + �1(ε)�2(ε) |H |2) local list decoder, for all ε > 0.

3.2 Proof of the Main Theorems

Using the propositions proved in the previous section, our theorems will reduce
to the main lemma given below. A proof is sketched in Section 4.

Lemma 1. Let p be a fixed prime and r > 0 be a fixed integer. Then for any
abelian p-group G, Hom(G,Zpr) is

(
1
p + ε, (2p)3r 1

ε2

)
list decodable.

In Section 5, we shall use it to prove the corresponding algorithmic version.

Lemma 2. Let p be a fixed prime and r > 0 be a fixed integer. Then for any
abelian p-group G, Hom(G,Zpr) is

(
1
p + ε, poly(log |G|, 1

ε)
)

locally list decodable.

380 E. Grigorescu, S. Kopparty, and M. Sudan

Proof (of Theorem 1). If |G|, |H | are relatively prime then the result is obvious.
Otherwise, let p(= 1

ΛG,H
) be the smallest prime dividing both |G| and |H |. Let

H =
∏r

i=1 Z
p

βi
i

. Let i ∈ {1, . . . , r}. If gcd(pi, |G|) = 1, then Hom(G,Z
p

βi
i

) is
(ε, 1) list decodable. Otherwise, write G as Gpi × G′, where Gpi is a pi-group
and gcd(pi, |G′|) = 1. Then by Lemma 1 and Proposition 2, Hom(G,Z

p
βi
i

) is(
1
pi

+ ε, O(1
ε4 (2pi)3βip2βi)

)
list decodable, and hence is also

(
1
p + ε, 1

ε4 p
5βi

i

)
list

decodable (since if pi||G|, then p ≤ pi). Combining these for all i ∈ {1, . . . , r} by
Proposition1,Hom(G,H) is

(
1
p + ε,

∏
pi||G|

1
ε4 (2pi)5βi

)
listdecodable, as required.

Proof (of Theorem 2). The proof of this theorem is directly analogous to the
previous proof, using Lemma 2 instead of Lemma 1.

4 Combinatorial Bounds for p-Groups

In this section we will briefly touch upon how our main lemma (Lemma 1)
is proved. Recall that we wish to obtain a combinatorial upper bound on the
number of homomorphisms having agreement 1

p +ε with a function f : G→ Zpr ,
where G is a p-group. The starting point for our proof is the observation that
Zpr is isomorphic to the multiplicative group μpr , a subgroup of the complex
numbers consisting of the prth roots of unity. This makes the tools of Fourier
analysis available to us.

4.1 Sketch of the Argument

In this version we only give a sketch of the proof at a very high level. We are
given a function f : G → Zpr . We begin by giving a formula that expresses
the agreement between our function and any given homomorphism in terms
of Fourier coefficients of some functions related to f . This will imply that ev-
ery homomorphism having high agreement with f “corresponds” to some large
Fourier coefficient. Now Parseval’s identity tells us that there can only be few
large Fourier coefficients, and the end of the proof looks near. Unfortunately, it
is possible that many distinct homomorphisms “correspond” to the same Fourier
coefficients. Nevertheless, we will be able to bound the number of occurences of
the above pathology in terms of the number of homomorphisms in Hom(G,Zpl)
that have high agreement with a related function f ′ : G→ Zpl , for some l < r.
Thus, inducting on r, we will arrive at the result.

In the proof we use the following version of the Johnson bound, which is the
base case for the induction, and is also useful in Section 6.

Proposition 3. Let G be a p-group. Then

1. Hom(G,μp) is (1
p + ε, 1

ε2) list decodable, for any ε > 0.
2. Let f : G→ μp and ρt = agree(f, χt) for χt ∈ Hom(G,μp), then∑

χt∈Hom(G,μp)

(
ρt −

1
p− 1

(1− ρt)
)2

≤ 1.

Local Decoding and Testing for Homomorphisms 381

5 Algorithmic Results for p-Groups

In this section we will turn our attention to the algorithmic decoding question
suggested by the combinatorial results of the previous section. Here we will show
Lemma 2 stated in Section 3.

Lemma 2. Let p be a fixed prime and r > 0 be a fixed integer. Then for any
abelian p-group G, Hom(G,Zpr) is

(
1
p + ε, poly(log |G|, 1

ε)
)

locally list decodable.

We will provide an algorithm which, given access to a function f : G → Zpr ,
with G a p-group, outputs an implicit representation of the homomorphisms that
agree in a 1

p + ε with f . Intuitively, to get the value of such a homomorphism
h ∈ Hom(G,Zpr) at a point x, we restrict our attention to a random coset of a
random subgroup of G that contains x. Provided that h restricted to this coset
has agreement at least 1

p + ε/2 with f , we can deduce the value of h(x). Along
the way we prove a lemma that says that random cosets of a random subgroup
of a p-group “sample well”, which is shown using the second moment method.

5.1 Cosets of Subgroups Generated by Enough Elements Sample
Well

Definition 3. Let G be an abelian group, and let z1, . . . , zk ∈ G. Define Sz1,...,zk

to be the subgroup of G generated by z1, . . . , zk.

Before giving our decoding algorithms, we state a useful lemma (whose proof is
omitted in this version).

Lemma 3. Let G be an abelian p-group, let A ⊆ G, with μ = |A|
|G| and let

x, z1, . . . zk ∈ G be picked uniformly at random. Then

Prx,z1,...,zk

[∣∣∣∣ |A ∩ (x + Sz1,...,zk
)|

|Sz1,...,zk
| − μ

∣∣∣∣ > ε

]
≤ 1

ε2pk
.

5.2 The Generalized STV Algorithm

We begin with a simple but useful observation [3]: homomorphisms have simple
and efficient self-correctors, i.e., for g : G→ H , there is a randomized procedure
Corrg : G→ H running in time poly(log |G|) satisfying the following property

– Self-corrector: If g : G → H is such that there is some homomorphism
h : G→ H with agree(g, h) > 7/8, then with for all x ∈ G, Corrg(x) = h(x)
with probability > 3/4.

Let Rx,z1,...,zk
be the set x + Sz1−x,...,zk−x, i.e., the “affine subspace” pass-

ing through x, z1, . . . , zk. Let rx,z1,...,zk
: [T]k → (x + Sz1−x,...,zk−x) be the

parametrization of Rx,z1,...,zk
given by:

rx,z1,...,zk
(ᾱ) = x +

∑
i

αi(zi − x).

382 E. Grigorescu, S. Kopparty, and M. Sudan

For a function g : G → H , define the restriction g|Rx,z1,...,zk
: [T]k → H by

g|Rx,z1,...,zk
(ᾱ) = g(rx,z1,...,zk

(ᾱ)). Notice that when we restrict homomorphisms
to a set of the form Rx,z1,...,zk

, we get an affine homomorphism, i.e., a function
of the form h + b where h is a homomorphism and b ∈ H .

The oracle Mf
z1,...,zk,a1,...,ak

(x):
For b ∈ H , define hb : [T]k → H by hb(ᾱ) = b +

∑
αi(zi − x).

1: For each b in H , estimate (by random sampling)
lb = agree(f |Rx,z1,...,zk

, hb).
2: If there is exactly one b with lb > 1

p
+ ε

4 then output b, else fail.

The local list decoder:
Repeat O(1) times:
1: Pick z1, . . . , zk ∈ G uniformly and independently at random, where k = c1 logp

1
ε
.

2: For each (a1, . . . , ak) ∈ Hk, output Corr
Mf

z1,...,zk,a1,...,ak .

The analysis of the list-decoding algorithm is similar to that of [11] and we
omit it in this version. It leads to the following lemma.

Lemma 4. If h is a homomorphism s.t. agree(h, f) ≥ 1
p + ε then

Prx[Mf
z1,...,zk,h(z1),...,h(zk)(x) = h(x)] ≥ 7/8,

with probability 1
2 over the choice of z1, . . . , zk ∈ G.

Proof of Lemma 2
Let h be a homomorphism that agrees with f on a 1

p + ε fraction of points.

Consider the oracle Mf
z1,...,zk,h(z1),...,h(zk) (where the ai are “consistent” with h).

By Lemma 4, Mf
z1,...,zk,h(z1),...,h(zk)(x) is correct on at least 15

16 > 7
8 of the x ∈ G,

and thus Corr
Mf

z1 ,...,zk,h(z1),...,h(zk) computes h on all of G with probability at
least 3

4 . It follows that each high-agreement homomorphism will appear w.h.p
in the final list if the execution of the algorithm is repeated a constant number
of times. This completes the proof of the lemma.

6 Homomorphism Tester

In this section we will prove a result of Kiwi using techniques related to Section
4. The result says that the 3 query linearity tester given below for homomor-
phisms in Hom(Zn

p , μp) has very good acceptance probability/maximum agree-
ment trade-offs. In particular, its performance is far better than that of the
BLR [3] test for p > 2.

Local Decoding and Testing for Homomorphisms 383

Given f : Zn
p → μp.

We are analyzing the following linearity test:

– Pick x, y ∈ Zn
p , α, β ∈ Z∗

p uniformly at random
– Accept if f(αx + βy) = f(x)αf(y)β , else reject.

Kiwi [8] analyzed this test to get the following theorem.

Theorem 3. Suppose f passes the above test with probability δ, then f has
agreement at least δ with some homomorphism in Hom(Zn

p , μp).

In fact, [8] proved a more general result for testing vector-space homomorphisms
over any finite field Fn

q → Fq, not necessarily over prime fields. His proof uses the
MacWilliams identities and properties of the Krawchouk polynomials. Here we
give a simple proof of the above theorem using elementary Fourier analysis. Our
proof also generalizes to the case of vector-space homomorphisms (using Trace
functions) though we don’t include the proof in this version.

Proof. The proof will use Fourier analysis, and modeled along the general lines
of the argument in [2] (i.e., expressing agreement and acceptance probabilities
in terms of Fourier coefficients).

For η ∈ μp, define S(η) = Ec∈Z∗
p
[ηc]. It is easily seen that

S(η) =
{

1, if η = 1
−1
p−1 , otherwise

Recall that every homomorphism from Zn
p → μp is a character χt for some

t ∈ Zn
p , where χt(x) = e2πi(t·x)/p. For f : Zn

p → C, the Fourier coefficient f̂(t)
is defined to be Ex∈Zn

p
f(x)χt(x). We will assume some familiarity with basic

properties of characters and Fourier coefficients in this version of the paper.
For t ∈ Zn

p let ρt be the agreement of f with χt. We shall prove that δ ≤
maxt∈Zn

p
ρt. This will prove the result.

We begin by finding an explicit formula for ρt in terms of the Fourier coeffi-
cients.

ρt −
1

p− 1
(1 − ρt) = Ex∈Zn

p
[S(f(x)χt(x))] = Ex∈Zn

p ,c∈Z∗
p
[f(x)cχt(x)c] (1)

= Ec∈Z∗
p
Ex∈Zn

p
[f(x)cχct(x)] = Ec∈F ∗

p
[f̂ c(ct)] (2)

We now find a similar formula for δ and perform some manipulations that
allow us to relate it to our formula for ρt.

δ − 1
p− 1

(1− δ) = Ex,y∈Zn
p
Eα,β∈Z∗

p

[
S
(
f(x)αf(y)βf(αx + βy)−1)] (3)

= Ex,y∈Zn
p
Eα,β∈Z∗

p

[
Ec∈Z∗

p
[f(x)cαf(y)cβf(αx + βy)−c]

]
(4)

= pnEx,y,zEα′,β′,γ′

[
f(x)α′

f(y)β′
f(z)γ′

1(α′x + β′y + γ′z = 0)
]

(5)

384 E. Grigorescu, S. Kopparty, and M. Sudan

where we substituted α′ = cα, β′ = cβ, γ′ = −c, z = αx + βy (and one verifies
that z = αx + βy is equivalent to α′x + β′y + γ′z = 0). Note that since γ′ ∈ Z∗

p,
the probability that a random z ∈ Zn

p is such that α′x + β′y + γ′z = 0 is 1
pn .

(5) = pnEx,y,zEα′,β′,γ′

[
f(x)α′

f(y)β′
f(z)γ′

Et∈Zn
p
[χt(α′x + β′y + γ′z)]

]
= pnEt

[
Eα′,β′,γ′Ex

[
f(x)α′

χα′t(x)
]

Ey

[
f(y)β′

χβ′t(y)
]

Ez

[
f(z)γ′

χγ′t(z)
]]

=
∑

t

[
Eα′,β′,γ′

[
ˆfα′(α′t) ˆfβ′(β′t) ˆfγ′(γ′t)

]]
=
∑

t

(
Eα′∈Z∗

p
[ˆfα′(α′t)]

)3

=
∑

t

(
ρt −

1
p− 1

(1− ρt)
)3

(By (2))

Simplifying the last expression and using Proposition 3 we get δ ≤ maxt ρt.

Acknowledgments

Thanks to Amir Shpilka for many valuable discussions.

References

1. Michael Ben-Or, Don Coppersmith, Michael Luby, Ronitt Rubinfeld, Non-Abelian
Homomorphism Testing, and Distributions Close to their Self-Convolutions. RAN-
DOM 2004.

2. Mihir Bellare and Don Coppersmith and Johan H̊astad and Marcos Kiwi and
Madhu Sudan. Linearity testing over characteristic two. IEEE Transactions on
Information Theory, 42(6), 1781-1795, 1996.

3. Manuel Blum and Michael Luby and Ronitt Rubinfeld. Self-Testing/Correcting
with Applications to Numerical Problems. Journal of Computer and System Sci-
ences, 47(3), 549-595, 1993.

4. Oded Goldreich and Leonid Levin. A hard-core predicate for all one-way functions.
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, 25–32,
1989

5. Oded Goldreich and Ronitt Rubinfeld and Madhu Sudan. Learning polynomi-
als with queries: The highly noisy case. SIAM Journal on Discrete Mathematics,
13(4):535-570, 2000.

6. Venkatesan Guruswami and Madhu Sudan. List decoding algorithms for certain
concatenated codes. Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing, 181-190, 2000.

7. Marcos Kiwi , Frédéric Magniez , Miklos Santha. Exact and approximate test-
ing/correcting of algebraic functions: A survey. Theoretical Aspects of Computer
Science, Teheran, Iran, Springer-Verlag, LNCS 2292, 30-83, 2002.

8. Marcos Kiwi. Testing and weight distributions of dual codes. Theoretical Computer
Science, 299(1–3):81-106, 2003.

Local Decoding and Testing for Homomorphisms 385

9. Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier
spectrum. SIAM Journal on Computing 22(6):1331-1348, 1993.

10. Dana Moshkovitz, Ran Raz. Sub-Constant Error Low Degree Test of Almost Linear
Size, STOC 2006.

11. Madhu Sudan and Luca Trevisan and Salil Vadhan. Pseudorandom generators
without the XOR lemma, Proceedings of the 31st Annual ACM Symposium on
Theory of Computing 537-546, 1999.

12. Madhu Sudan. Algorithmic Introduction to Coding Theory. Lecture Notes, 2001.
13. Amir Shpilka and Avi Wigderson. Derandomizing Homomorphism Testing in Gen-

eral Groups. Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 427-435, 2004.

14. L. Trevisan. Some Applications of Coding Theory in Computational Complexity.
Survey Paper. Quaderni di Matematica 13:347-424, 2004

Worst-Case Vs. Algorithmic Average-Case
Complexity in the Polynomial-Time Hierarchy

Dan Gutfreund�

Division of Engineering and Applied Sciences,
Harvard University, Cambridge, MA 02138

danny@eecs.harvard.edu

Abstract. We show that for every integer k > 1, if Σk, the k’th level
of the polynomial-time hierarchy, is worst-case hard for probabilistic
polynomial-time algorithms, then there is a language L ∈ Σk such that
for every probabilistic polynomial-time algorithm that attempts to de-
cide it, there is a samplable distribution over the instances of L, on which
the algorithm errs with probability at least 1/2 − 1/poly(n) (where the
probability is over the choice of instances and the randomness of the
algorithm). In other words, on this distribution the algorithm essentially
does not perform any better than the algorithm that simply decides ac-
cording to the outcome of an unbiased coin toss.

1 Introduction

Suppose that NP is worst-case hard. This means that every efficient algorithm A
fails to solve SAT correctly on an infinite sequence of instances . A very natural
question is the following: given the description of such an algorithm A, how hard
is it to generate instances from this sequence? I.e. given an input length n, what
is the complexity of finding an instance of length n on which A errs (and assume
for now that for every n such an instance exist). Clearly, by exhaustive search one
can do that in exponential time. Surprisingly, Gutfreund, Shaltiel and Ta-Shma
[GSTS05] showed that it can actually be done in probabilistic polynomial-time
with a constant probability of success.

Let A be a probabilistic polynomial-time algorithm trying to decide some
language L. We say that a distribution DA over instances of L is δ-hard for A,
if with probability at least δ, A fails to decide correctly whether an instance x
drawn from DA is in L or not (where the probability is over the choice of x and
the randomness of A).

Informally, the result of [GSTS05] says that if NP ⊆ BPP, then there exist a
language L ∈ NP such that for every probabilistic polynomial-time algorithm A
that tries to decide L, there exists a polynomial-time samplable distribution DA

that is δ-hard for A, where 0 < δ < 1 is some universal constant. By standard
techniques, the result of [GSTS05] extends to any level of the polynomial-time

� Research supported by ONR grant N00014-04-1-0478. Part of this research was done
while the author was at the Hebrew University.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 386–397, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Worst-Case Vs. Algorithmic Average-Case Complexity 387

hierarchy. I.e. for every integer k > 0, Σk ⊆ BPP implies that there is a language
L ∈ Σk such that for every efficient algorithm that attempts to decide L, there
exists a δ-hard samplable distribution (with the same constant δ).

While the proof of [GSTS05] do not try to optimize δ, their technique imposes
a barrier of 1/3 on this constant. We will explain later the origin of this barrier
(see Section 3.2). The authors of [GSTS05] ask whether this constant δ can be
improved. In particular, whether it can be arbitrarily close to 1/2. Note that
1/2 is the best one can hope for since an algorithm that decides according to
an unbiased coin toss will always give a correct answer (on every instance) with
probability 1/2.

In this paper we partially solve this open question. While we cannot improve
the constant δ for NP, we can do so for every other level of the polynomial-time
hierarchy (from the second and up). We show,1

Theorem 1. For every integer k > 1 and a constant c > 0, there exist a lan-
guage L ∈ Σk, such that if Σk ⊆ BPP then for every probabilistic polynomial-
time algorithm A that tries to decide L, there exists a polynomial-time samplable
distribution DA that is (1/2− n−c)-hard for A.

In other words, we show that if Σk is worst-case hard for efficient probabilistic
algorithms, then for every such algorithm that tries to decide some language
L ∈ Σk, there exist a samplable distribution on which the algorithm essentially
does not preform any better than the simplest algorithm one can think of. I.e.
the one that decides according to the outcome of an unbiased coin toss!

In fact, we show that the statement of Theorem 1 already holds for the class
PNP
|| of languages that can be decided by a deterministic polynomial-time Turing

machine that has a non-adaptive access to an NP-oracle (see the statement of
Theorem 5).

1.1 Motivation

Understanding the connections between worst-case and average-case complexi-
ties is fundamental to the fields of computational complexity and the foundations
of cryptography. Worst-case complexity is a convenient and standard measure.
On the other hand, average-case complexity may be a more realistic approach to
measure the complexity of problems on instances that actually appear in prac-
tice. Furthermore, having access to an average-case hard problem, or in other
words, being able to efficiently produce instances that are hard to solve, can be
used for cryptography or derandomization.

It is well known that for complexity classes that contain the polynomial-time
hierarchy, such as EXP, PSPACE and P, their worst-case hardness (against
small circuits, or efficient algorithms) is equivalent to their average-case hard-
ness (with respect to the uniform distribution) [Lip91, BFNW93, IW97, STV99,
TV02]. However, such connections are not known to hold for NP or any other
level of the polynomial-time hierarchy. The general techniques that are used to
1 In Section 3 we give a more formal statement using the notations of [GSTS05].

388 D. Gutfreund

prove worst-case/average-case connections for EXP and PSPACE do not apply
to these seemingly lower classes. Furthermore it is known that certain proof
techniques are unlikely to prove worst-case/average-case connections within the
polynomial-time hierarchy [FF93, BT03, Vio03, GTS06].

The average-case complexity that we study here (and in [GSTS05]) is different
to the standard notion that is used in, e.g., cryptography. In the standard setting
that was defined by Levin [Lev86] (see also [Imp95]), a language is average-case
hard if there exist a single samplable distribution that is hard for every efficient
algorithm. Here we study the notion that was formulated by Kabanets [Kab01],
in which the order of quantifiers is swapped. That is, now a language is hard on
the average if for every efficient algorithm there exist a (possibly different) hard
distribution. This notion seems to better capture ”easiness” on the average, and
we therefore refer to it as algorithmic average-case complexity (see [GSTS05] for
a more detailed discussion about the two notions).

The result of [GSTS05] can be seen as a weak form of worst-case to average-
case reduction within NP, and it is the first such connection under a natural
notion of average-case complexity. Hopefully, it is a first step towards establish-
ing worst-case/average-case connections in the usual sense of average-case com-
plexity. Indeed very recently, Gutfreund and Ta-Shma [GTS06] used [GSTS05]
to obtain new connections between derandomization, worst-case hardness and
average-case hardness (under the standard notion) in a setting in which no such
connections were known previously. We therefore believe that further investigat-
ing this notion of average-case complexity is an important task.

The applications of average-case hardness to cryptography and derandomiza-
tion require extremely hard on the average languages. I.e. languages for which
there is a samplable distribution (typically the uniform one) that is (1/2 −
1/p(n))-hard for an arbitrary large polynomial p(n). Thus obtaining optimal
hardness on the average from worst-case hardness, as we do in this paper, may
hopefully find applications in cryptography or complexity theory.

Finally we mention that the average-case notion studied here is most suit-
able to understanding the power of heuristics for hard problems. As explained
in [GSTS05], their result says that if NP is worst-case hard then no heuris-
tic for SAT can do too well on every samplable distribution. In other words,
every heuristic that solves SAT well in practice, must be bound to a specific
samplable distribution (or a family of distributions). Still, their result left open
the possibility that there is a heuristic that does quite well on every samplable
distribution, i.e. succeeds with probability 2/3. In this paper we show that for
complete problems in higher levels of the hierarchy even this is impossible.

2 Preliminaries

We assume that the reader is familiar with standard complexity classes such as
NP and BPP. We define inductively the levels of the polynomial-time hierarchy:
Σ1 = NP, and Σk+1 = NPΣk . Where NPA represents the class of languages
that can be decided by a polynomial-time nondeterministic oracle machine with

Worst-Case Vs. Algorithmic Average-Case Complexity 389

access to an oracle that solves some problem in the class A. The polynomial-time
hierarchy is defined to be PH =

⋃
k Σk. PNP is the class of languages that can

be decided by a deterministic polynomial-time oracle machine that has access to
an NP-oracle. PNP

|| is the same class with the restriction that the machine can
only make non-adaptive queries to the NP-oracle.

For a language L ⊆ {0, 1}∗, L(x) is the characteristic function of L, i.e.
L(x) = 1 if x ∈ L and 0 otherwise. For a string y ∈ {0, 1}∗, we denote by yi the
i’th bit in the string. [n] denotes the set {1, . . . , n}. For a set S we denote by
x ∈R S that x is chosen uniformly from S. A distribution D over {0, 1}∗ is an
ensemble of distributions {Dn}n∈IN, where Dn is a distribution over {0, 1}n. For
a distribution D we denote by x← D, that x is a sample from D. Let A(·; ·) be a
probabilistic TM, using m(n) bits of randomness on inputs of length n. We say
that A is a sampler for the distribution D = {Dn}n∈IN, if for every n, the random
variable A(1n; y) is distributed identically to Dn, where the distribution is over
the random string y ∈R {0, 1}m(n). In particular, A always outputs strings of
length n on input 1n. If A runs in time t(n) we say that D is samplable in time
t(n). If t(n) is a fixed polynomial, we simply say that D is samplable.

2.1 The Class Pseudo BPP

We now define the average-case notion used in [GSTS05].

Definition 1. Let L ⊆ {0, 1}∗ be a language, D = {Dn}n∈IN a distribution over
{0, 1}∗, A(·; ·) a probabilistic algorithm, and δ(n) : IN→ [0, 1]. We say that D is
(δ(n), L)-hard for A if for every large enough n,

Pr
x←Dn,r

[A(x; r) = L(x)] ≥ δ(n)

If the above holds only for infinitely many n’s we say that D is infinitely often
(δ(n), L)-hard for A.

We now define average-case classes under this notion. We use the definition and
notations of Kabanets [Kab01].

Definition 2. (Pseudo BPP) Let δ(n) : IN → [0, 1]. We say that L ∈
Pseudo1−δ(n) BPP if there exists a probabilistic polynomial-time algorithm A,
such that no samplable distribution is infinitely often (δ(n), L)-hard for A.

In this notation, the result of [GSTS05] (generalized to the polynomial time
hierarchy) is,

Theorem 2. For some universal constant 0 < δ < 1/3, and for every integer
k ≥ 1,

Σk ⊆ BPP ⇒ Σk ⊆ Pseudo1−δ BPP

390 D. Gutfreund

2.2 List-Decodable Codes

Definition 3. A binary code C = {Cn} is a family of bijections Cn : {0, 1}n →
{0, 1}m(n).

A binary code C is (ε, �)-list-decodable if for every n and every x ∈ {0, 1}m,

|{y ∈ {0, 1}n : Δ(x,Cn(y)) ≤ 1/2− ε}| ≤ �

where Δ is the relative Hamming distance.
A binary (ε, �)-list-decodable code C is computationally efficient if there is a

pair of algorithms (Enc,Dec), such that,

1. Enc computes the function Cn for every n, and its running time is polyno-
mial in n and 1

ε . (In particular, m(n, ε) = poly(n, 1
ε).)

2. Dec, on input x ∈ {0, 1}m, outputs all the strings y ∈ {0, 1}n such that
Δ(x,Cn(y)) ≤ 1/2 − ε. Its running time is polynomial in n and 1

ε . (In
particular, � = �(n, ε) = poly(n, 1

ε).)

Theorem 3. [STV99] A computationally efficient binary (ε, �)-list-decodable
code exists.

3 The Main Theorem and an Overview of the Techniques

3.1 The Main Theorem

We now state our main theorem (Theorem 1) in a formal way, using the notations
from Section 2.1.

Theorem 4. For every integer k > 1 and constant c > 0,

Σk ⊆ BPP ⇒ Σk ⊆ Pseudo1/2+n−c BPP

The theorem follows directly from the following theorem.

Theorem 5. For every constant c > 0,

NP ⊆ BPP ⇒ PNP
|| ⊆ Pseudo1/2+n−c BPP

The proof of Theorem 5 appears in Section 4. To see why Theorem 4 follows
from Theorem 5, note that for every integer k > 1, PNP

|| ⊆ Σk. Also it is well
known that NP ⊆ BPP if and only if Σk ⊆ BPP (again for every k > 1).
Therefore Σk ⊆ BPP ⇒ NP ⊆ BPP ⇒ PNP

|| ⊆ Pseudo1/2+n−c BPP ⇒ Σk ⊆
Pseudo1/2+n−c BPP. In fact, this shows that the statement of Theorem 4 holds
for every class that is contained in the polynomial-time hierarchy and contains
the class PNP

|| .
The rest of this section is devoted to a discussion about the techniques. We

start by explaining why previous techniques fail to prove Theorem 5, and in
particular we explain the origin of the 1/3 barrier in [GSTS05]. We then describe
our techniques.

Worst-Case Vs. Algorithmic Average-Case Complexity 391

3.2 [GSTS05] and the 1/3 Barrier

Let us briefly recall what is shown in [GSTS05]. They show how to construct,
given a description of an algorithm A, a samplable distribution DA such that
if A does too well on DA then a modification of A actually solves SAT on the
worst-case. Thus they obtain a contradiction to the worst-case hardness of NP.

The proof shows how to efficiently generate a distribution over triplets of
Boolean formulas of the form ψ = φ(α1, . . . , αi, xi+1, . . . , xn), ψ0 = φ(α1, . . . , αi,
0, xi+2, . . . , xn), and ψ1 = φ(α1, . . . , αi, 1, xi+1, . . . , xn). Where φ is a formula on
n Boolean variables and α1, . . . , αi is a partial assignment to these variables. The
analysis shows that A must give, with high probability, contradicting answers
regarding the satisfiability of these formulas (i.e. claiming that ψ is satisfiable
while ψ0 and ψ1 are not). In other words at this point we know that A must err
on at least one of these formulas. The problem is that the formulas are obtained
probabilistically. So it is possible that the probability over the coin tosses of
the procedure that generates ψ, ψ0, ψ1, that the first, the second, or the third
formula is the hard one for A, is the same probability 1/3, while A gives the
correct answer on the other two. Thus the best we can do is to pick one of the
three at random. Therefore with probability at most 1/3 we obtain an instance
on which A makes an error.

The natural approach to obtain an even harder language on the average, is
to apply standard hardness amplification techniques such as Yao’s XOR Lemma
[Yao82], and more generally direct product theorems. It turns out that this
approach does not work for our algorithmic average-case notion (i.e. for pseudo
classes). Roughly speaking, the reason is that in our setting, sampling from a
hard distribution for a specific algorithm may take more time than running the
algorithm. In particular the algorithm cannot run subroutines that sample from
the distribution that is hard for it. In all the direct product proofs, the algorithm
is required to run a reduction from a mildly hard on the average language to an
extremely hard on the average language, and this reduction samples from the
hard distribution for the algorithm.

3.3 Our Technique

Our proof is inspired by the argument of Sudan, Trevisan and Vadhan [STV99]
that shows the equivalence between the worst-case complexity and average-case
complexity of EXP. Similar to their proof, we will encode the truth-tables of
a langauge (SAT in our case) at different lengths, to obtain truth-tables of a
new language. We will argue that unless SAT is easy on the worst-case, the new
language must be extremely hard on the average (in the algorithmic notion of
average-case complexity).

As in [STV99] our encoding will be a concatenation of two codes, however,
for our first encoding we will not use an error correcting code as they do,2 but

2 Using an error-correcting code results in a language that is computable in
exponential-time, while we want this language to be computable within the
polynomial-time hierarchy.

392 D. Gutfreund

rather an encoding that encodes satisfying assignments. Roughly speaking, it
will have the property that if an oracle can compute correctly an ε fraction of
the entries in the encoded word, then we can use this oracle to solve the search
problem of SAT on an ε fraction of SAT instances (solving the search problem
on a given Boolean formula means to find a satisfying assignment if it exists and
to answer ”unsatisfiable” otherwise).

To justify the usefulness of this type of encoding, we make the following ob-
servation: when applying the argument of [GSTS05] directly on algorithms that
are trying to solve the search problem of SAT (rather than the decision problem),
the 1/3 barrier does not show up. That is, if an efficient algorithm solves the
search problem with probability at least ε on every samplable distribution, then
the algorithm actually solves SAT on the worst-case.

To obtain such an encoding, we use a “parallel” search to decision reduction
due to Ben-David et. al. [BDCGL90], that is based on the reduction to unique
solutions of Valiant and Vazirani [VV86]. This (randomized) reduction shows
how to solve the search problem of SAT given an oracle that solves the decision
problem. For every SAT instance, the encoding will contain a (non-Boolean)
entry of the answers an NP-oracle would give to the queries that the reduction
makes on that instance. Since the reduction is randomized, our encoding will
contain a different entry for every possible random string for the reduction.

Finally, we will concatenate the first encoding with a good binary list-
decodable code. That is, we will use such a code to encode each entry in the
first code. This step, as in [STV99], follows the reasoning of Goldreich and
Levin [GL89].

The final encoding will be the truth table of our new language. We will show
that if an efficient algorithm solves this language with probability at least 1/2+ε
with respect to every samplable distribution, then we can solve the search prob-
lem of SAT with probability (approximately) ε with respect to every samplable
distribution. This means, by our first observation, that we can solve SAT on ev-
ery input. However, this contradicts the hypothesis that NP is worst-case hard.

4 The Proof of Theorem 5

4.1 Finding Incorrect Instances for Search Algorithms

Our first observation is that the argument of [GSTS05] gives a better conclusion
when applied directly to search algorithms. That is, if NP is worst-case hard, we
can efficiently sample (with high probability over the the coins of the sampler)
a formula on which the algorithm errs (with high probability over the coins of
the algorithm). We make this statement precise in Lemma 1 below. The proof of
the lemma, which is omitted due to space limitations,3 follows the outline and
the ideas of [GSTS05]. In our case, though, we need to be much more accurate
with the analysis of the success probability.
3 The proof appears in a longer version of this paper that can be obtained from

http://www.eecs.harvard.edu/˜danny.

Worst-Case Vs. Algorithmic Average-Case Complexity 393

Lemma 1. If NP ⊆ BPP then for every constant b > 0, and every probabilistic
polynomial-time algorithm SSAT that tries to solve the search problem of SAT,
there is a constant δ > 0 and a samplable distribution that for infinitely many
input lengths samples with probability at least 1 − 2−nδ

, a formula for which
SSAT gives the correct answer (a satisfying assignment or ’no’) with probability
at most n−b (over its random coin tosses).

4.2 A “Parallel” Search to Decision Reduction

The next ingredient in our proof is a (randomized) search to decision reduction
due to Ben-David et. al. [BDCGL90]. The reduction is based on the reduction to
unique solutions of Valiant and Vazirani [VV86]. Here we will use an alternative
reduction to unique solutions that is based on the isolation lemma of Mulmuley,
Vazirani and Vazirani [MVV87].4

In Figure 1 we present this reduction. Namely, we describe an algorithm that
solves the search problem of SAT given access to an oracle that solves the decision
problem of SAT.

Input: A Boolean formula φ on n variables. An oracle B that decides SAT correctly.
Output: A satisfying assignment if φ is satisfiable, and ’no’ otherwise.
The algorithm: 1. Choose uniformly a (weight) function w : [n] → [ne] (for now

e will be a parameter, we will set it later). We look at strings y ∈ {0, 1}n as
characteristic vectors of subsets from the universe [n]. We define w(y) to be
the sum of the weights that w assigns to the elements of the set characterized
by y.

2. For every k ∈ [ne+1] and i ∈ [n], reduce the following NP-statement: “there
exists a satisfying assignment y to φ, such that w(y) = k, and yi = 1”, to a
Boolean formula xk,i. Run B on all the formulas thus generated.

3. For every k ∈ [ne+1], generate the following assignment αk to φ: set the i’th
bit of αk to 1, if B said ’yes’ on xk,i, otherwise set it to 0.

4. If for some k, αk satisfies φ, output αk. Otherwise output ’no’.

Fig. 1. An algorithm for the search problem of SAT

Claim. For every φ, with probability at least 1 − n−e+1, the algorithm from
Figure 1 outputs the correct answer (a satisfying assignment if it exists and
otherwise ’no’).

Proof. [Sketch] If φ is not satisfiable then the algorithm never errs. Now assume
that φ is satisfiable. By the isolation lemma [MVV87], with probability at least
1−n−e+1 over the choice of w, there exists a k ∈ [ne+1] such that there is exactly
one assignment y that satisfies φ and w(y) = k. In this case αk = y and the
algorithm finds a satisfying assignment.
4 Our proof also works with the reduction of [VV86], but it is somewhat more conve-

nient to use [MVV87].

394 D. Gutfreund

4.3 The Proof of the Theorem

We can now prove Theorem 5.

Proof. Let us assume for contradiction that NP ⊆ BPP, but PNP
|| ⊆

Pseudo1/2+n−c BPP for some constant c > 0. Set e = 4c + 1.
Let φ be a Boolean formula over n variables (we will assume w.l.o.g. that

|φ| = n). Let w : [n] → [ne] be a (weight) function. Define the function fφ,w :
[ne+1] × [n] → {0, 1} as follows, fφ,w(k, i) = 1 if and only if there exists a
satisfying assignment y to φ, such that w(y) = k, and yi = 1. We also denote
by fφ,w the truth-table (of length ne+2) of the function. Let ε = ε(n) = n−2c/8,
and let C = {Cn} be the computationally efficient (ε, �)-list-decodable code from
Theorem 3. Define the language L whose instances are triples (φ,w, j) where
φ,w are as above, and j ∈ [m], where m = m(n, ε) is the length of encoded
words in the code Cne+2 . We define L(φ,w, j) = Cne+2(fφ,w)j (i.e. the j’th bit
of the encoded word).

First we observe that L ∈ PNP
|| . On inputs φ,w, j we generate in polynomial-

time the formulas xk,i from the search to decision reduction in Figure 1. We
then ask the NP oracle in parallel all the queries xk,i for 1 ≤ k ≤ ne+1 and
1 ≤ i ≤ n. This gives us the truth-table of fφ,w. We then compute Cne+2(fφ,w)
in polynomial-time using the algorithm Enc from Definition 3, and output the
j’th bit of the encoded word.

Next we want to show that our assumption that L ∈ Pseudo1/2+n−c BPP,
contradicts our assumption that NP ⊆ BPP. Let A(·; ·) be a probabilistic
polynomial-time algorithm that for every samplable distribution, for every large
enough n, decides L correctly with probability at least 1/2+n−c (over the choice
of instances and the random coins of the algorithm). We denote by r the ran-
dom coins of A (on input of length n, |r| = poly(n)). For a Boolean formula φ of
length n, and w, j as above, we define n′ = |(φ,w, j)|. note that for large enough
n, n′ ≤ n2.

In Figure 2 we define an algorithm SSAT that attempts to solve the search
problem of SAT by using the algorithm A.

Since A runs in time poly(n′) = poly(n), and C is an efficiently computable
list-decodable code, the running time of SSAT is polynomial in n.

By our assumption, NP ⊆ BPP. Therefore, by Lemma 1, there exists a con-
stant δ > 0, and a samplable distribution D = {Dn}, that for infinitely many
n’s outputs with probability greater than 1− 2−nδ

a formula φ on which SSAT
answers the correct answer with probability at most n−2c/2.

Define the samplable distribution D′ on instances of L as follows: sample a
formula φ of length n from D (and assume w.l.o.g. that φ is over n variables).
Then sample uniformly a weight function w : [n] → [ne], and j ∈ [m]. Output
(φ,w, j). By our assumption, for every large enough n′, A decides L correctly
with probability at least 1/2+n′−c ≥ 1/2+n−2c over an instance sampled from
D′ and the random coins of A. We say that φ is good if,

Pr
w,j,r

[A((φ,w, j); r) = L(φ,w, j)] > 1/2 + n−2c/2

Worst-Case Vs. Algorithmic Average-Case Complexity 395

Input: A Boolean formula φ on n variables.
Output: A satisfying assignment if φ is satisfiable, and ’no’ otherwise.
The algorithm: Repeat the following n2c+2 times:

1. Choose uniformly a (weight) function w : [n] → [ne+1].
2. Repeat the following n2c+2 times:

(a) Choose random coins r for A, appropriate for input length n′ (recall that
n′ = |(φ, w, j)|).

(b) For every 1 ≤ j ≤ m query A on input (φ, w, j) and randomness r. Let
ā = (a1, . . . , am) be the answers of A.

(c) Run the decoding algorithm Dec from Definition 3 on ā to obtain a list
of � = poly(1/ε) = poly(n) strings, β1, . . . β�, in {0, 1}ne+2

.
(d) We look at each βs ∈ {0, 1}ne+2

as if it is the vector of answers given
by the oracle B, from the search to decision reduction in Figure 1, on
the queries xk,i (Step 2 of the reduction). For every 1 ≤ s ≤ � and
1 ≤ k ≤ ne+1, we obtain the assignment αs

k as it is done in Step 3 of the
reduction.

(e) If for some s and k, αs
k satisfies φ then output this assignment and halt.

If we haven’t halted until now then output ’no’.

Fig. 2. The algorithm SSAT

By triangle inequality,

Pr
φ←Dn

[φ is good] ≥ n−2c/2

Next we show that with high probability SSAT does well on good φ’s. Clearly,
when φ is not satisfiable, SSAT always output ’no’ (regardless if φ is good or
not). Fix a good satisfiable formula φ. We say that w is good for φ if the following
holds,

1. Prj,r[A((φ,w, j); r) = L(φ,w, j)] > 1/2 + n−2c/4, and,
2. w defines a unique satisfying assignment for φ (in the sense described in the

proof of Claim 4.2).

By the above and the isolation lemma (see the proof of Claim 4.2),

Pr
w

[w is good for φ] ≥ n−2c/4− n−e+1 > n−2c/8

(Recall that e = 4c + 1.) Since SSAT runs n2c+2 iterations with independent
choices of w, with probability at least 1 − 2−n it chooses a good w for φ in at
least one of the iterations. Let us concentrate on this iteration, and fix a good
w for φ. We say that r is good for φ and w if,

Pr
j

[A((φ,w, j); r) = L(φ,w, j)] > 1/2 + n−2c/8

396 D. Gutfreund

Since φ and w are good, it holds that,

Pr
r

[r is good for φ and w] ≥ n−2c/8

SSAT runs n2c+2 iterations with independent choices of r, so with probability
at least 1−2−n it chooses a good r for φ and w in at least one of the iterations. Let
us concentrate on this iteration. Whenever φ,w and r are good, the vector ā (of
A’s answers) in Stage 2b of the algorithm SSAT, agrees with the language L on at
least 1/2+n−2c/8 points. When this happens, one of the strings β1, . . . , β� is the
truth-table of fφ,w. This is because ā is (1/2+n−2c/8)-close to Cne+2(fφ,w). Since
w is good for φ, it defines a unique assignment that satisfies φ, and thus, as in the
proof of Claim 4.2, at least one of the assignments αs

k will satisfy φ, and SSAT
will give the correct answer on φ. We conclude that on good φ’s, SSAT gives
the correct answer with very high probability, certainly greater than n−2c/2.
However, Dn samples a good φ with probability greater than n−2c/2 > 2−nδ

and this contradicts Lemma 1.

Acknowledgements

I would like to thank Ronen Shaltiel and Amnon Ta-Shma for numerous discus-
sions about worst-case complexity, average-case complexity and beyond.

References

[BDCGL90] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory
of average case complexity. In Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, pages 379–386, 1990.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexpo-
nential simulation unless Exptime has publishable proofs. Computational
Complexity, 3:307–318, 1993.

[BT03] A. Bogdanov and L. Trevisan. On worst-case to average-case reductions
for NP problems. In Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science, pages 308–317, 2003.

[FF93] J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete
sets. SIAM Journal on Computing, 22:994–1005, 1993.

[GL89] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way
functions. In Proceedings of the 21st Annual ACM Symposium on Theory
of Computing, pages 25–32, 1989.

[GSTS05] D. Gutfreund, R. Shaltiel, and A. Ta-Shma. if NP languages are hard
in the worst-case then it is easy to find their hard instances. In Proceed-
ings of the 20th Annual IEEE Conference on Computational Complexity,
pages 243–257, 2005.

[GTS06] D. Gutfreund and A. Ta-Shma. New connections between derandomiza-
tion, worst-case complexity and average-case complexity. Submitted for
publication, 2006.

Worst-Case Vs. Algorithmic Average-Case Complexity 397

[Imp95] R. Impagliazzo. A personal view of average-case complexity. In Proceed-
ings of the 10th Annual Conference on Structure in Complexity Theory,
pages 134–147, 1995.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma. In Proceedings of the 29th
Annual ACM Symposium on Theory of Computing, pages 220–229, 1997.

[Kab01] V. Kabanets. Easiness assumptions and hardness tests: Trading time for
zero error. Journal of Computer and System Sciences, 63 (2):236–252,
2001.

[Lev86] L. Levin. Average case complete problems. SIAM Journal on Computing,
15 (1):285–286, 1986.

[Lip91] R. Lipton. New directions in testing. Proceedings of DIMACS workshop
on distributed computing and cryptography, 2:191–202, 1991.

[MVV87] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy
as matrix inversion. Combinatorica, 7(1):105–113, 1987.

[STV99] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators with-
out the XOR Lemma. In Proceedings of the 31st Annual ACM Sympo-
sium on Theory of Computing, pages 537–546, 1999.

[TV02] L. Trevisan and S. Vadhan. Pseudorandomness and average-case com-
plexity via uniform reductions. In Proceedings of the 17th Annual IEEE
Conference on Computational Complexity, pages 129–138, 2002.

[Vio03] E. Viola. Hardness vs. randomness within alternating time. In Proceed-
ings of the 18th Annual IEEE Conference on Computational Complexity,
pages 53–62, 2003.

[VV86] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique
solutions. Theoretical Computer Science, 47(1):85–93, 1986.

[Yao82] A. C. Yao. Theory and applications of trapdoor functions. In Proceed-
ings of the 23rd Annual IEEE Symposium on Foundations of Computer
Science, pages 80–91, 1982.

Randomness-Efficient Sampling Within NC1

Alexander Healy�

Division of Engineering and Applied Sciences, Harvard University,
Cambridge, MA 02138

ahealy@fas.harvard.edu

Abstract. We construct a randomness-efficient averaging sampler that
is computable by uniform constant-depth circuits with parity gates (i.e.,
in uniform AC0[⊕]). Our sampler matches the parameters achieved by
random walks on constant-degree expander graphs, allowing us to apply
a variety expander-based techniques within NC1. For example, we obtain
the following results:

– Randomness-efficient error-reduction for uniform probabilistic NC1,
TC0, AC0[⊕] and AC0: Any function computable by uniform prob-
abilistic circuits with error 1/3 using r random bits is computable
by uniform probabilistic circuits with error δ using r + O(log(1/δ))
random bits.

– Optimal explicit ε-biased generator in AC0[⊕]: There is a 1/2Ω(n)-
biased generator G : {0, 1}O(n) → {0, 1}2n

for which poly(n)-size
uniform AC0[⊕] circuits can compute G(s)i given (s, i) ∈ {0, 1}O(n)×
{0, 1}n. This resolves a question raised by Gutfreund & Viola (Ran-
dom 2004).

– uniform BP · AC0 ⊆ uniform AC0/O(n).

Our sampler is based on the zig-zag graph product of Reingold, Vadhan
and Wigderson (Annals of Math 2002) and as part of our analysis we give
an elementary proof of a generalization of Gillman’s Chernoff Bound for
Expander Walks (FOCS 1994).

1 Introduction

Over the last three decades, expander graphs have found a wide variety of appli-
cations in Theoretical Computer Science. They have been used in designing novel
algorithms, in the study of circuit complexity and to derandomize probabilistic
computation, just to name a few notable examples from this vast literature.

Many of these applications involve a random walk on an expander. That is, we
choose a random starting node v in an expander graph G, take a k-step random
walk and use the k nodes visited by this walk in some way – often as a substitute
for k independently-chosen nodes. Despite its simplicity, this process has some
remarkable sampling properties which we discuss shortly. For the moment, we
address the computational efficiency of expanders walks.

� Research supported by NSF grant CCR-0205423 and a Sandia Fellowship.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 398–409, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Randomness-Efficient Sampling Within NC1 399

In applications, one often requires an expander graph that is exponentially
large, say on 2n nodes. In this case, a random walk on the graph is performed
using an efficient explicit representation – that is, each node is identified with
an n-bit string and it is possible to efficiently (e.g., in time poly(n)) find all
the neighbors of a given node v ∈ G. Various constructions [Mar73, GG81,
LPS88, RVW02] are known of such explicit constant-degree expander graphs of
exponential size.

At first glance, a random walk on an expander graph seems like an inherently
sequential process – indeed, each step of the walk seems to rely on the previous
step in an essential way. A natural question, therefore, is whether expander-
based techniques can be applied within highly-parallel models of computation,
such as log-depth circuits (i.e., NC1) or even constant depth circuits.

The main technical contribution of this work is a sampler which is just as
good as a random walk on an expander graph (this is made precise in the next
section), but which is computable in parallel time O(log n), i.e. computable by
uniform NC1 circuits. In fact, our sampler is computable by uniform constant-
depth circuits with parity gates (i.e. AC0[⊕]), a class which is strictly weaker
than NC1 as it cannot even compute the majority of n bits [Raz87].

We now discuss the important sampling properties of random walks on ex-
pander graphs in order to better understand what properties we require of our
sampler. A more formal definition of expander graphs is given in Section 3,
but for the moment the reader may simply think of an expander graph as a
constant-degree undirected graph, G, that is “highly-connected”.

The following was first shown by Ajtai, Komlós & Szemerédi [AKS87]:

The Hitting Property: For any subset S of half the nodes of G, the probability
that a k-step random walk never visits a node in S is at most 2−Ω(k).

This hitting property is quite useful (e.g. to reduce the error of RP algo-
rithms), but some applications require an even stronger property, which we call
the strong hitting property:
The Strong Hitting Property: For any sequence of subsets S1, . . . , Sk, each
consisting of half the nodes of G, the probability that, for all i, a k-step random
walk does not pass through Si on the i-th step is at most 2−Ω(k).

The strong hitting property is what is necessary for the error reduction tech-
niques of [CW89] and [IZ89] and for the derandomized XOR Lemma of [IW97],
as well a variety of other applications.

Clearly, the strong hitting property generalizes the hitting property. Another
natural generalization of the hitting property was first proved by Gillman [Gil94]:
The Chernoff Bound for Expander Walks: For any subset S of half the
nodes of G, the fraction of time that a k-step random walk spends in S is 1/2± ε

with probability 1− 2−Ω(ε2k).
It is not clear, however, that this Chernoff Bound subsumes the strong hitting

property. The following Strong Chernoff Bound does:
The Strong Chernoff Bound for Expander Walks: Fix a sequence of sub-
sets S1, . . . , Sk, each consisting of half the nodes of G. Then for a k-step random

400 A. Healy

walk on G, the fraction of indices i such that the i-th step of the walk lands in
Si is 1/2± ε with probability 1− 2−Ω(ε2k).

Thus, the Strong Chernoff Bound subsumes all the other sampling properties
and seems to represent the essential property of random walks on expanders
that is necessary for most natural applications. This bound has only been proved
recently – it follows from a more general result of Wigderson and Xiao [WX05].

In this work, we give a direct and elementary proof of the Strong Chernoff
Bound for Expander Walks (Theorem 1). In contrast to most of the proofs in
this area, our proof uses only basic linear algebra and, in particular, does not
require any perturbation theory or complex analysis in order to obtain a bound
that matches the parameters of Gillman’s (non-strong) Chernoff bound.1

Theorem 1 (Implicit in [WX05]). Let G be a regular λ-expander2 on V . Fix
a sequence of subsets Si ⊆ V each of density ρi = |Si|/|V |, and for a random
walk v1, . . . , vk on G, let T be the random variable that counts the number of
steps i such that vi ∈ Si. Then for all ε > 0,

Pr
[∣∣∣T −∑

i
ρi

∣∣∣ ≥ εk
]
≤ 2e−ε2(1−λ)k/36.

Any omitted proofs/details can be found in the full version [Hea06].

2 Our Results

Our main result is the construction of a sampler that is computable by AC0[⊕]
circuits (see Section 3 for a definition) and possesses all the “sampling properties”
of a random walk on a constant-degree expander graphs of size 2n. To make this
notion precise, we recall the following definition (essentially from [Zuc97]):

Definition 1. A function Γ : {0, 1}m → ({0, 1}n)k is said to be a strong (γ, ε)-
averaging sampler if: for any sequence of functions fi : {0, 1}n → {0, 1} each
with mean μi = Prx[fi(x) = 1],

Pr
s

[∣∣∣∑
i
(fi(Γ (s)i)− μi)

∣∣∣ ≤ εk
]
≥ 1− γ.

m is called the seed length of the sampler, and k is its sample complexity.

Theorem 1 immediately implies that a random walk on a constant-degree ex-
pander (with λ = 1 − Ω(1)) of size 2n is a strong averaging sampler with seed
length m = n+O(log(1/γ)/ε2) and sample complexity k = O(log(1/γ)/ε2). Our
main theorem is that AC0[⊕] can compute a sampler that is just as good:

1 [WX05] also gives a proof of a (strong) Chernoff bound using no perturbation theory,
but their bound does not match Gillman’s. It should be noted, however, that [WX05]
considers the more general setting of matrix-valued functions.

2 I.e., a regular graph whose normalized second-largest eigenvalue (in absolute value)
is at most λ – see Section 3.

Randomness-Efficient Sampling Within NC1 401

Theorem 2. There is a strong (γ, ε)-averaging sampler Γ : {0, 1}m → ({0, 1}n)k,
with m = n + O(log(1/γ)/ε2) and k = O(log(1/γ)/ε2), that is computable by
uniform AC0[⊕] circuits of size poly(n, 1/ε, log(1/γ)).

At this point, the reader may wish to disregard the exact parameters of our
construction, and instead think of our construction as computing (intuitively)
a walk of length k on a constant-degree expander graph of size 2n. Indeed, in
most applications that employ random walks on expander graphs, one can safely
substitute a sampler with the above parameters in place of the expander walk.

Gutfreund & Viola [GV04] show that walks on the Gabber-Galil expander
graph [Mar73, GG81] with 2n nodes are computable in space O(log n) (and
therefore that logspace has strong samplers). To the best of our knowledge,
ours is the first work giving strong samplers within the class NC1 of log-depth
circuits; in fact, our construction is in the strictly-weaker class AC0[⊕] � TC0 ⊆
NC1 ⊆ L.

Since expander walks are a widely-applicable tool, it is not surprising that
our sampler should have a variety of applications. We mention three:

Randomness-Efficient Error Reduction within NC1: One important appli-
cation of random walks on expander graphs is in reducing the error of probabilis-
tic algorithms. Error reduction was achieved for BPP by Cohen & Wigderson
[CW89] and Impagliazzo & Zuckerman [IZ89]. Bar-Yosef et al. [BYGW99] show
how to achieve modest-but-optimal error reduction for randomized logspace, and
the expander walks of [GV04] imply randomness-efficient error reduction for the
class BP · L.3 Our sampler implies error-reduction for classes below logspace:

Lemma 1. Let f : {0, 1}n → {0, 1} be in poly(n)-size uniform BP · AC0[⊕]
(resp., BP · TC0 or BP · NC1) with error ≤ 1/3 using r = r(n) random bits.
Then for any δ ≥ 1/2O(poly(n)), f is in poly(n)-size uniform BP ·AC0[⊕] (resp.
BP · TC0 or BP ·NC1) with error ≤ δ using r + O(log(1/δ)) random bits.

Combining our sampler with Nisan’s unconditional pseudorandom generators for
constant depth circuits [Nis91], we obtain an even stronger result for AC0:

Lemma 2. Let f : {0, 1}n → {0, 1} be in poly(n)-size uniform BP · AC0 with
error ≤ 1/3 using r = r(n) random bits. Then for any δ ≥ 1/2O(poly(n)), f is
in poly(n)-size uniform BP · AC0 with error ≤ δ using min{r, polylog(n)} +
O(log(1/δ)) random bits.

Derandomization with Linear Advice: Recently, Fortnow & Klivans [FK06]
have proved that RL ⊆ L/O(n) – i.e., one can derandomize randomized logspace
computation using only a linear amount of non-uniform advice. Their approach
relies on a clever combination of Nisan’s pseudorandom generator for small space
[Nis92] and the logspace expander walks of [GV04]. Our techniques yield an
analogous result for uniform probabilistic constant-depth circuits:
3 BP · L refers to randomized logspace computations that are allowed two-way access

to the random bits, whereas the result of Bar-Yosef et al. refers to algorithms that
have only one-way access to the random bits. See the survey of Saks [Sak96] for a
discussion of different notions of randomized space-bounded computation.

402 A. Healy

Corollary 1. uniform BP · AC0 ⊆ uniform AC0/O(n).

Ajtai & Ben-Or [ABO84] show that nonuniform BP · AC0 = nonuniform AC0;
Theorem 1 quantifies the amount of nonuniformity that is necessary for this
derandomization, and thus can be viewed as a refinement of their result.

A similar approach, using a generator of Viola [Vio05], can be used to show
that BP · AC0[⊕log] ⊆ AC0[⊕]/O(n) and BP · AC0[SYMlog] ⊆ TC0/O(n),
where AC0[⊕log] is the class of poly(n)-size AC0 circuits having O(log n) parity
gates, and AC0[SYMlog] is the class of poly(n)-size AC0 circuits having O(log n)
arbitrary symmetric gates (e.g., parity and majority gates).

An Optimal Explicit ε-Biased Generator in AC0[⊕]: Gutfreund & Viola
[GV04] study the complexity of constructing explicit ε-biased generators (see
Definition 2). They give a construction in AC0[⊕] whose seed length is optimal
for ε = Ω(1/poly log log(m)) (where m is the number of output bits) and sub-
optimal for smaller ε. Healy and Viola [HV06] give an optimal construction in
TC0 and a sub-optimal construction in AC0[⊕] whose parameters are incompa-
rable to those of [GV04]. In this work, we resolve this question entirely: using
our sampler, we construct an optimal explicit ε-biased generator in AC0[⊕]:

Corollary 2 ([NN90] + [GV04] + Thm. 2). For any ε > 0 and m, there is
an ε-biased generator G : {0, 1}n → {0, 1}m, n = O(log m + log(1/ε)) for which
poly(n)-size uniform AC0[⊕] can compute G(s)i given (s, i) ∈ {0, 1}n × [m].

Proof (Outline). Following [GV04], we implement the generator of [NN90] which
requires a 7-wise independent generator (which can be constructed in AC0[⊕]
[GV04, HV06]) and an expander walk that we replace by our sampler. ��
Corollary 2 is tight in terms of seed length and complexity – see [GV04].

3 Preliminaries

ε-Biased Sets and Generators: Small-biased spaces appear in two ways in this
work: (i) poly-size ε-biased sets are used to construct expander graphs on which
our sampler is based (Lemma 3), (ii) one application of our sampler is to build
exponential-size ε-biased sets that are computable explicitly (Corollary 2).

Definition 2. A multi-set S ⊆ Fm
2 is ε-biased if for all 0 = y ∈ Fm

2 we have
Prx∈S [〈x, y〉 ≡ 0 mod 2] ∈ [1/2− ε, 1/2+ ε]. An ε-biased generator is a function
Γ : {0, 1}� → {0, 1}m whose range is an ε-biased multi-set. An explicit ε-biased
generator is a function Γ : {0, 1}�× [m]→ {0, 1} such that the function Γ ′(s) =
(Γ (s, 1), Γ (s, 1), . . . , Γ (s,m)) is an ε-biased generator.

Expander Graphs. Informally, expander graphs are sparse-yet-highly-connected
graphs. Of the various equivalent notions of graph expansion (see, e.g., [Gol99]),
we choose to work with the spectral definition.

Definition 3. A regular graph G of degree d is a λ-expander if the second-largest
eigenvalue (in absolute value) of its probability transition matrix (i.e., 1/d times
its adjacency matrix) is at most λ.

Randomness-Efficient Sampling Within NC1 403

When we refer to a “λ-expander”, we really mean a “family of λ(n)-expanders
of size s(n)” for some function s(n), and when we refer to an “expander graph”,
without mention of λ, it is understood that we mean a “(1−Ω(1))-expander”.

By a random walk v1, . . . , vk on an d-regular graph G, we mean the following
process: Choose a random starting vertex v0 ∈ G, and for i = 1, . . . , k, let vi be a
random neighbor of vi−1 in G. Note that we implicitly discard the start vertex v0
– although the distribution is unchanged if we keep v0, this convention simplifies
our presentation. Note that such a walk is described by a tuple (v0, s1, . . . , sk) ∈
[|G|]× [d]× · · · × [d], and hence by a string of O(log |G|+ k log d) bits.

Constant-DepthCircuits. We consider three classes of unbounded fan-in constant-
depth circuits: circuits over the bases {∧,∨¬} (i.e., AC0), {∧,∨,Parity ,¬} (i.e.,
AC0[⊕]), and {∧,∨,Majority ,¬} (i.e., TC0). All circuits are of polynomial
size and uniform – specifically, we adopt the standard of Dlogtime-uniformity,
which is even more restrictive than logspace-uniformity and which has become the
generally-accepted convention for uniformity in constant-depth circuits [BIS90].
Informally, a circuit is Dlogtime-uniform if, given indices of two gates, one can de-
termine the types of the gates and whether they are connected in linear time in
the length of the indices (which is logarithmic in the size of the circuit).

We indicate non-uniform circuits explicitly using slash notation: for example,
AC0/O(n) is the class of boolean functions f that are computable by Dlogtime-
uniform AC0 circuits Cn : {0, 1}n × {0, 1}O(n) → {0, 1} for which there is an
advice string an of length O(n) such that Cn(x, an) = f(x) for all x ∈ {0, 1}n.

The probabilistic classes BP ·AC0, BP ·AC0[⊕], BP ·TC0 and BP ·NC1 are
all defined in the natural way: the circuit takes two inputs, one of n bits and one
of r(n) random bits for some polynomially-bounded function r(n), and for any
fixed input x ∈ {0, 1}n, the circuit should correctly compute the function with
probability at least 2/3 over the r(n) random bits.

Recall that AC0 � AC0[⊕] � TC0 ⊆ NC1 ⊆ logspace, where the last inclu-
sion holds under logspace uniformity and the separations follow from works by
Furst et al. [FSS84] and Razborov [Raz87], respectively (and hold even for non-
uniform circuits). See, e.g., [Vol99] for background on constant-depth circuits.

4 The Sampler Construction

In this section, we describe our sampler and prove Theorem 2. Recall that our
goal is to construct a sampler Γ : {0, 1}m → ({0, 1}n)k that matches the param-
eters of random walks on expander graphs. Naturally, one way to achieve this
would be to exhibit a family of constant-degree expander graphs on 2n nodes and
show that walks of length k on these expanders can be computed in AC0[⊕] of
size poly(n, k). Unfortunately, we do not know of any such family of expanders.
Instead, we begin with a family of expander graphs of degree poly(n) where
walks are computable in AC0[⊕] – note that a walk of length k on such a graph
is described by a seed of length n + O(k · logn) – and then we derandomize the
walk on this graph to achieve the optimal seed length n + O(k). This deran-
domization uses random walks on a smaller expander graph, and its analysis is

404 A. Healy

based on the zig-zag graph product of [RVW02]. By [GV04], it is known that
AC0 circuits can compute walks of length logn on a Gabber-Galil graph of size
2n, so in the sequel we shall focus on the case where k = Ω(log n).

Our first graph, G, is a Cayley graph on the group Fn
2 . Specifically, we con-

struct a 1/n-biased set S ⊂ Fn
2 of size poly(n) (see Definition 2) and let {v, w}

be an edge if and only if v − w ∈ S. The following well-known fact guarantees
that G has second-largest eigenvalue at most 2/n (e.g., see [AR94]).

Lemma 3. A Cayley graph on Fn
2 with generators S ⊂ Fn

2 is a 2ε-expander if
and only if S is ε-biased.

Before continuing, let us see how walks on G can be computed in AC0[⊕]. First,
we note that a 1/n-biased set S of size poly(n) can be constructed in AC0.
For instance, we may use the “Powering Construction” of an ε-biased generator
from [AGHP92] together with the results on field arithmetic of [HV06].4 (For a
nonuniform construction, one could simply hardwire S into the circuit.)

Thus, given a walk (v, s1, . . . , sk) ∈ {0, 1}n×{0, 1}O(logn)×· · ·×{0, 1}O(logn),
to determine the i-th vertex visited by the walk, the circuit need only compute
from each sj (in parallel) the appropriate vector vsj ∈ S and then compute the
sum v+

∑
j≤i vsj mod 2, which is clearly computable in AC0[⊕] of size poly(n, k).

Our approach to derandomizing this walk is motivated by the zig-zag product
of Reingold, Vadhan & Wigderson [RVW02]. Roughly speaking, one may inter-
pret their results as saying: to derandomize a walk on a graph G of degree d, one
may choose the steps according to a random walk on a constant-degree expander
graph H of size d. (For technical reasons, we requires H to be the square of an
expander, but we ignore this for the moment.) Specifically,

1. Choose a random starting vertex v0 ∈ G
2. Choose a random w0∈ H ; take a random walk of length k, visiting w1, . . . , wk

3. View w1, . . . , wk as indices in [d] = [|H |]
4. Use w1, . . . , wk as the steps of a walk (starting at v0) in G
5. Output the nodes v1, . . . , vk ∈ G visited by this walk

Note that the seed length of such a sampler is |v0|+(|w0|+O(k)) = n+log |H |+
O(k) = n + O(k) (since we assume k = Ω(log n)), as desired. Moreover, one can
show that the above construction is a strong averaging sampler. What is not
clear, however, is how to compute this sampler in AC0[⊕], because it requires a
long walk on H – while H is small (only poly(n) nodes) compared to G (which
has 2n nodes), we do not know how to take such a long walk on any constant-
degree expander family in AC0[⊕] (or even in NC1). In order to circumvent this
obstacle, we use many short walks on H , rather than a single long walk.
4 Specifically, let m = log n (assuming that log n is an integer for simplicity) and

consider the finite field F22m with 22m elements (viewed as the ring of polynomials
over F2 modulo an irreducible polynomial of degree 2m). The generator outputs
24m = n4 vectors vα,β of dimension 2m = n, indexed by pairs of elements α, β ∈
F22m , where the i-th bit of vα,β is given by 〈αi, β〉 (mod 2). [AGHP92] shows that
such a generator has bias less than 2m/22m = 1/n, and [HV06] shows that all the
necessary field arithmetic can be carried out in uniform AC0 of size poly(n).

Randomness-Efficient Sampling Within NC1 405

Construction 3.
1. Choose a random starting vertex v0 ∈ G

2. Take k/ logn random walks w
(i)
1 , . . . , w

(i)
log n ∈ H for i = 1, . . . , k/ logn.

3. View w
(1)
1 , . . . , w

(1)
log n, . . . , w

(k/ log n)
1 , . . . , w

(k/ log n)
log n as indices in [d] = [|H |]

4. Use w
(1)
1 , . . . , w

(1)
log n, . . . , w

(k/ log n)
1 , . . . , w

(k/ log n)
log n as the steps of a walk in G

5. Output the nodes v1, . . . , vk ∈ G visited by this walk

This sampler has seed length |v0| + (k/ logn)(log |H | + O(log n)) = n + O(k)
(again, since we assume that k = Ω(log n)). Furthermore, we show below that
this construction is a strong averaging sampler, achieving essentially the same
parameters as a random walk on an expander graph. Before proving this, how-
ever, we observe that it is computable in AC0[⊕]. Indeed, it is known how to
compute walks of length O(log n) on poly-sized explicit expanders of constant de-
gree in AC0 [Ajt93, GV04],5 and thus each of the five steps above is computable
in constant depth. Theorem 2 is a consequence of the following lemma:

Lemma 4. Let H = H̃2 where H̃ is a constant-degree expander graph on poly(n)
nodes. Then Construction 3 is a strong averaging boolean sampler with seed length
n + O(log(1/γ)/ε2) and sample complexity O(log(1/γ)/ε2).

Proof. We employ the zig-zag product of [RVW02], which we briefly recall.

Zig-Zag Product. Let G be a regular graph of degree d on vertices VG whose
edges are labeled with the names 1, . . . , d in such a way that no two incident
edges share the same label.6 (Thus, if w is the “i-th neighbor of v”, then v is the
“i-th neighbor of w” – G, defined above, clearly has this property.) Then if g is
a regular graph on vertices Vg where |Vg| = d, we may form the zig-zag product
graph G©z g where:

– G©z g has vertices VG × Vg

– {(v, w), (v′, w′)} is an edge if there is an x ∈ g such that v′ is the x-th
neighbor of v in G and (w, x,w′) is a path in g. (Note that the labeling
condition on G ensures this is symmetric.)

Thus, to step from (v, w) ∈ G©z g, to a random neighbor (v′, w′): (i) Choose
a random neighbor x of w in g. (ii) Set v′ to be the x-th neighbor of v in G. (iii)
Choose a random neighbor w′ of x in g.

In particular, if we consider the VG-coordinate of an �-step random walk in
G©z g, it has the same distribution as the following: (i) Choose a random start
vertex v0 ∈ VG. (ii) Take a random walk w1, w2 . . . , w� in g2. (iii) For i > 0, let
vi to be the wi-th neighbor of vi−1 in G. (iv) Output v1, v2, . . . , v�.

5 As with the 1/n-biased set S above, the delicate issue here is the uniformity of the
circuits; if we only wish to give a nonuniform construction we could simply hard-wire
all the possible walks of length log n into the circuit.

6 The zig-zag product of [RVW02] actually holds in much greater generality; however,
this simplification suffices for our application.

406 A. Healy

Thus, each of of the segments of length k/ logn in our sampler corresponds to
a random walk on G©z H̃ , projected onto the VG-coordinate. For the boundaries
between these segments, Construction 3 says we choose a new, entirely-random
node of H̃ and then continue the walk on G. This is equivalent to taking a step
on G©z Kd, i.e. the zig-zag product of G with a complete graph (with self-loops)
on d nodes. Therefore, the output of our sampler is the projection onto the VG-
coordinate of a random walk on a time-varying graph that is usually G©z H̃ , and
G©z Kd once every logn steps. We now show that this satisfies Definition 1.

First we note for any function f : VG → {0, 1} there is a natural lift of f to
f̂ : VG × VH̃ → {0, 1}, defined by f̂(v, w) = f(v). It is clear that the lift f̂ has
the same average as f . Therefore, to conclude that the projection of a random
walk yields a strong averaging sampler, it suffices to show that a random walk on
the time-varying graph is a strong averaging sampler. By the remark after the
proof of Theorem 1, it does not matter if the graph is varying as long as it is a
λ-expander at every step. Thus, we are left with the task of showing that G©z H̃
and G©z Kd are expanders. For this, we use the following result of [RVW02]:

Lemma 5 ([RVW02], Corollary to Theorem 4.3). Let G be a regular graph
of degree d whose edges are labeled with 1, . . . , d in such a way that no two
incident edges share the same label, and let g be a regular graph on d nodes. If
G is a λG-expander and g is a λg-expander, then G©z g is a (λG +λg)-expander.

By Lemma 3, G is a 2/n-expander, and by assumption H̃ is a (1 − Ω(1))-
expander, and so G©z H̃ is a (1−Ω(1))-expander. Kd, the complete graph (with
self-loops) on d nodes, is a 0-expander, and therefore G©z Kd is a 2/n-expander.

Thus our sampler stretches n + O(k) bits into k n-bit samples satisfying the
bound from Theorem 1 with λ = 1 − Ω(1). Specifically, the sampler achieves
error ε with confidence 1− γ = 1− e−Ω(ε2k); i.e., the seed length is n + O(k) =
n + O(log(1/γ)/ε2) and the sample complexity is k = O(log(1/γ)/ε2). ��

5 The Proof of Theorem 1

Theorem 1. Let G be a regular λ-expander7 on V . Fix a sequence of subsets
Si ⊆ V each of density ρi = |Si|/|V |, and for a random walk v1, . . . , vk on G,
let T be the random variable that counts the number of steps i such that vi ∈ Si.
Then for all ε > 0,

Pr
[∣∣∣T −∑

i
ρi

∣∣∣ ≥ εk
]
≤ 2e−ε2(1−λ)k/36.

Wigderson and Xiao [WX05] have recently established the same bound (up to
constants). As with Gillman’s proof (which treats the case S1 = · · · = Sk), they
employ results from perturbation theory to obtain their bound. In contrast, the
proof presented here has modest prerequisites, summarized below.
7 I.e., a regular graph whose normalized second-largest eigenvalue (in absolute value)

is at most λ – see Section 3.

Randomness-Efficient Sampling Within NC1 407

Background. Let G be a regular undirected graph N nodes. G’s probability
transition matrix, P , is clearly real and symmetric, and hence the eigenvectors
of P form an orthogonal basis of RN . Since G is regular, 1 = (1, . . . , 1) is an
eigenvector with eigenvalue λ1 = 1. By the Perron-Frobenius Theorem, all other
eigenvalues λ2 ≥ . . . ≥ λn are between 1 and −1. We write λ = max{|λ2|, |λn|}.
For any v ∈ RN , v‖ denotes the component of v in the direction of 1 and v⊥

denotes the component of v that lies in the orthogonal complement of 1; i.e.,
v‖ = 〈1,v〉u and v⊥ = v − v‖ = v − 〈1,v〉u, where u = (1/N, . . . , 1/N). It is
not hard to check that ‖Pv⊥‖ ≤ λ‖v⊥‖ for any v ∈ RN .

Proof (Theorem 1). We shall bound Pr [T −
∑

i ρi ≥ εk] and the same bound will
follow for Pr [T −

∑
i ρi ≤ −εk] by replacing the sets Si with their complements.

Let r ≤ min{1, log(1/λ)/2} be a positive parameter to be specified later.

Pr

[
T ≥ εk +

∑
i

ρi

]
= Pr

[
erT ≥ er(εk+

∑
i ρi)

]
≤

E
[
erT

]
er(εk+

∑
i ρi)

(1)

where the last step follows by applying Markov’s inequality.
We now bound E

[
erT

]
. Let P be the probability transition matrix for G, and

for each set Si let Ei be a diagonal matrix with ej,j = er if j ∈ Si and ej,j = 1
otherwise. It is not hard to see that

E
[
erT

]
= 1T EkPEk−1P · · ·E1Pu. (2)

To bound this quantity, we require the following lemma whose proof we omit.

Lemma 6. Let P be as above, and assume that r ≤ log(1/λ)/2. Let S ⊆ V be
of density ρ = |S|/|V |, and let E be the diagonal matrix with ej,j = er for j ∈ S
and ej,j = 1 otherwise. Then for any v ∈ RN :

– ‖(EPv)‖‖ ≤ (1 + ρ(er − 1)) · ‖v‖‖+ (er − 1) · ‖v⊥‖
– ‖(EPv)⊥‖ ≤ (er − 1) · ‖v‖‖+

√
λ · ‖v⊥‖.

We define a sequence v0 = u and vi = EiPvi−1 for i > 0, noting that

E
[
erT

]
= 1TEkP · · ·E1Pu = 〈1,vk〉 = 〈1,v‖

k〉 ≤ ‖1‖ · ‖v
‖
k‖ =

√
N · ‖v‖

k‖. (3)

Lemma 6 yields a system of two simultaneous recurrences in the variables
‖v‖

i ‖ and ‖v⊥
i ‖. By solving these recurrences (details omitted), one can show

that that E
[
erT

]
≤
√

N · ‖v‖
k‖ ≤

∏k
i=1

(
1 + rρi + 9r2/(1− λ)

)
.

Taking logarithms and using the fact that log(1 + x) ≤ x for all x ≥ 0,
we have log E

[
erT

]
≤ k · 9r2/(1 − λ) + r ·

∑
i ρi, and thus, by Equation (1),

log Pr [T −
∑

i ρi ≥ εk] ≤ log
(
E
[
erT

])
− r (εk +

∑
i ρi) ≤ k

(
9r2

1−λ − εr
)
. We

minimize the right-hand side by setting r = ε(1− λ)/18, noting that r is indeed
at most min{1, log(1/λ)/2} simply because 1 − λ ≤ log(1/λ) for all λ ∈ [0, 1].
Finally, we have that log Pr [T −

∑
i ρi ≥ εk] ≤ −ε2(1− λ)k/36. ��

408 A. Healy

Remark 1. One can readily see that the same proof works even if the graph is
different for each of the k steps, as long as it is a λ-expander at each step, as
is required in the proof of Theorem 2. This property has been exploited before,
most notably in the hardness amplification result of Goldreich et al. [GIL+90]
(although there, they only require the hitting property of expander walks).

6 Open Questions

Expander walks are known to yield optimal samplers (up to constants) for ε =
Ω(1), but not for smaller ε. Can AC0[⊕] compute an optimal sampler?

We suspect that AC0 cannot compute samplers that match the parameters of
our AC0[⊕] construction. One approach to showing this is to use the equivalence
of samplers and extractors from [Zuc97] and show that AC0 cannot compute an
extractor for sources of high constant min-entropy. Viola [Vio04] has shown that
AC0 cannot compute an extractor for sources of low min-entropy; however, his
techniques do not seem to apply directly in this setting.

Acknowledgements

Thanks to Danny Gutfreund, Salil Vadhan and Emanuele Viola for helpful dis-
cussions, comments, suggestions and for their encouragement. Thanks also to
the anonymous Random 2006 reviewers for their comments.

References

[ABO84] Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant
depth computation. In Proceedings of STOC 1984, pp. 471–474, 1984.

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple
constructions of almost k-wise independent random variables. Random
Structures & Algorithms, 3(3):289–304, 1992.

[Ajt93] Miklós Ajtai. Approximate counting with uniform constant-depth cir-
cuits. In Advances in computational complexity theory, pp. 1–20. AMS,
1993.

[AKS87] M. Ajtai, J. Komlos, and E. Szemeredi. Deterministic simulation in
LOGSPACE. In Proceedings of STOC 1987, pp. 132–140, 1987.

[AR94] Noga Alon and Yuval Roichman. Random cayley graphs and expanders.
Random Structures & Algorithms, 5:271–284, 1994.

[BIS90] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On
uniformity within NC1. J. of Comp. & Sys. Sci., 41(3):274–306, 1990.

[BYGW99] Z. Bar-Yossef, O. Goldreich, and A. Wigderson. Deterministic amplifica-
tion of space-bounded probabilistic algorithms. In Proceedings of the 14th
Conference on Computational Complexity, pp. 188–198, 1999.

[CW89] Aviad Cohen and Avi Wigderson. Dispersers, deterministic amplification,
and weak random sources. In Proceedings of FOCS 1989, pp. 14–19, 1989.

[FK06] Lance Fortnow and Adam Klivans. Linear advice for randomized loga-
rithmic space. In Proceedings of the 23rd STACS, pp. 469 – 476, 2006.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and
the polynomial-time hierarchy. Math. Systems Theory, 17(1):13–27, 1984.

Randomness-Efficient Sampling Within NC1 409

[GG81] O. Gabber and Z. Galil. Explicit construction of linear size superconcen-
trators. Journal of Computer and System Sciences, 22:407–420, 1981.

[GIL+90] Oded Goldreich, Russell Impagliazzo, Leonid A. Levin, Ramarathnam
Venkatesan, and David Zuckerman. Security preserving amplification of
hardness. In Proceedings of FOCS 1990, pp. 318–326, 1990.

[Gil94] David Gillman. A Chernoff bound for random walks on expander graphs.
In Proceedings of FOCS 1994, pp. 680–691, 1994.

[Gol97] Oded Goldreich. A sample of samplers - a computational perspective on
sampling. Elec. Colloquium on Computational Complexity, 4(020), 1997.

[Gol99] Oded Goldreich. Modern cryptography, probabilistic proofs and pseudo-
randomness. Springer-Verlag, Berlin, 1999.

[GV04] Dan Gutfreund and Emanuele Viola. Fooling parity tests with parity
gates. In Proceedings of Random 2004, pp. 381–392, 2004.

[Hea06] Alexander Healy Randomness-efficient sampling within NC1. Elec. Col.
on Comp. Complexity, TR06-058, 2006. http://eccc.hpi-web.de/eccc/

[HV06] A. Healy and E. Viola. Constant-depth circuits for arithmetic in finite
fields of characteristic two. In Proceedings of STACS 2006, pp. 672 – 683,
2006.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma. In Proc. of STOC 1997.

[IZ89] Russell Impagliazzo and David Zuckerman. How to recycle random bits.
In Proceedings of FOCS 1989, pp. 248–253, 1989.

[LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combina-
troica, 8(3):261–277, 1988.

[Mar73] G. A. Margulis. Explicit constructions of expanders. Problemy Peredachi
Informatssi; Problems of Information Transmission, 9(4):71–80, 1973.

[Nis91] Noam Nisan. Pseudorandom bits for constant depth circuits. Combina-
torica, 11(1):63–70, 1991.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation.
Combinatorica, 12, 1992.

[NN90] J. Naor and M. Naor. Small-bias probability spaces: efficient constructions
and applications. In Proceedings of STOC 1990, pp. 213–223, 1990.

[Raz87] Alexander A. Razborov. Lower bounds on the dimension of schemes of
bounded depth in a complete basis containing the logical addition func-
tion. Akademiya Nauk SSSR. Mat. Zametki, 41(4):598–607, 623, 1987.

[RVW02] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the
zig-zag graph product and new constant-degree expanders. Annals of
Mathematics, 155(1):157–187, January 2002.

[Sak96] M. Saks. Randomization and derandomization in space-bounded computa-
tion. In Proc. of the 11th Conference on Computational Complexity, 1996.

[Vio04] E. Viola. The complexity of constructing pseudorandom generators from
hard functions. Computational Complexity, 13(3-4):147–188, 2004.

[Vio05] E. Viola. Pseudorandom bits for constant-depth circuits with few arbitrary
symmetric gates. In Proc. of 20th Conf. on Comp. Complexity, 2005.

[Vol99] Heribert Vollmer. Introduction to circuit complexity. Springer-Verlag, 1999.
[WX05] Avi Wigderson and David Xiao. A randomness-efficient sampler for

matrix-valued functions and applications. In Proceedings of FOCS 2005,
2005. See also ECCC Technical Report TR05-107, http://eccc.hpi-web.
de/eccc/.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random
Structures & Algorithms, 11(4):345–367, 1997.

Monotone Circuits for the Majority Function

Shlomo Hoory1, Avner Magen2, and Toniann Pitassi2

1 IBM Research Laboratory in Haifa, Israel
shlomoh@il.ibm.com

2 Department of Computer Science, University of Toronto
{avner, toni}@cs.toronto.edu

Abstract. We present a simple randomized construction of size O(n3)
and depth 5.3 log n + O(1) monotone circuits for the majority function
on n variables. This result can be viewed as a reduction in the size
and a partial derandomization of Valiant’s construction of an O(n5.3)
monotone formula, [15]. On the other hand, compared with the deter-
ministic monotone circuit obtained from the sorting network of Ajtai,
Komlós, and Szemerédi [1], our circuit is much simpler and has depth
O(log n) with a small constant. The techniques used in our construction
incorporate fairly recent results showing that expansion yields perfor-
mance guarantee for the belief propagation message passing algorithms
for decoding low-density parity-check (LDPC) codes, [3]. As part of the
construction, we obtain optimal-depth linear-size monotone circuits for
the promise version of the problem, where the number of 1’s in the input
is promised to be either less than one third, or greater than two thirds.
We also extend these improvements to general threshold functions. At
last, we show that the size can be further reduced at the expense of in-
creased depth, and obtain a circuit for the majority of size and depth
about n1+

√
2 and 9.9 log n.

1 Introduction

The complexity of monotone formulas/circuits for the majority function is a
fascinating, albeit perplexing, problem in theoretical computer science. Without
the monotonicity restriction, majority can be solved with simple linear-size cir-
cuits of depth O(log n), where the best known depth (over binary AND, OR,
NOT gates) is 4.95 logn + O(1) [12]. There are two fundamental algorithms for
the majority function that achieve logarithmic depth. The first is a beautiful
construction obtained by Valiant in 1984 [15] that achieves monotone formulas
of depth 5.3 logn + O(1) and size O(n5.3). The second algorithm is obtained
from the celebrated sorting network constructed in 1983 by Ajtai, Komlós, and
Szemerédi [1]. Restricting to binary inputs and taking the middle output bit
(median), reduces this network to a monotone circuit for the majority function
of depth K logn and size O(n log n). The advantage of the AKS sorting network
for majority is that it is a completely uniform construction of small size. On the
negative side, its proof is quite complicated and more importantly, the constant
K is huge: the best known constant K is about 5000 [11], and as observed by

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 410–425, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Monotone Circuits for the Majority Function 411

Paterson, Pippenger, and Zwick [12], this constant is important. Further con-
verting the circuit to a formula yields a monotone formula of size O(nK), which
is roughly n5000.

In order to argue about a quality of a solution to the problem, one should
be precise about the different resources and the tradeoffs between them. We
care about the depth, the size, the number of random bits for a randomized
construction, and formula vs circuit question. Finally, the conceptual simplicity
of both the algorithm and the correctness proof is also an important goal. Getting
the best depth-size tradeoffs is perhaps the most sought after goal around this
classical question, while achieving uniformity comes next.

An interesting aspect of the problem is the natural way it splits into two
subproblems, the solution to which gives a solution to the original problem.
Problem I takes as input an arbitrary n-bit binary vector, and outputs an m-bit
vector. If the input vector has a majority of 1’s, then the output vector has
at least a 2/3 fraction of 1’s, and if the input vector does not have a majority
of 1’s, then the output vector has at most a 1/3 fraction of 1’s. Problem II is
a promise problem that takes the m-bit output of problem I as its input. The
output of Problem II is a single bit that is 1 if the input has at least a 2/3
fraction of 1’s, and is a 0 if the input has at most a 1/3 fraction of 1’s. Obviously
the composition of these two functions solves the original majority problem.

There are several reasons to consider monotone circuits that are constructed
via this two-phase approach. First, Valiant’s analysis uses this viewpoint. Bop-
pana’s later work [2] actually lower bounds each of these subproblems separately
(although failing to provide lower bound for the entire problem). Finally, the sec-
ond subproblem is of interest in its own right. Problem II can be viewed as an
approximate counting problem, and thus plays an important role in many areas
of theoretical computer science. Non monotone circuits for this promise problem
have been widely studied.

Results: The contribution of the current work is primarily in obtaining a new
and simple construction of monotone circuits for the majority function of depth
5.3 logn and size O(n3), hence significantly reducing the size of Valiant’s formula
while not compromising at all the depth parameter.

Further, for subproblem II as defined above, we supply a construction of a
circuit size that is of a linear size, but does not compromise the depth compared
to Valiant’s solution. A very appealing feature of this construction is that it is
uniform, conditioned on a reasonable assumption about the existence of good
enough expander graphs. To this end we introduce a connection between this
circuit complexity question and another domain, namely message passing algo-
rithms. The depth we achieve for the promise problem nearly matches the 1954
lower bound of Moore and Shannon [10].

Finally, we show how to generalize our solution to a general threshold function,
and explore the tradeoffs between the different resources we use; specifically, we
show that by allowing for a depth of roughly twice that of Valiant’s construction,
we may get a circuit of size O(n1+

√
2+o(1)) = O(n2.42).

412 S. Hoory, A. Magen, and T. Pitassi

Techniques: In obtaining our result we introduce the concept of deterministic
amplification, replacing the probabilistic amplification used by Valiant. In prob-
abilistic amplification, given a monotone boolean function f : {0, 1}n → {0, 1},
one considers the probability Af (p) that f is one when the n input variables are
independently one with probability p. We say that f probabilistically amplifies
(pl, ph) to (ql, qh) if Af (pl) ≤ ql and Af (ph) ≥ qh. We say that a monotone
function f : {0, 1}n → {0, 1}m deterministically amplifies (pl, ph) to (ql, qh) if
for every input with up to pln (at least phn) ones the proportion of ones in the
output is at most ql (at least qh).

With this terminology splitting the problem into the two subproblems men-
tioned above can be easily described. We seek two function f1 and f2 so that
f1 : {0, 1}n → {0, 1}m deterministically amplifies (1/2−1/n, 1/2) to (δ, 1−δ) for
some small constant δ > 0, and f2 : {0, 1}m → {0, 1} deterministically amplifies
(δ, 1 − δ) to (0, 1). In the sequel, we will call the problem of constructing f1
phase I and that of constructing f2 phase II.

Our circuit for phase I is quite simple. Starting with then input variables at level
zero, we have alternating layers of AND/OR gates, where each gate independently
chooses its two inputs from the previous layer. We prove that such a circuit satisfies
the requirements if the number of layers is 3.3 logn, and if the layers are sufficiently
large (width decreasing with depth from O(n3) to O(n)).

We give two constructions of circuits for phase II. Both constructions yield
circuits for f2 : {0, 1}m → {0, 1} of size O(m) and depth (2 + ε) · logm + O(1),
for arbitrarily small ε > 0, almost matching the depth lower bound of 2 log δm of
Moore-Shannon [10]. The first construction is a probabilistic argument similar
to our phase I construction but with different parameters. In it we explore the
somewhat surprising benefits gained when changing the fanin of the gates to a
large enough parameter d.

In the second construction we derandomize our construction using good ex-
pander graphs. The construction is an application of a well-known message-
passing belief-propagation algorithm on an expander graph. To compute the
promise problem, we simulate a logarithmic number of rounds of the message-
passing algorithm on a d-regular bipartite graph that is a sufficiently good
expander. The message passing algorithm is similar to the belief propagation
algorithm used to decode LDPC codes on the erasure channel, and the analysis
is based on adaptation of a result of Burshtein and Miller [3] to our setting. For
the construction to be completely uniform, we must assume the existence of an
explicit construction of sufficiently good expanders. While not known to date,
finding such expanders is the focus of a rapidly developing research area, which
hopefully will produce the required good expanders.

One crucial parameter used in our analysis, is the number of different inputs
the circuit must handle. It is appealing from a computational point of view, as
it gives a progress measure toward the final goal of the circuit. One interesting
aspect of our probabilistic construction is that it can translate an improvement
in this parameter into a reduction in the circuit size. We obtain a variant to our
construction by exploiting this property. This variant, has a preprocessing stage

Monotone Circuits for the Majority Function 413

that partially sorts its input, and consequently has a smaller size, at the expense
of an increased depth.

The organization of the rest of the paper is as follows. In Section 2, we define
the two notions of amplification that we will be considering, and review Valiant’s
argument. In Section 3, we present our new monotone circuits for majority. In
Section 4, we adapt our construction to obtain efficient monotone circuits for
all threshold functions. In Section 5, we obtain smaller size monotone circuits
for the majority, at the expense of increasing the depth. In the last section, we
discuss the known lower bounds, and open problems.

2 Notions of Amplification

For a monotone boolean function H on k inputs, we define its amplification func-
tion AH : [0, 1]→ [0, 1] as AH(p) = Pr[H(X1, . . . , Xk) = 1], where Xi are inde-
pendent boolean random variables that are one with probability p. Valiant [15],
considered the function H on four variables, which is the OR of two AND gates,
H(x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x3 ∧ x4). The amplification function of H , de-
picted in Figure 1, is AH(p) = 1− (1− p2)2, and has a non-trivial fixed point at
β = (

√
5− 1)/2 � 0.61.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

A
H

(p
)

Fig. 1. AH(p) for H(x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x3 ∧ x4)

We say that a monotone function F : {0, 1}n → {0, 1} probabilistically ampli-
fies (pl, ph) to (ql, qh), if ql ≥ AF (pl) and qh ≤ AF (ph). In other words, applying
F to independent boolean random variables that are one with probability p will
amplify a promise that p is less than pl or more than ph, to a promise that
F ’s output is one with probability less than ql or more than qh respectively.
Since A′

H is continuous, for any ε > 0 there exists Δ0 > 0 such that H prob-
abilistically amplifies (β − Δ,β + Δ) to (β − (γ − ε)Δ,β + (γ − ε)Δ) for all
Δ < Δ0, where γ = AH(β)′ = (

√
5− 1)2 � 1.52. Let Hk be the depth 2k binary

tree with alternating layers of AND and OR gates, where the root is labeled
OR. Valiant’s construction uses the fact that AHk

is the composition of AH

with itself k times. Therefore, Hk probabilistically amplifies (β −Δ,β + Δ) to
(β− (γ − ε)kΔ,β + (γ − ε)kΔ), as long as (γ − ε)kΔ < Δ0. This implies that for
any constant ε > 0 we can take 2k = 3.3 logn+O(1) to probabilistically amplify
(β − Ω(1/n), β + Ω(1/n)) to (ε, 1 − ε), where 3.3 is any constant bigger than

414 S. Hoory, A. Magen, and T. Pitassi

α = log√5−1 2 � 3.27. Further analysis shows that for 2k = 5.3 logn + O(1), the
tree Hk probabilistically amplifies (β−Ω(1/n), β+Ω(1/n)) to (2−n−1, 1−2−n−1),
implying the existence a formula of depth 5.3 logn+O(1) and size O(n5.3) for the
�βn�-th threshold function. Results of Boppana [2] and Dubiner and Zwick [5]
show that no smaller formula can produce such an amplification.

One aspect of Valiant’s construction that we are going to exploit, is that the
use of a binary tree in the last 2 logn layers is rather arbitrary. Similar analysis
shows that replacing those layers by 2 logr n layers of an r-ary tree result with
the similar probabilistic amplification. Replacing the r-ary AND, OR gates by
formulas using binary gates results in a depth blowup of factor �log r�. Therefore,
the same depth as Valiant’s construction can be obtained when r is a power of
two, and taking any large value of r results in an arbitrarily small degradation
in the constant before the log.

The approach of this paper, is to follow the same general scheme suggested by
Valiant. However, instead of an O(n5.3) formula, we produce an O(n3) circuit of
similar depth. Because of the smaller size we cannot use a tree and maintain com-
plete independence between the results computed at a certain layer, as is done in
Valiant’s tree. Instead we define a random circuit such that the values in a layer
are completely independent, given the number of 1’s of the previous a layer. In
order that the portion of ones in each layer behaves as we would like, we need to
make layer sizes sufficiently large. The crucial simple observation that enables us
to keep layer sizes small, is that the circuit need only handle 2n scenarios.

Definition 1. Let F be a boolean function F : {0, 1}n → {0, 1}m, and let S ⊆
{0, 1}n be some subset of the inputs. We say that F deterministically amplifies
(pl, ph) to (ql, qh) with respect to S, if for all inputs x ∈ S, the following promise
is satisfied (we denote by |x| the number of ones in the vector x):

|F (x)| ≤ qlm if |x| ≤ pln

|F (x)| ≥ qhm if |x| ≥ phn.

Note that unlike the probabilistic amplification, deterministic amplification has
to work for all inputs or scenarios in the given set S. From here on, whenever
we simply say “amplification” we mean deterministic amplification.

For an arbitrary small constant ε > 0, the construction we give is composed
of two independent phases that may be of independent interest.

– A circuit C1 : {0, 1}n → {0, 1}m for m = O(n) that deterministically ampli-
fies (β − Ω(1/n), β + Ω(1/n)) to (δ, 1 − δ) for an arbitrarily small constant
δ > 0. This circuit has size O(n3) and depth (α + ε) · logn + O(1).

– A circuit C2 : {0, 1}m → {0, 1}, such that C2(x) = 0 if |x| < δm and
C2(x) = 1 if |x| > (1 − δ)m, where δ > 0 is a sufficiently small constant.
This circuit has size O(m) and depth (2 + ε) · logm + O(1).

The first circuit C1 is achieved by a simple probabilistic construction that
resembles Valiant’s construction. We present two constructions for the second
circuit, C2. The first construction is probabilistic; the second construction is

Monotone Circuits for the Majority Function 415

a simulation of a logarithmic number of rounds of a certain message passing
algorithm on a good bipartite expander graph. The correctness is based on the
analysis of a similar algorithm used to decode a low density parity check code
(LDPC) on the erasure channel [3].

Combining the two circuits together yields a circuit C : {0, 1}n → {0, 1} for
the �βn�-th threshold function. The circuit is of size O(n3) and depth (α + 2 +
2ε) logn + O(1).

3 Monotone Circuits for Majority

In this section we give a randomized construction of the circuit C : {0, 1}n →
{0, 1} such that C(x) is one if the portion of ones in x is at least βn and zero
otherwise. The circuit C has size O(n3) and depth (2 + α + ε) · logn + O(1) for
an arbitrary small constant ε > 0. As we described before, we will describe C as
the compositions of the circuits C1 and C2 whose parameters are given by the
following two theorems:

Theorem 1. For every ε, ε′, c > 0, there exists a circuit C1 : {0, 1}n → {0, 1}m
for m = O(n), of size O(n3) and depth (α+ε)·log n+O(1) that deterministically
amplifies all inputs from (β − c/n, β + c/n) to (ε′, 1− ε′).

Theorem 2. For every ε > 0, there exists ε′ > 0 and a circuit C2 : {0, 1}n →
{0, 1}, of size O(n) and depth (2+ε)· logn+O(1) that deterministically amplifies
all inputs from (ε′, 1− ε′) to (0, 1).

The two circuits use a generalization of the four input function H used in
Valiant’s construction. For any integer d ≥ 2, we define the function H(d) on
d2 inputs as the d-ary OR of d d-ary AND gates, i.e ∨d

i=1 ∧d
j=1 xij . Note that

Valiant’s function H is just H(2).
Each of the circuits C1 and C2 is a layered circuit, where layer zero is the input,

and each value at the i-th layer is obtained by applying H(d) to d2 independently
chosen inputs from layer i − 1. However, the values of d we choose for C1 and
C2 are different. For C1 we have d = 2, while for C2 we choose sufficiently large
d = d(ε) to meet the depth requirement of the circuit. We let Fn,m,F denote a
random circuit mapping n inputs to m outputs, where F is a fixed monotone
boolean circuit with k inputs, and each of the m output bits is calculated by
applying F to k independently chosen random inputs.

We start with a simple lemma that relates the deterministic amplification
properties of F to the probabilistic amplification function AF . 1

Lemma 1. For any ε, δ > 0, the random function F deterministically amplifies
(pl, ph) to (AF (pl) · (1 + δ), AF (ph) · (1 − δ)) with respect to S ⊆ {0, 1}n with
probability at least 1− ε, if:

m = Ω

(
log(|S|) + log(1/ε)

AF (pl) · δ2

)
.

1 Note that we talk about the deterministic amplification properties of a random
function.

416 S. Hoory, A. Magen, and T. Pitassi

Proof. It is sufficient to prove that for any input x ∈ S, the probability of
failure of F is bounded by ε/|S|. By definition, for any application of F , the
probability to get 1 is AF (p), where p = |x|/n is the portion of ones in x.
By monotonicity, we may assume that p = pl or p = ph. A straightforward
application of the Chernoff bound is all we need here. For the case p = pl, we
have Pr[|F(x)| > AF (pl)(1+δ)m] < exp(−mAF (p)δ2/3), which is less than ε/|S|
for m ≥ 3(log |S|+ log(1/ε))/(AF (pl) · δ2). The case p = ph is handled similarly.

Proof (Proof of Theorem 1).
The circuit C1 is a composition of Fn,m1,H ,Fm1,m2,H , . . . ,Fmt−1,mt,H , where

the parameters n = m0,m1, . . . ,mt = m are positive integers to be fixed later,
and are the sizes of the layers of the circuit. Since F·,·,H is a random function, this
describes a random construction of a circuit. We prove that with high probability
such a circuit deterministically amplifies all inputs from (β − c/n, β + c/n) to
(ε′, 1− ε′). For simplicity, we only prove that with high probability for all inputs
with portion of ones smaller than β − c/n the output has fewer than ε′m ones.
The proof of the other case is similar. For convenience of notation, we say that
some circuit (deterministically or probabilistically) amplifies p to q as a short
hand for amplifying (p, ·) to (q, ·) where the dot stands for the unspecified upper
bounds.

The basic idea is that if layers have large size, we expect this circuit to have
similar behavior to Valiant’s tree. As observed before, for every constant ε > 0
there is a constant Δ0 > 0 such that for any p = β −Δ with 0 < Δ < Δ0, we
have AH(p) < β − (γ − ε)Δ, where γ = AH(β)′. This implies that if the portion
of ones at some level i is p, then the expected portion of ones at level i + 1
is AH(p) < β − (γ − ε)Δ. We will set δ in Lemma 1 so that the deterministic
amplification of Fmi,mi+1 guarantees that the portion of ones at level i + 1 will
be at most β − (γ − 2ε)Δ. The details follow.

Let Gi be the be the circuit truncated to the first i layers. We prove that
with high probability Gi deterministically amplifies the initial promise β − c/n
to β − (γ − 2ε)i · (c/n), as long as (γ − 2ε)i · (c/n) < Δ0. The proof proceeds
by inductions on i, where the basis i = 0 trivially holds. So, assume that i > 0,
and that (γ − 2ε)i · (c/n) < Δ0. Furthermore, assume that the first i− 1 layers
are some fixed circuit Gi−1 satisfying the hypothesis. Namely, deterministically
amplifies β − c/n to β − (γ − 2ε)i−1 · (c/n), for all inputs. Let Gi be obtained
by composing the fixed circuit Gi−1 with the random circuit Fmi−1,mi,H . Then,
as Gi−1 is fixed, it has at most 2n possible outputs. The crucial observation, is
that it suffices for Fmj−1,mj,H to deterministically amplify β− (γ−2ε)i−1 · (c/n)
to β − (γ − 2ε)i · (c/n), only with respect to the 2n outputs of Gi−1.

Then, it suffice to choose the values δ in Lemma 1, as

ε · (γ − 2ε)i−1 · (c/n)
β − (γ − ε) · (γ − 2ε)i−1 · (c/n)

= Θ
(
(γ − 2ε)i−1 · (c/n)

)
.

That is, we can choose δ as an increasing geometric sequence, starting from
Θ(1/n) for i = 1, up to Θ(1) for i = logγ−2ε n. The implied layer size for error

Monotone Circuits for the Majority Function 417

probability 2−n (which is much better than we need), is Θ(n/δ2). Therefore, it
decreases geometrically from Θ(n3) down to Θ(n).

It is not difficult to see that after achieving the desired amplification from
β − c/n to β −Δ0, only a constant number of layers is needed to get down to
ε′. The corresponding value of δ in these last steps is a constant (that depends
on ε′), and therefore, the required layer sizes are all Θ(n).

Proof (Proof of Theorem 2).
The circuit C2 is a composition of Fn,m1,H(d) ,Fm1,m2,H(d) , . . . ,Fmt−1,mt,H(d) ,

where d and the layer sizes n = m0,m1, . . . ,mt = 1 are suitably chosen pa-
rameters depending on ε. We prove that with high probability such a circuit
deterministically amplifies all inputs from (ε′, 1− ε′) to (0, 1). As before, we re-
strict our attention to the lower end of the promise problem and prove that C2
outputs zero on all inputs with portion of ones smaller than ε′.

As in the circuit C1, the layer sizes must be sufficiently large to allow accurate
computation. However, for the circuit C2, accurate computation does not mean
that the portion of ones in each layer is close to its expected value. Rather, our
aim is to keep the portion of ones bounded by a fixed constant ε′, while making
each layer smaller than the preceding one by approximately a factor of d. We
continue this process until the layer size is constant, and then use a constant size
circuit to finish the computation. Therefore, since the number of layers of such
a circuit is about logn/ log d, and the depth of the circuit for H(d) is 2�log d�,
the total depth is about 2 logn for large d.

By the above discussion, it suffices to prove the following: For every ε > 0
there exists a real number δ > 0 and two integers d, n0, such that for all n ≥ n0
the random circuit Fn,m,H(d) with m = (1 + ε) · n/d, deterministically amplifies
δ to δ with respect to all inputs, with failure probability at most 1/n. Since
AH(δ) = 1 − (1 − δd)d ≤ d · δd, the probability of failure for any specific input
with portion of ones at most δ, is bounded by:(

m

δm

)
· (AH(δ))δm ≤

(e

δ
· d · δd

)δm

=
(
de · δd−1)δm

.

Therefore, by a union bound the probability that Fn,m,H(d) fails is bounded by:(
de · δd−1)δm ·

(
n

δn

)
≤
[
(de · δd−1)(1+ε)/d · (e/δ)

]δn

=
[
c(d, ε) · δ(1+ε)·(d−1)/d−1

]δn

,

where c(d, ε) is some function of d and ε. Given, ε, we choose a sufficiently large
d so that (1 + ε) · (d− 1)/d− 1 is positive. Then we take sufficiently small δ, so
that the expression in the square brackets is smaller than one. Finally, we take
a sufficiently large n0 to guarantee that the exponentially small upper bound on
the error probability, is smaller than 1/n.

3.1 Derandomizing the Construction of Phase II

In this subsection we present a second construction of a small monotone circuit
C that deterministically amplifies (a, 1− a) to (0, 1) with respect to {0, 1}n.

418 S. Hoory, A. Magen, and T. Pitassi

Our construction uses recent ideas and algorithms from belief propagation
decoding, applied to solving majority. Underlying both belief propagation and
algorithms for majority is the concept of amplification, first introduced in the
classical 1954 paper of Moore and Shannon. Since then, the amplification method
has been generalized and used in a variety of contexts. Luby, Mitzenmacher and
Shokrollahi [8] used the amplification method to analyze the performance of a
belief propagation message passing algorithm for decoding low density parity
check (LDPC) codes. Today the use of belief propagation for decoding LDPC
codes is one of the hottest topics in error correcting codes [9, 14, 13].

Let G = (VL, VR;E) be a d regular bipartite graph with n vertices on each
side, VL = VR = [n]. Consider the following message passing algorithm, where
we think of the left and right as two players. The left player “plays AND” and
the right player “plays OR”. At time zero the left player starts by sending one
boolean message through each left to right edge, where the value of the message
muv from u ∈ VL to v ∈ VR is the input bit xu. Subsequently, the messages at
time t > 0 are calculated from the messages at time t−1. At odd times, given the
left to right messages muv, the right player calculates the right to left messages
m′

vw, from v ∈ VR to w ∈ VL by the formula m′
vw = ∨u∈N(v)\wmuv. That is, the

right player sends a 1 along the edge from v ∈ VR to w ∈ VL if and only if at
least one of the incoming messages/values (not including the incoming message
from w) is 1. Similarly, at even times the algorithm calculates the left to right
messages m′

vw, v ∈ VL, w ∈ VR, from the right to left messages muv, by the
formula m′

vw = ∧u∈N(v)\wmuv. That is, the left player sends a 1 along the edge
from v ∈ VL to w ∈ VR if and only if all of the incoming messages/values (not
including the incoming message from w) are 1. We further need the following
definitions. We call a left vertex bad at even time t if it transmits at least one
message of value one at time t. Similarly, a right vertex is bad at odd time t
if it is a right vertex that transmits at least one message of value zero at time
t. We let b(t) be the number of bad vertices at time t. These definitions will
be instrumental in providing a potential function measuring the progress of the
message passing algorithm which is expressed in Lemma 2.

We say that a bipartite graph G = (VL, VR;E) is (λ, e)-expanding, if for any
vertex set S ⊆ VL (or S ⊆ VR) of size at most λn, |N(S)| ≥ e|S|. It will be
convenient to denote the expansion of the set S by eS = |N(S)|/|S|.

Lemma 2. Consider the message passing algorithm using a d ≥ 4 regular ex-
pander graph with d− 1 > e ≥ (d + 1)/2. If b(t) ≤ λn/d2 then b(t + 2) ≤ b(t)/η,
where η = d−1

2(d−e) .

We postpone the proof of the lemma, and show its use for constructing the
circuit C2. First, we show that, for any ε > 0, the algorithm provides a circuit
of depth (2 + ε) logn and of size O(n log n) for the promise problem with a ≤
λ(d−1)/d3. Suppose that there are at most an ones. Then b(0) ≤ an . Therefore
b(2t) ≤ an/ηt, and so b(2t) = 0 for t > log(an)/ log η and all outputs are zero
at that time. If there are at most an zeros, we analyze the number of bad right
vertices as follows. Since each bad right vertex must be connected to at least

Monotone Circuits for the Majority Function 419

d − 1 left vertices associated with zero input bits, and since there are at most
an left vertices transmitting zero, it follows that b(1) ≤ an · d/(d − 1) ≤ λ/d2

whence the conditions of Lemma 2 are satisfied and b(2t + 1) ≤ and
d−1/η

t and so
b(2t + 1) = 0 for t > log(a d

d−1n)/ log η.
The better the expanders we use, the bigger η = d−1

2(d−e) gets, and the better
the time guarantee above gets. How good are the expanders that we may use?
One can show the existence of such expanders for sufficiently large d large, and
e > d− c for an absolute constant c.

The best known explicit construction that gets close to what we need, is the
result of [4]. However, that result does not suffice here for two reasons. The first
is that it only achieves expansion (1 − ε)d for any ε > 0 and sufficiently large
d depending on ε. The second is that it only guarantees left-to-right expansion,
while our construction needs both left-to-right and right-to-left expansion. We
refer the reader to the survey [6] for further reading and background.

For such expanders, η ≥ d−1
2c , and therefore, after 2 log(and

d−1)/ log d−1
2c =

(2 + ε) log n
log d−1 iterations, all messages contain the right answer, where ε can

be made arbitrarily small by choosing sufficiently large d. It remains to con-
vert the algorithm into a monotone circuit, which introduces a depth-blowup of
log �d− 1� owing to the depth of a binary tree simulating a (d − 1)-ary gate.
Thus we get a (2 + ε)logn-depth circuit for arbitrarily small ε > 0. The size is
obviously dn · depth = O(n log n).

To get a linear circuit, further work is needed, which we now describe. The
idea is to use a sequence of graphs G0 = G,G1, . . ., where each graph is half the
size of its preceding graph, but has the same degree and expansion parameters.
We start the message passing algorithm using the graph G = G0, and every t0
rounds (each round consists of OR and then AND), we switch to the next graph
in the sequence. Without the switch, the portion of bad vertices should decrease
by a factor of ηt0 , every t0 rounds. We argue that each switch can be performed,
while losing at most a constant factor. To describe the switch from Gi to Gi+1,
we identify VL(Gi+1) with an arbitrary half of the vertices VL(Gi), and start the
message passing algorithm on Gi+1 with the left to right messages from each
vertex in VL(Gi+1), being the same as at the last round of the algorithm on Gi.
As the number of bad left vertices cannot increase at a switch, their portion, at
most doubles. For the right vertices, the exact argument is slightly more involved,
but it is clear that the portion of bad right vertices in the first round in Gi+1,
increases by at most a constant factor c, compared with what it should have
been, had there been no switch. (Precise calculation, yields c = 2dη.) Therefore,
to summarize, as the circuit consists of a geometrically decreasing sequence of
blocks starting with a linear size block, the total size is linear as well. As for the
depth, the amortized reduction in the portion of bad vertices per round, is by
a factor of η′ = η/c1/t0 . Therefore, the resulting circuit is only deeper than the
one described in the previous paragraph, by a factor of log η/ log η′. By choosing
a sufficiently large value for t0, we obtain:

420 S. Hoory, A. Magen, and T. Pitassi

Theorem 3. For any ε > 0, there exists a > 0 such that for any n there exists a
monotone circuit of depth (2+ε) logn+O(1) and size O(n) that solves a-promise
problem.

We note here that O(log n) depth monotone circuits for the a-promise problem
can also be obtained from ε-halvers. These are building blocks used in the AKS
network. However, our monotone circuits for the a-promise problem have two
advantages. First, our algorithm relates this classical problem in circuit com-
plexity to recent popular message passing algorithms. And second, the depth
that we obtain is nearly tight. Namely, Moore and Shannon [10] prove that any
monotone formula/circuit for majority requires depth 2 logn − O(1), and the
lower bound holds for the a-promise problem as well.

Proof (Proof of Lemma 2). (builds on [3])
We consider only the case of bad left vertices. The proof for bad right vertices

follows from the same proof, after exchanging ones with zeroes, ANDs with ORs,
and lefts with rights. Let B ⊆ VL be the set of bad left vertices, and assume
|B| ≤ λn/d2 at some even time t and B′ the set of bad vertices at time t + 2.
We bound the size of B′ by considering separately B′ \B and B′ ∩B. Note that
all sets considered in the proof have size at most λn, and therefore expansion at
least e.

B

B’

N(B)

N(B’)

To bound B′ \B, consider the set Q = N(B′ \B)\N(B) = N(B′∪B)\N(B).
Since vertices in Q are not adjacent to B, then at time t + 1 they send right to
left messages valued zero. On the other hand, any vertex in B′ \ B can receive
at most one such zero message (otherwise all its messages at time t + 2 will be
valued zero and it cannot be in B′). Therefore, since each vertex in Q must have
at least one neighbour in B′ \ B, it follows that |Q| ≤ |B′ \ B|. Therefore, we
have:

|N(B′ ∪B)| = |N(B)|+ |Q| ≤ |N(B)| + |B′ \B| = eB · |B|+ |B′ \B|.

On the other hand, |N(B′ ∪B)| ≥ e · |B′ ∪B| = e · (|B|+ |B′ \B|).
Combining the above two inequalities, we obtain:

|B′ \B| ≤ eB − e

e− 1
· |B|. (1)

To bound B′∩B, consider the set T = N(B′∩B)\N(B \B′) = N(B)\N(B \
B′). Let N0 (resp. N1) be the number of zero (resp. one) messages received by

Monotone Circuits for the Majority Function 421

vertices in B′ ∩ B at time t + 1. Then obviously, N0 + N1 = d · |B′ ∩ B|. As
before, a vertex in B′ ∩ B can receive at most one zero message and therefore
N0 ≤ |B′ ∩ B|. Also, let T0 be the vertices of T that transmit at least one zero
message at time t+1 to B′∩B, and T1 = T \T0. Clearly |T0| ≤ N0. On the other
hand, each vertex in T1 transmits a one to some vertex in B′ ∩B, and therefore
must have at least two neighbors in B′ ∩B, implying that |T1| ≤ N1/2. Hence

|T | ≤ N0 + N1/2 = (N0 + N1)/2 + N0/2
≤ (d/2)|B′ ∩B|+ (1/2)|B′ ∩B| = |B′ ∩B| · (d + 1)/2.

Therefore

eB · |B| = |N(B)| = |N(B \B′)|+ |T | ≤ d · |B \B′|+ |B′ ∩B| · (d + 1)/2
= d · |B| − |B′ ∩B| · (d− 1)/2.

This implies:

|B′ ∩B| ≤ d− eB

(d− 1)/2
· |B|. (2)

Combining inequalities (1) and (2) we get that:

|B′|/|B| ≤ eB − e

e− 1
+

d− eB

(d− 1)/2
.

Since e ≥ (d + 1)/2, and eB ≥ e, this yields the required bound:

|B′|/|B| ≤ 2(d− e)/(d− 1).

As noted before in Section 2, replacing the last 2 logn layers of Valiant’s
tree with 2 logr n layers of r-ary AND/OR gates, results in an arbitrarily small
increase in the depth of the corresponding formula for a large value of r. It is
interesting to compare the expected behavior of the suggested belief-propagation
algorithm to the behavior of the (d − 1)-ary tree. Assume that the graph G is
chosen at random (in the configuration model), and that the number of rounds
k is sufficiently small, (d − 1)2k , n. Then, almost surely the computation of
all but o(1) fraction of the k-th round messages is performed by evaluating a
(d − 1)-ary depth k trees. Moreover, introducing an additional o(1) error, one
may assume that the leaves are independently chosen boolean random variables
that are one with probability p, where p is the portion of ones in the input.
This observation sheds some light on the performance of the belief propagation
algorithm. However, our analysis proceeds far beyond the number of rounds for
which a cycle free analysis is applicable.

4 Monotone Formulas for Threshold-k Functions

Consider the case of the k-th threshold function, Tk,n, i.e. a function that is one
on x ∈ {0, 1}n if |x| ≥ (k + 1) and zero otherwise. We show that, by essentially

422 S. Hoory, A. Magen, and T. Pitassi

the same techniques of Section 3, we can construct monotone circuits to this
more general problem. We assume henceforth that k < n/2, since otherwise, we
construct the circuit Tn−1−k,n and switch AND with OR gates. For k/n = Θ(1),
the construction yields circuits of depth 5.3 logn+O(1) and size O(n3). However,
when k = o(n), circuits are shallower and smaller (this not surprising fact is also
discussed in [2] in the context of formulas).

The construction goes as follows: (i) Amplify (k/n, (k+1)/n) to (β−Ω(1/k), β+
Ω(1/k)) by randomly applying to the input a sufficiently large number of OR gates
with arity Θ(n/k) (ii) Amplify (β−Ω(1/k), β+Ω(1/k)) to (O(1), 1−O(1)) using
a variation of phase I, and (iii) Amplify (O(1), 1 −O(1)) to (0, 1) using phase II.

We now give a detailed description. For the sake of the section to follow, we
require the following lemma which is more general than is needed for the results
of this section. The proof is omitted for lack of space.

Lemma 3. Let S ⊆ {0, 1}n, and ε > 0. Then, for any k, there is a randomized
construction of a monotone circuit that evaluates Tk,n correctly on all inputs
from S and has

depth ≤ log(n) + 2.3 log(k′) + (2 + ε) · log log |S|+ O(1),
size ≤ O(log |S| · k′n).

Here k′ = min(k, n− 1− k), and the constants of the O depend only on ε.

To guarantee the correctness of a monotone circuit for Tn,k, it suffices to check
its output on inputs of weight k, k + 1 (as the circuit is monotone). Plugging
log |S| = log(

(
n
k

)
+
(

n
k+1

)
) = O(k log(n/k)) into the lemma yields:

Theorem 4. Tk,n has a randomized construction of a monotone circuit with

depth ≤ log(n) + 4.3 log(k′) + O(log log(n/k)),
size ≤ O((k′)2n log(n/k′)),

where k′ = min(k, n− 1− k), and the constants of the O are absolute.

5 Reducing the Circuit Size

The result obtained so far for the majority, is amonotone circuit of depth 5.3 logn+
O(1) and size O(n3). In this section, we would like to obtain smaller circuit size,
at the expense of increasing the depth somewhat. The crucial observation is that
the size of our circuit depends linearly on the logarithm of the number of scenarios
it has to handle. Therefore, applying a preprocessing stage to reduce the wealth of
scenarios may save up to a factor of n in the circuit size. We propose a recursive
construction that reduces the circuit size to about n1+

√
2.

Initially, by Theorem 4, we have monotone circuits C0
k,n for the threshold

functions Tk,n with size s0(n) = O(n3) and depth d0(n) = 5.3 logn + O(1).
Given circuits C

(i)
k,n for Tk,n of size and depth bounded by si(n), di(n), one

can calculate all threshold functions in parallel and obtain a sorting circuit C
(i)
n :

Monotone Circuits for the Majority Function 423

{0, 1}n → {0, 1}n of size and depth bounded by nsi(n), di(n). The circuit C
(i+1)
k,n

is built of two stages. First, the n-bit input is partitioned into n/ai blocks of size
ai, and each block is sorted in parallel using the circuit C

(i)
a . Second, the kth

threshold function is calculated on the partially sorted n-bit string by the family
of circuits with parameters given by Lemma 3. When the n/a blocks are sorted,
there are only (ai + 1)n/ai possible inputs, as the number of ones in each blocks
completely specifies the input. Therefore, the first stage reduces the number of
scenarios to (ai + 1)n/ai ≤ nn/ai and we have

si+1(n) = (n/ai) · (ai + 1) · si(ai)+O
(
(n/ai) · logn · n2)=n · si(ai)+n3+o(1)/ai,

di+1(n) = di(ai) + 5.3 logn− 2 log(ai) + O(log logn).

Let ai = nαi for some constants αi, and assume that si(n) = nσi+o(1), and that
di(n) = δi logn + O(log logn). Then we obtain the following recurrence:

σi+1 = max(1 + αiσi, 3− αi), δi+1 = αiδi + 5.3 logn− 2αi.

We choose αi = 2/(σi + 1) to equate 1 +αiσi with 3−αi. Consequently, σi+1 =
3−2/(σi+1) and δi+1 = 5.3+(δi−2)·2/(σi+1), yielding the following sequence:

i 0 1 2 3 4 5 6 7 8 9 10
αi 0.500 0.571 0.583 0.585 0.586 0.586 0.586 0.586 0.586 0.586 0.586
σi 3.000 2.500 2.429 2.417 2.415 2.414 2.414 2.414 2.414 2.414 2.414
δi 5.271 6.906 8.074 8.814 9.259 9.522 9.677 9.768 9.821 9.852 9.870

The sequence αi tends to 1 +
√

2 which is the positive solution of x = 3 −
2/(x + 1), and δi tends to (1 +

√
2)(α− 2 + 2

√
2) � 9.896. Therefore:

Theorem 5. There is a randomized construction of a monotone circuit for the
majority of size n1+

√
2+o(1), and depth 9.9 logn + O(1).

6 Related Work and Open Problems

It is of great interest to improve upon the size or amount of randomness re-
quired by our construction. One approach, is to reduce the number of scenarios
by preprocessing. The best result we have here is stated in Theorem 5. A sec-
ond approach, is to improve the original bound (n3 logn random bits, n3 size).
The obvious obstacle are the first few layers of the phase I circuit. The cur-
rent n3 size upper bound follows from a union bound, which we do not know
to be tight. In fact, we do not even know how to save on the size or amount
of randomness required to construct the first layer! This very problem can be
cast as a discrepancy problem on hypergraphs. Indeed, if we restrict ourselves
to repeated applications of H(x1, x2, x3, x4) = (x1 ∧ x2)∨ (x3 ∧ x4) so that each
application is associated with the two pairs {x1, x2} and {x3, x4}, we have the
following discrepancy problems on 4-uniform hypergraphs. Find a hypergraph
on n vertices with each edge composed of two size-two sets e = e1 ∪ e2. The

424 S. Hoory, A. Magen, and T. Pitassi

graph should have as few edges as possible while satisfying that for every vertex
subset S ⊂ [n], the portion of edges that have at least one of their halves inside
S is close to AH(|S|/n). This problem seems to generalize a similar problem
for graphs: constructing a graph where for every vertex subset S, the portion
of edges with both end points in S is close to (|S|/n)2. Not surprisingly, this is
equivalent to expansion.

In seminal work, Karchmer and Wigderson [7] gave a precise characterization
of both monotone and monotone formula/circuit size based on the complexity of
related communication search problems. For the majority function, the mono-
tone search problem is as follows. Let mMaj-search be the following two-player
communication complexity problem. Player I is given a subset A ⊂ [n] of size
n/2 + 1. Player II is given a subset B ⊂ [n] of size n/2. They want to determine
an element i ∈ [n] such that i is in their intersection. In the non-monotone ver-
sion of the problem, Maj-search, the input is the same, but now they are allowed
to find either an element i in their intersection, or an element j lying outside of
both sets. By the main theorem of [7], the minimal monotone formula/circuit size
for majority is equal to the communication complexity of mMaj-search, and the
minimal formula/circuit size for majority is equal to the communication com-
plexity of Maj-search. The monotone communication complexity problem for the
promise problem is as above except that now Players I and II are given subsets
A and B each of size 2n/3 and again they want to find some element in their
common intersection. Likewise, for the monotone version, they want to compute
either an element in the common intersection, or an element j lying outside of
both sets. We find it useful to consider the upper and lower bounds for major-
ity, as well as for the promise version of majority within this communication
complexity setting.

There are two central open problems related to this work. First, is the promise
version really simpler than majority? A lower bound greater than 2 logn on the
communication complexity of mMaj-search would settle this question. Boppana
[2] and more recent work [5] show lower bounds on a particular method for ob-
taining monotone formulas for majority. However we are asking instead for lower
bounds on the size/depth of unrestricted monotone formulas/circuits. Secondly,
the original question remains unresolved. Namely, we would like to obtain ex-
plicit uniform formulas for majority of optimal or near optimal size. A related
problem is to come up with a natural (top-down) communication complexity
protocol for mMaj-Search that uses O(log n) many bits.

References

1. M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c log n parallel steps. Combina-
torica, 3(1):1–19, 1983.

2. R. B. Boppana. Amplification of probabilistic boolean formulas. IEEE Symposium
on Foundations of Computer Science (FOCS), pages 20–29, 1985.

3. D. Burshtein and G. Miller. Expander graph arguments for message-passing algo-
rithms. IEEE Trans. Inform. Theory, 47(2):782–790, 2001.

Monotone Circuits for the Majority Function 425

4. M. Caplbo,O. Reingold, S. Vadhan, and A. Wingderson. Randomness conductors
and constant-degree expansion beyond the degree 2 barrier. In Proceedings 34th
Symposium on Theory of Computing, Pages 659–668, 2002.

5. M. Dubiner and U. Zwick. Amplification by read-once formulas. SIAM J. Comput.,
26(1):15–38, 1997.

6. S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications.
to appear at the Bulletin of the AMS.

7. Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require
super-logarithmic depth. In Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing, Pages 539–550, Chicago, IL, May 1988

8. M. Luby, M. Mitzenmacher, and A. Shokrollahi. Analysis of random processes via
and-or tree evaluation. In ACM-SIAM Symp. on Discrete Algorithms (SODA),
1998.

9. M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. A. Spielman. Analysis of low
density codes and improved designs using irregular graphs. ACM Symposium on
Theory of Computing (STOC), 1998.

10. E. F. Moore and C. E. Shannon. Reliable circuits using less reliable relays. I, II.
J. Franklin Inst., 262:191–208, 281–297, 1956.

11. M. S. Paterson. Improved sorting networks with O(log N) depth. Algorithmica,
5(1):75–92, 1990.

12. M. S. Paterson, N. Pippenger, and U. Zwick. Optimal carry save networks. In
Boolean function complexity (Durham, 1990), volume 169 of London Math. Soc.
Lecture Note Ser., pages 174–201. Cambridge Univ. Press, Cambridge, 1992.

13. T. Richardson and R. Urbanke. Modern coding theory. Draft of a book.
14. T. Richardson and R. Urbanke. The capacity of low-density parity-check codes

under message-passing decoding. IEEE Trans. Inform. Theory, 47(2):599–618,
2001.

15. L. G. Valiant. Short monotone formulae for the majority function. J. Algorithms,
5(3):363–366, 1984.

Space Complexity vs. Query Complexity

Oded Lachish1, Ilan Newman2,�, and Asaf Shapira3,��

1 University of Haifa, Haifa, Israel
loded@cs.haifa.ac.il

2 University of Haifa, Haifa, Israel
ilan@cs.haifa.ac.il

3 School of Computer Science, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel

asafico@tau.ac.il

Abstract. Combinatorial property testing deals with the following re-
laxation of decision problems: Given a fixed property and an input x, one
wants to decide whether x satisfies the property or is “far” from satisfy-
ing it. The main focus of property testing is in identifying large families
of properties that can be tested with a certain number of queries to
the input. Unfortunately, there are nearly no general results connecting
standard complexity measures of languages with the hardness of testing
them. In this paper we study the relation between the space complexity
of a language and its query complexity. Our main result is that for any
space complexity s(n) ≤ log n there is a language with space complexity
O(s(n)) and query complexity 2Ω(s(n)). We conjecture that this expo-
nential lower bound is best possible, namely that the query complexity
of a languages is at most exponential in its space complexity.

Our result has implications with respect to testing languages accepted
by certain restricted machines. Alon et al. [FOCS 1999] have shown that
any regular language is testable with a constant number of queries. It is
well known that any language in space o(log log n) is regular, thus imply-
ing that such languages can be so tested. It was previously known that
there are languages in space O(log n) which are not testable with a con-
stant number of queries and Newman [FOCS 2000] raised the question
of closing the exponential gap between these two results. A special case
of our main result resolves this problem as it implies that there is a lan-
guage in space O(log log n) that is not testable with a constant number
of queries, thus showing that the o(log log n) bound is best possible. It
was also previously known that the class of testable properties cannot be
extended to all context-free languages. We further show that one cannot
even extend the family of testable languages to the class of languages
accepted by single counter machines which is perhaps the weakest (uni-
form) computational model that is strictly stronger than finite automata.

1 Introduction

Basic Definitions: Combinatorial property testing deals with the following re-
laxation of decision problems: given a fixed property P and an input x, one wants
� Research was supported by the Israel Science Foundation (grant number 55/03).

�� Research supported in part by a Charles Clore Foundation Fellowship.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 426–437, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Space Complexity vs. Query Complexity 427

to decide whether x satisfies P or is “far” from satisfying the property. This no-
tion was first introduced in the work of Blum, Luby and Rubinfeld [5], and was
explicitly formulated for the first time by Rubinfeld and Sudan [16]. Goldreich,
Goldwasser and Ron [8] have started a rigorous study of what later became known
as “combinatorial property testing”. Since then much work has been done, both
on designing efficient algorithms for specific properties, and on identifying natu-
ral classes of properties that are efficiently testable. For detailed surveys on the
subject see [6, 15].

In this paper we focus on testing properties of strings, or equivalently lan-
guages 1. In this case a string of length n is ε-far from satisfying a property P if
at least εn of the string’s entries should be modified in order to get a string satis-
fying P . An ε-tester for P is a randomized algorithm that given ε and the ability
to query the entries of an input string, can distinguish with high probability
(say 2/3) between strings satisfying P and those that are ε-far from satisfying it.
The query complexity q(ε, n) is the maximum number of queries the algorithm
makes on any input of length n. Property P is said to be testable with a constant
number of queries if q(ε, n) can be bounded from above by a function of ε only.
For the sake of brevity, we will sometimes say that a language is easily testable
if it can be tested with a constant number of queries 2.

If a tester accepts with probability 1 inputs satisfying P then it is said to have
a 1-sided error. If it may err in both directions then it is said to have 2-sided
error. A tester may be adaptive, in the sense that its queries may depend on the
answers to previous queries, or non-adaptive, in the sense that it first makes all
the queries, and then proceeds to compute using the answers to these queries.
All the lower bounds we prove in this paper hold for the most general testers,
namely, 2-sided error adaptive testers.

Background: One of the most important questions in the field of property
testing is to prove general testability results, and more ambitiously to classify
the languages that are testable with a certain number of queries. While in the
case of (dense) graph properties, many general results are known (see [2] and
[3]) there are not too many general results for testing languages that can be
decided in certain computational models. Our investigation is more related to
the connection between certain classical complexity measures of languages and
the hardness of testing them, which is measured by their query complexity as
defined above. A notable result in this direction was obtained by Alon et al. [1]
were it was shown that any regular language is easily testable. In fact, it was
shown in [1] that any regular language can be tested with an optimal constant
number of queries Θ(1/ε) (the hidden constant depends on the language). It
has been long known (see exercise 2.8.12 in [14]) that any language that can

1 It will sometimes be convenient to refer to properties P of strings as languages L,
as well as the other way around, where the language associated with the property is
simply the family of strings that satisfy the property.

2 We note that some papers use the term easily testable to indicate that a language is
testable with poly(1/ε) queries.

428 O. Lachish, I. Newman, and A. Shapira

be recognized in space 3 o(log logn) is in fact regular. By the result of [1] this
means that any such language is easily testable. A natural question is whether
it is possible to extend the family of easily testable languages beyond those with
space complexity o(log logn). It was (implicitly) proved in [1] that there are
properties in space O(log n) that are not easily testable, and Newman [13] raised
the question of closing the exponential gap between the o(log log n) positive
result and the Ω(log n) negative result. Another natural question is whether
the family of easily testable languages can be extended beyond those of regular
languages by considering stronger machines. Newman [13] has considered non-
uniform extensions of regular languages and showed that any language that
can be accepted by read-once branching programs of constant width is easily
testable. Fischer and Newman [7] showed that this can not be further extended
even to read twice branching programs of constant width. For the case of uniform
extensions, it has been proved in [1] that there are context-free languages that
are not easily testable.

In this paper we study a relation between the space complexity and the query
complexity of languages. As a special case of this relation we resolve the open
problem of Newman [13] concerning the space complexity of the easily testable
languages. We also show that the family of easily testable languages cannot be
extended to essentially any family of languages accepted by (uniform) machines
stronger than finite state automata.

MainResults: As we have discussed above there are very few known connections
between standard complexity measures and query complexity. Our first and main
investigation in this paper is about the relation between the space complexity of a
language and the query complexity of testing it.Ourmain result shows that in some
cases the relation between space complexity and query complexity may be at least
exponential. As we show in Theorem 2 below, it can be shown that there are lan-
guages, whose space complexity is O(log n) and whose query complexity is Ω(n).
Also, as we have previously noted, languageswhose space complexity is o(log logn)
can be tested with Θ(1/ε) queries. Therefore, the interesting space complexities
s(n) that are left to deal with are in the “interval” [Ω(log logn), O(log n)]. For ease
of presentation it will be easier to assume that s(n) = f(log logn) for some inte-
ger function x ≤ f(x) ≤ 2x. As in many cases, we would like to rule out very
“strange” complexity functions s(n). We will thus say that s(n) = f(log logn) is
space constructible if the function f is space constructible, that is, if given the unary
representation of a number x it is possible to generate the binary representation of
f(x) using space O(f(x)). Note that natural functions, such as s(n) = (log logn)2

and s(n) =
√

logn are space constructible 4.

3 Throughout this paper we consider only deterministic space complexity. Our model
for measuring the space complexity of the algorithm is the standard Turing Machine
model, where there is a read only input tape, and a work tape where the machine
can write. We only count the space used by the work tape. See [14] for the precise
definitions. For concreteness we only consider the alphabet {0, 1}.

4 We use the standard notion of space constructibility, see e.g. [14]. Note that when
s(n) = (log log n)2 we have f(x) = x2 and when s(n) =

√
log n we have f(x) = 2x/2.

Space Complexity vs. Query Complexity 429

Theorem 1 (Main Result). For any (space constructible) function s(n) there
is a language in space O(s(n)), whose query complexity is 2Ω(s(n)).

We believe it will be interesting to further study the relation between these two
measures. Specifically, we raise the following conjecture claiming that the lower
bound of Theorem 1 is best possible:

Conjecture 1. Any language in space s(n) can be tested with query complexity
2O(s(n)).

As we have mentioned above, one of the steps in the proof of Theorem 1 is the
following result that may be of independent interest.

Theorem 2. There is a language in space O(log n), whose query complexity is
Ω(n).

To the best of our knowledge, the lowest complexity class that was previous
known to contain a language, whose query complexity is Ω(n), is P (see [9]). If
Conjecture 1 is indeed true then Theorem 2 is essentially best possible.

As an immediate application of Theorem 1 we deduce the following corollary,
showing that the class of easily testable languages cannot be extended from the
family of regular languages even to the family of languages with space complexity
O(log logn) thus answering the problem raised by Newman in [13] concerning
the space complexity of easily testable languages.

Corollary 1. For any k > 0, there is a language in space O(log logn), whose
query complexity is Ω(logk n).

Corollary 1 rules out the possibility of extending the family of easily testable
languages from regular languages, to the entire family of languages, whose space
complexity is O(log logn).

We turn to address another result, ruling out another possible extension of
regular languages. As we have mentioned before, it has been shown in [1] that
there are context-free languages that are not testable. Hence, a natural ques-
tion is whether there exists a uniform computational model stronger than finite
state machines and weaker than stack machines such that all the languages that
are accepted by machines in this model are testable. Perhaps the weakest uni-
form model within the class of context-free languages is that of a deterministic
single-counter automaton (also known as one-symbol push-down automaton).
A deterministic single-counter automaton is a finite state automaton equipped
with a counter. The possible counter operations are increment, decrement and
do nothing, and the only feedback from the counter is whether it is currently
0 or positive (larger than 0). Thus, such an automaton, running on a string ω
reads an input character at a time, and based on its current state and whether
the counter is 0, jumps to the next state and increments/decrements the counter
or leaves it unchanged. Such an automaton accepts a string ω if starting with
a counter holding the value 0 it reads all the input characters and ends with
the counter holding the value 0. It is quite obvious that such an automaton is
equivalent to a deterministic push-down automaton with one symbol stack (and

430 O. Lachish, I. Newman, and A. Shapira

a read-only bottom symbol to indicate empty stack). This model of computation
can recognize a very restricted subset of context free languages. Still, some in-
teresting languages are recognized by such an automaton, e.g. D1 the first Dyck
language, which is the language of balanced parentheses. Formal definition and
discussion on variants of counter automata can be found in [18].

In this paper we also prove the following theorem showing that the family of
testable properties cannot be extended even to those accepted by single-counter
automata.

Theorem 3. There is a language that can be accepted by a deterministic single-
counter automaton and whose query complexity is Ω(log logn) even for 2-sided
error tests.

Combining Theorem 3 and Corollary 1 we see that the family of testable prop-
erties cannot be extended beyond that of the regular languages in two natural
senses.

Organization: The rest of the paper is organized as follows. In Section 2 we
prove the exponential relation between space complexity and query complexity
of Theorem 1. An important step in the proof is Theorem 2 that we also prove
in this section. Section 3 contains the proof of Theorem 3 showing that there are
languages accepted by counter machines that are not easily testable. Section 4
contains some concluding remarks and open problems. Due to space limitations
several proofs are omitted and will appear in the full version.

2 Space Complexity vs. Query Complexity

In this section we prove that languages in space s(n) may have query complexity
exponential in s(n). We start with an overview containing the important details
of the proof of Theorem 2 stating that there are languages in space O(log n) that
have query complexity Ω(n). We then show how to use Theorem 2 in order to
prove the general lower bound of Theorem 1.

Overview of the Proof of Theorem 2: The construction of the language L
in Theorem 2 is based on dual-codes of asymptotically good linear codes over
GF (2), which are based on Justesen’s construction [10]. We begin with some brief
background from Coding Theory (see [12] for a comprehensive background). A
linear code C over GF (2) is just a subset of {0, 1}n that forms a linear subspace.
The (Hamming) distance between two words x, y ∈ C, denoted d(x, y), is the
number of indices i ∈ [n] for which xi = yi. The distance of the code, denoted
d(C) is the minimum distance over all pairs of distinct words of C, that is
d(C) = minx �=y∈C d(x, y). The size of a code, denoted |C| is the number of words
in C. The dual-code of C, denoted C⊥ is the linear subspace orthogonal to C, that
is C⊥ = {y : 〈x, y〉 = 0 for all x ∈ C}, where 〈x, y〉 =

∑n
i=1 xiyi (mod 2) is the

dot product of x and y over GF (2). The generator matrix of a code C is a matrix
G whose rows span the subspace of C. Note, that a code is a family of strings of
fixed size n and our interest is languages containing strings of unbounded size.

Space Complexity vs. Query Complexity 431

We will thus have to consider families of codes of increasing size. The following
notion will be central in the proof of Theorem 2:

Definition 1. An infinite family of codes C = {C1, C2, . . .}, where Cn ⊆ {0, 1}n,
is said to be asymptotically good if there exist positive reals d and r such that
lim infn→∞

d(Cn)
n ≥ d and lim infn→∞

log(|Cn|)
n ≥ r.

We turn to discuss the main two Lemmas needed to prove Theorem 2. The first
is the following:

Lemma 1. Suppose C = {C1, C2, . . .} is an asymptotically good family of linear
codes. Then, for any infinite S ⊆ N , the language L =

⋃
n∈S C⊥

n has query
complexity Ω(n).

Lemma 1 is essentially a folklore result. Its (simple) proof relies on the known
fact that if C is a code with distance t then C⊥ is a t-wise independent family,
that is, if one uniformly samples a string from C⊥ then the distribution induced
on any t coordinates is the uniform distribution. Such families are sometimes
called in the coding literature orthogonal array of strength t, see [12]. The fact
that the codes in C satisfy log(|Cni

|)
ni

≥ r implies that a random string is with high
probability far from belonging to C⊥

ni
. These two facts allow us to apply Yao’s

principle to prove that even adaptive testers must use at least Ω(n) queries in
order to test L for some fixed ε0. As pointed to us by Eli Ben-Sasson, Lemma 1
can also be proved by applying a general non-trivial result about testers for
membership in linear codes (see Theorem 3.3 in [4] for more details).

A well known construction of Justesen [10] gives an asymptotically good family
of codes. By exploiting the fact that for appropriate prime powers n, one can
perform arithmetic operations over GF (n) in space O(log n), one can use the
main idea of [10] in order to prove the following:

Lemma 2. There is an asymptotically good family of linear codes C =
{C1, C2, . . .} and a space O(log n) algorithm, with the following property: Given
integers n, i and j, the algorithm generates entry i, j of the generator matrix of
Cn.

Apparently this result does not appear in any published paper. However, most
details of the construction appear in Madhu Sudan’s lecture notes [17]. Lemma 2
immediately implies that the language C⊥ = ∪C⊥

i is recognizable in O(log n)
space. Theorem 2 will follow by applying the above two lemmas. The proofs of
the above Lemmas will appear in the full version of the paper.

Proof of Theorem 1: In this subsection we apply Theorem 2 in order to
prove Theorem 1. To gain intuition for the construction, let us consider the case
s(n) = log logn. Consider the following language Ls: a string x ∈ {0, 1,#}n is
in Ls if it is composed of n/ logn blocks of size logn each, separated by the #
symbol, such that each block is a word of the language of Theorem 2. It can
be shown that the query complexity of testing Ls is Ω(logn). As the language
of Theorem 2 is in space O(log n) it is clear that if the blocks of an input are
indeed or length O(log n), then we can recognize Ls using space O(log log n);

432 O. Lachish, I. Newman, and A. Shapira

we just run the space O(log n) algorithm on each of the blocks, whose length is
O(log n). Of course, the problem is that if the blocks are not of the right length
then we may be “tricked” into using too much space. We thus have to add to
the language some “mechanism” that will allow us to check if the blocks are of
the right length. This seems to be difficult as we need to initiate a counter that
will hold the value n, but we need to do so without using more than O(log logn)
space, and just holding the value n requires Θ(log n) bits.

The following language comes to the rescue: consider the language B over the
alphabet {0, 1, ∗}, which is defined as follows: for every integer r ≥ 1, the language
B contains the string sr = bin(0) ∗ bin(1) ∗ . . . ∗ bin(2r − 1)∗, where bin(i) is
the binary representation of the integer i as a word of length r (that is, including
leading 0’s). Therefore, for every r there is precisely one string in B of length (r +
1)2r. This language is the standard example for showing that there are languages
in space O(log logn) that are not regular (see [14] exercise 2.8.11).

Note that after verifying that a string x ∈ B we have an implicit representation
of a number very close to log(|x|): this is just the number of entries before the
first ∗ symbol. This also gives us a value close to log logn, which we needed in the
previous example. The main idea for the proof of Theorem 1 is to “interleave”
the language B with a language consisting of blocks of length 2s(n) of strings from
the language of Theorem 2. For ease of presentation the language we construct
to prove Theorem 1 is over the alphabet {0, 1,#, ∗}. It can easily be converted
into a language over {0, 1} with the same asymptotic properties by encoding
each of the 4 symbols using 2 bits. The details follow.

Let L2 be the language of Theorem 2 and let s(n) satisfy s(n) = f(log logn)
for some space constructible function n ≤ f(n) ≤ 2n (recall the discussion
before the statement of Theorem 1). In what follows we will use the notation
Lk to denote the strings of some language L whose lengths is k, that is Lk =
L∩ {0, 1,#, ∗}k. Given the function f , we define a language Lf that we need in
order to prove Theorem 1 as the union of families of strings Xr of length n(r),
where for any r ≥ 1 we define

n(r) = 2(r + 1)2r.

A string x ∈ {0, 1,#, ∗}n(r) belongs to Xr if it has the following two properties:

1. The odd entries of x form a string from B (thus the odd entries are over
{0, 1, ∗}).

2. In the even entries of x, substrings between consecutive # symbols 5 form
a string from Lk

2, where k = 2f(�log r�). The only exception is the last block
for which the only requirement is that it would be of length at most k (thus
the even entries are over {0, 1,#}).

Note that the words from L2, which appear in the even entries of strings be-
longing to Xr all have length 2f(�log r�). We now define

Lf =
∞⋃

r=1

Xr . (1)

5 The first # symbol is between the first block and the second block.

Space Complexity vs. Query Complexity 433

and

Kf = {2f(�log r�) : r ∈ N}. (2)

Observe that the words from L2, which appear in the even entries of strings
belonging to Lf , all have lengths that belong to the set Kf . With a slight abuse
of notation we now define the language Lf

2 as the subset of L2 consisting of
words with lengths from Kf . By Theorem 2, when taking Kf as the set S in the
statement of the theorem, we get the following claim:

Claim 1. For some ε0 > 0, every ε0-tester of Lf

2 has query complexity Ω(n).

We now turn to prove the main claims needed to obtain Theorem 1.

Claim 2. The language Lf has space complexity O(s(n)) = O(f(log logn)).

Proof. To show that Lf is in space O(f(log logn)) we consider the following
algorithm for deciding if an input x belongs to Lf . We first consider only the
odd entries of x and use the O(log logn) space algorithm for deciding if these
entries form a string from B. If they do not we reject and if they do we move
to the second step. Note, that at this step we know that the input’s length n is
2(r+1)2r for some r ≤ logn. In the second step we initiate a binary counter that
stores the number 	log r
 ≤ log logn. Observe, that the algorithm can obtain r
by counting the number of odd entries between consecutive ∗ symbols, and that
we need O(log logn) bits to hold r. We then construct a counter that holds the
value k = 2f(�log r�), using space O(f(log r
)) by exploiting the fact that f is
space constructible 6. We then verify that the number of even entries between
consecutive # symbols is k, besides the last block for which we check that the
length is at most k. Finally, we run the space O(log n) algorithm of L2 in order
to verify that the even entries between consecutive # symbols form a string from
L2 (besides the last block).

The algorithm clearly accepts a string if and only if it belongs to Lf . Re-
garding the algorithm’s space complexity, recall that we use an O(log logn)
space algorithm in the first step (this algorithm was sketched at the beginning
of this section). Note, that after verifying that the odd entries form a string
from the language B, we are guaranteed that r ≤ logn. The number of bits
needed to store the counter we use in order to hold the number k = 2f(�log r�) is
f(log r
) ≤ f(log logn) as needed. Finally, as each block is guaranteed to be of
length 2f(�log r�), the O(log n) algorithm that we run on each of the blocks uses
space O(log(2f(�log r�))) = O(f(log r
)) = O(f(log logn)) as needed.

6 More precisely, given the binary encoding of �log r� we form an unary representation
of �log r�. Such a representation requires O(log log n) bits. We then use the space
constructibility of f to generate a binary representation of f(�log r�) using space
O(f(�log r�)). Finally, given the binary representation of f(�log r�) it is easy to
generate the binary representation of 2f(�log r�) using space O(f(�log r�)).

434 O. Lachish, I. Newman, and A. Shapira

Claim 3. The language Lf has query complexity 2Ω(f(log log n)) = 2Ω(s(n)).

Proof. By Claim 1, for some fixed ε0 every ε0-tester for Lf

2 has query complexity
Ω(n). We claim that this implies that every ε0

3 -tester for Lf has query complexity
2Ω(f(log log n)). Consider any ε0

3 -tester Tf for Lf and consider the following ε0-
tester T2 for Lf

2: Given an input x, the tester T2 immediately rejects x in case

there is no integer r for which |x| = 2f(�log r�). Recall that the strings of Lf
2

are all taken from Kf as defined in (2). In case such an integer r exists, set
n = 2(r + 1)2r. The tester T2 now implicitly constructs the following string x′

of length n. The odd entries of x′ will contain the unique string of B of length
(r + 1)2r. The even entries of x′ will contain repeated copies of x separated by
the # symbol (the last block may contain some prefix of x). Note that if x ∈ Lf

2
then x′ ∈ Lf . On the other hand, observe that if x is ε-far from Lf

2 then x′ is
(ε
2 − o(1))-far from Lf , because in the even entries of x′, one needs to change

an ε-fraction of the entries in the substring between consecutive # symbols, in
order to get a words from Lf

2 (the o(1) term is due to the fraction of the string
occupied by the # symbols that need not be changed). This means that it is
enough for T2 to simulate Tf on x′ with error parameter ε0

3 and thus return
the correct answer with high probability. Of course, T2 cannot construct x′ “for
free” because to do so T2 must query all entries of x. Instead, T2 only answers
the oracle queries that Tf makes as follows: given a query of Tf to entry 2i− 1
of x′, the tester T2 will supply Tf with the ith entry of the unique string of B of
length (r + 1)2r. Given a query of Tf to entry 2i of x′, the tester T2 will supply
Tf with the jth entry of x, where j = i (mod |x|+ 1). To this end, T2 will have
to perform a query to the entries of x.

We thus get that if Lf has an ε0
3 -tester making t queries on inputs of length

2(r+1)2r, then Lf

2 has an ε0-tester making t queries on inputs of length 2f(�log r�).

We know by Claim 1 that the query complexity of any ε0-tester of Lf

2 on inputs of
length 2f(�log r�) is Ω(2f(�log r�)). This means that the query complexity of T2 on
the inputs x′ we described must also be Ω(2f(�log r�)). The lengths of these inputs
is n = 2(r+1)2r. This means that r = logn−Θ(log logn) and therefore the query
complexity on these inputs is Ω(2f(�log r�))) = Ω(2f(log log n−2)) = 2Ω(f(log log n)),
where in the last equality we used the fact that f(x) ≤ 2x.

Proof of Theorem 1. Take the language Lf and apply Claims 3 and 2.

3 Testing Counter Machine Languages May Be Hard

In this section we define a language L that is decidable by a deterministic single-
counter machine and sketch an Ω(log logn) lower bound on the query complexity
of adaptive, 2-sided error testers for testing membership in L. We start with
defining the language L.

Definition 2. L is the family of strings s ∈ {0, 1}∗ such that s = 0k11k1 . . . 0ki1ki

(The integers ki are arbitrary). For every integer n we set Ln = L ∩ {0, 1}n.

Space Complexity vs. Query Complexity 435

We proceed with the proof of Theorem 3. First note that one can easily see that L
can be accepted by a deterministic counter automaton as defined in Subsection 1.
What we are left with is thus to prove the claimed lower bound on testing L.
Note that any adaptive tester of a language L ⊆ {0, 1}∗ with query complexity
q(ε, n) can be simulated by a non-adaptive tester with query complexity 2q(ε,n).
Therefore, in order to prove our Ω(log logn) lower bound, we may and will prove
an Ω(logn/ log logn) lower bound that holds for non-adaptive testers. To this
end we apply Yao’s minmax principle, which implies that in order to prove a
lower bound of Ω(log n/ log logn) for non-adaptive testers it is enough to show
that there is a distribution D over legitimate inputs (that is, inputs from Ln and
inputs that are 1

120 -far from Ln), such that for any non-adaptive deterministic
algorithm Alg, which makes o(log n/ log logn) queries, the probability that Alg
errs on inputs generated by D is at least 1/3.

One of the key ingredients needed to construct D are the following two pairs
of strings:

BAD� =
{

0� 1� 0� 1� 0� 1� 1� 1� 0� 0� 0� 1�,
0� 0� 1� 1� 0� 0� 0� 1� 0� 1� 1� 1�

}
GOOD� =

{
0� 0� 1� 1� 0� 0� 1� 1� 0� 0� 1� 1�,
0� 1� 0� 1� 0� 1� 0� 1� 0� 1� 0� 1�

}
where � is a positive integer. Note, that each of the 4 strings is of length 12�. We
refer to strings selected from these sets as ’phrase strings’. We view the phrase
strings as being composed of 12 disjoint intervals of length �, which we refer to as
‘phrase segments’. By the definition of the ‘phrase strings’ each ‘phrase segment’
is an homogeneous substring (that is, all its symbols are the same).

Note that for any �, the 4 strings in BAD� and GOOD� have the following
two important properties: (i) The 4 strings have the same (boolean) value in
phrase segments 1, 4, 5, 8, 9 and 12. (ii) In the other phrase segments, one of the
strings in BAD� has the value 0 and the other has value 1, and the same applies
to GOOD�. The idea behind the construction of D and the intuition of the
lower bound is that in order to distinguish between a string chosen from BAD�

and a string chosen from GOOD� one must make queries into 2 distinct phrase
segments. The reason is that by the above observation, if all the queries belong
to segment i ∈ [12], then either the answers are all identical and are known in
advance (in case i ∈ {1, 4, 5, 8, 9, 12}), or they are identical and have probability
0.5 to be either 0 or 1, regardless of the set from which the string was chosen.

In the construction of the distributionD we select with probability 1/2 whether
the string we choose will be a positive instance or a negative instance. We select a
positive instance by concatenating a set of strings uniformly and independently se-
lected from GOOD� with strings of the form 0t1t. We construct negative instance
in the same manner except that we replace the selection of strings from GOOD�,
by selecting strings from BAD�. Thus, the only way to distinguish between a pos-
itive instance and a negative instance is if at least two queries are located in the
same phrase string, but in different phrase segments. The distribution D will be

436 O. Lachish, I. Newman, and A. Shapira

such that if the number of queries that is used is o(log n/ log logn), then with high
probability there will be no two queries in two different phrase segments that be-
long to the same phrase string. As each phrase string is selected independently this
makes it impossible for the tester to know whether the string is a positive instance
or a negative one.

We assume in what follows that n ≥ 16. Let DN be a distribution over {0, 1}n
that is defined by the following process of generating a string α ∈ {0, 1}n:

1. Uniformly select an integer s ∈ [1, 	logn
 − 3] and set � = 2s .
2. Independently and uniformly select integers b ∈ [6�], until the first time that

the integers b1, . . . , br selected satisfy
∑r

i=1(2bi + 12�) ≥ n− 24�.
3. Independently and uniformly select r strings β1, . . . , βr ∈ BAD�.
4. For each i ∈ [r] set Bi = 0bi1biβi. We refer to Bi as the ith ‘block string‘.

We refer to the substring 0bi1bi as the ‘buffer string‘ and βi as the ’phrase’.
5. Set α = B1 · · ·Br0t1t, where t = (n−

∑r
i=1 |Bi|)/2.

Let DP be a distribution over {0, 1}n that is defined in the same manner as DN

with the exception that in the third stage we select independently and uniformly
r strings β1, . . . , βr ∈ GOOD�. In the full version of the paper we use these two
distributions to prove the required lower bound on testing L.

4 Concluding Remarks and Open Problems

Our main result in this paper gives a relation between the space complexity and
the query complexity of a language, showing that the later may be exponential
in the former. We also raise the conjecture that this relation is tight, namely
that the query complexity of a language is at most exponential in its space
complexity. The results of this paper further show that the family of easily
testable languages cannot be extended beyond that of the regular languages in
terms of two natural senses; the space complexity of the accepting machine or
the minimal computational model in which it can be recognized.

An intriguing related question is to understand the testability of languages
with sublinear number of queries, that is poly(logn) or even just o(n) queries. In
particular, an intriguing open problem is whether all the context free languages
can be tested with a sublinear number of queries. Currently, the lower bounds
for testing context-free languages are of type Ω(nα) for some 0 < α < 1. It seems
that as an intermediate step towards understanding the testability of context-
free languages, it will be interesting to investigate whether all the languages
acceptable by single-counter automata can be tested with o(n) queries. We note
that the language we constructed in order to prove Theorem 3 can be tested
with poly(logn, ε) queries. See [11] for the full details.

Acknowledgments. The authors would like to thank Noga Alon, Madhu Sudan
and Eli Ben-Sasson for helpful discussions.

Space Complexity vs. Query Complexity 437

References

1. N. Alon, M. Krivelevich, I. Newman and M. Szegedy, Regular languages are testable
with a constant number of queries, SIAM J. on Computing 30 (2001), 1842-1862.

2. N. Alon and A. Shapira, A characterization of the (natural) graph properties
testable with one-sided error, Proc. of FOCS 2005, 429-438.

3. N. Alon, E, Fischer, I. Newman and A. Shapira, A combinatorial characterization
of the testable graph properties: it’s all about regularity, Proc. of STOC 2006,
251-260.

4. E. Ben-Sasson, P. Harsha and S. Raskhodnikova, Some 3-CNF properties are hard
to test, Proc. of STOC 2003, 345-354.

5. M. Blum, M. Luby and R. Rubinfeld, Self-testing/correcting with applications to
numerical problems, JCSS 47 (1993), 549-595.

6. E. Fischer, The art of uninformed decisions: A primer to property testing, The
Computational Complexity Column of The Bulletin of the European Association
for Theoretical Computer Science 75 (2001), 97-126.

7. E. Fischer, I. Newman and J. Sgall, Functions that have read-twice constant width
branching programs are not necessarily testable, Random Struct. and Alg., in press.

8. O. Goldreich, S. Goldwasser and D. Ron, Property testing and its connection to
learning and approximation, JACM 45(4): 653-750 (1998).

9. O. Goldreich and L. Trevisan, Three theorems regarding testing graph properties,
Random Structures and Algorithms, 23(1):23-57, 2003.

10. J. Justesen, A class of constructive asymptotically good algebraic codes, IEEE
Transcations on Information, 18:652-656, 1972.

11. O. Lachish and I. Newman, Languages that are Recognized by Simple Counter
Automata are not necessarily Testable, ECCC report TR05-152.

12. F. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes,
North-Holland, Amsterdam, 1997.

13. I. Newman, Testing of functions that have small width branching programs, Proc.
of 41th FOCS (2000), 251-258.

14. C. Papadimitriou, Computational Complexity, Addison Wesley, 1994.
15. D. Ron, Property testing, in: Handbook of Randomized Computing, Vol. II, Kluwer

Academic Publishers, 2001, 597–649.
16. R. Rubinfeld and M. Sudan, Robust characterization of polynomials with applica-

tions to program testing, SIAM J. on Computing 25 (1996), 252–271.
17. M. Sudan, Lecture Notes on Algorithmic Introduction to Coding Theory, available

at http://theory.lcs.mit.edu/∼madhu/FT01/scribe/lect6.ps.
18. L.G. Valiant, M. Paterson, Deterministic one-counter automata, Journal of Com-

puter and System Sciences, 10 (1975), 340–350.

Consistency of Local Density Matrices Is
QMA-Complete

Yi-Kai Liu

Computer Science and Engineering
University of California, San Diego

y9liu@cs.ucsd.edu

Abstract. Suppose we have an n-qubit system, and we are given a
collection of local density matrices ρ1, . . . , ρm, where each ρi describes
a subset Ci of the qubits. We say that the ρi are “consistent” if there
exists some global state σ (on all n qubits) that matches each of the ρi

on the subsets Ci. This generalizes the classical notion of the consistency
of marginal probability distributions.

We show that deciding the consistency of local density matrices is
QMA-complete (where QMA is the quantum analogue of NP). This gives
an interesting example of a hard problem in QMA. Our proof is some-
what unusual: we give a Turing reduction from Local Hamiltonian, using
a convex optimization algorithm by Bertsimas and Vempala, which is
based on random sampling. Unlike in the classical case, simple mapping
reductions do not seem to work here.

1 Introduction

Quantum mechanical systems exhibit many unusual phenomena, such as coher-
ent superpositions and nonlocal entanglement. It is interesting to compare this
with the behavior of classical probabilistic systems. In a classical system, such as
a Markov chain or a graphical model, one may have correlations or dependencies
among different parts of the system; in particular, local properties can affect the
joint probability distribution of the entire system. Many quantum systems have
a similar flavor, though their behavior is more complicated. In this paper, we
investigate one problem of this kind, and its relationship to the complexity class
QMA.

First, consider a classical problem. Suppose we have random variables
X1, . . . , Xn, with some unknown joint distribution D, and we are given marginal
distributions D1, . . . , Dm, where each Di describes a subset Ci of the variables.
(We assume that the random variables Xj take on values in some fixed finite
set, and the subsets Ci have size at most some constant k.) Does there exist a
joint distribution D that matches each of the marginals Di on the subsets Ci?
If so, we say that the marginals Di are “consistent.”

Deciding the consistency of marginal distributions is NP-hard, by a straight-
forward reduction from 3-coloring. (We are given a graph G = (V,E). For each
vertex v ∈ V , construct a random variable Xv which takes on values in {r, g, b}.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 438–449, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Consistency of Local Density Matrices Is QMA-Complete 439

For each edge (u, v) ∈ E, specify that the marginal distribution of Xu and Xv

must be uniform over the set {r, g, b}2 \ {rr, gg, bb}. These marginals are consis-
tent iff G is 3-colorable.)

Now consider the generalization of this problem to quantum states. Suppose
we have an n-qubit system, and we are given local density matrices ρ1, . . . , ρm,
where each ρi describes a subset Ci of the qubits. Does there exist a global state
σ on all n qubits that matches each of the local states ρi on the subsets Ci?
If so, we say that the local states ρi are “consistent.” (This problem was first
suggested to me by Dorit Aharonov, in connection with the class QCMA [1].)

We will show that this problem is QMA-complete, where QMA is the quan-
tum analogue of NP. QMA is the class of languages that have poly-time quantum
verifiers, where the witness is allowed to be a quantum state. QMA arises natu-
rally in the study of quantum computation, and it also has a complete problem,
Local Hamiltonian, which is a generalization of k-SAT [2, 3].

Our result is interesting, because we only know of a few QMA-complete prob-
lems, and most of them look like universal models of quantum computation.
For instance, the fact that Local Hamiltonian is QMA-complete [2, 3, 4, 5, 6] is
closely related to the fact that adiabatic quantum computation is equivalent to
the standard quantum circuit model [7]. Other QMA-complete problems such
as Identity Check involve properties of quantum circuits [8]. The Consistency
problem, however, does not seem to embody any particular model of quantum
computation; this will become clearer when we present our reduction from Local
Hamiltonian.

Why are there so few QMA-complete problems, when there is such an as-
tonishing variety of NP-complete problems? The reason seems to be that the
techniques used to show NP-hardness, such as mapping reductions using com-
binatorial gadgets, break down when we apply them to a “quantum” problem
like Local Hamiltonian. For instance, to reduce Local Hamiltonian to the Con-
sistency problem, we would try to use local density matrices to “simulate” local
Hamiltonians. But we run into problems due to the presence of non-commuting
matrices. (In cases where quantum gadgets do work, such as [5, 6], they are much
more subtle than classical gadgets.)

Instead, our proof that the consistency problem is QMA-hard uses a ran-
domized Turing reduction from Local Hamiltonian. The basic idea is that Local
Hamiltonian can be expressed as a convex program in polynomially many vari-
ables, which can be solved using convex optimization algorithms, given an oracle
for the Consistency problem. In particular, we use a class of convex optimiza-
tion algorithms [9, 10, 11] which are based on random walks, and only require a
membership oracle, rather than a separation oracle. We also use a nifty repre-
sentation of local density matrices in terms of the expectation values of Pauli
matrices.

Note that the Consistency problem has a rather different structure from Local
Hamiltonian. For instance, a local density matrix contains complete information
about the local state of the system, whereas in many cases a local Hamiltonian
only constrains the local state of the system to lie within a certain subspace.

440 Y.-K. Liu

Finally, we remark that our reduction from Local Hamiltonian to Consistency
preserves the “neighborhood structure” of the problem, in that the local density
matrices act on the same subsets of qubits as the local Hamiltonians. So, using
the QMA-hardness results for 2-Local Hamiltonian [5] and Local Hamiltonian
on a 2-D square lattice [6], we can immediately get QMA-hardness results for
the corresponding special versions of the Consistency problem.

We also mention some related work. In [13], one considers the Common
Eigenspace Problem, verifying the consistency of a set of eigenvalue equations
Hi|ψ〉 = λi|ψ〉, where the operators Hi commute. We do something similar,
translating each local density matrix into constraints on the expectation values
of Pauli matrices, though in our case the Pauli matrices do not commute. Also,
in [14], one considers a quantum analogue of 2-SAT, where we seek a state |ψ〉
whose local density matrices have support on prescribed subspaces. However,
this problem is more closely related to Local Hamiltonian than to Consistency,
since the constraints can be written in the form Πi|ψ〉 = 0 where the Πi are
local projectors.

2 Preliminaries

2.1 Density Matrices

A quantum state of an n-qubit system is represented by a density matrix, which
is a 2n×2n positive semidefinite matrix with trace 1. A classical joint probability
distribution on n bits is a special case, where the density matrix is diagonal, and
the diagonal entries are the probabilities of the 2n possible outcomes. A subset of
qubits C is described by a reduced density matrix, which is obtained by taking
the partial trace over the qubits not in C. This is analogous to a marginal
distribution, which is obtained by summing over some of the variables.

We measure the difference between two quantum states using the L1 matrix
norm, ‖ρ− σ‖1 = tr |ρ− σ|. Note that this is also called the trace or statistical
distance (when normalized by a factor of 1/2).

Let X , Y and Z denote the Pauli matrices for a single qubit, and define
P = {I,X, Y, Z}. We can construct n-qubit Pauli matrices by taking tensor
products P = P1 ⊗ · · · ⊗ Pn ∈ P⊗n. Any 2n-dimensional Hermitian matrix can
be written as a real linear combination of n-qubit Pauli matrices. Furthermore,
the n-qubit Pauli matrices are orthogonal with respect to the Hilbert-Schmidt
inner product: tr(P †Q) = 2n if P = Q, and 0 otherwise. So, if σ is an n-qubit
state, we can write it in the form

σ =
1
2n

∑
P∈P⊗n

αPP,

where the coefficients are uniquely determined by αP = tr(Pσ); note that these
are the expectation values of the Pauli matrices P . This application of the Pauli
matrices is closely related to quantum state tomography.

Consistency of Local Density Matrices Is QMA-Complete 441

2.2 QMA and the Local Hamiltonian Problem

The class QMA, or “Quantum Merlin-Arthur,” is defined as follows [2, 3]: a
language L is in QMA if there exists a poly-time quantum verifier V and a
polynomial p such that

– If x ∈ L, then there exists a quantum state ρ on p(|x|) qubits such that
V (x, ρ) accepts with probability ≥ 2/3.

– If x /∈ L, then for all quantum states ρ on p(|x|) qubits, V (x, ρ) accepts with
probability ≤ 1/3.

(Here, |x| denotes the length of the string x.) This is similar to the definition of
NP, except that the witness is allowed to be a quantum state, and the verifier is
a quantum circuit with bounded error probability.

The Local Hamiltonian problem is defined as follows:

Consider a system of n qubits. We are given a Hamiltonian H = H1 +
· · ·+ Hm, where each Hi acts on a subset of qubits Ci ⊆ {1, . . . , n}. The
Hi are Hermitian matrices, with eigenvalues in some fixed interval (for
instance [0, 1]), and each matrix entry is specified with poly(n) bits of
precision. Also, m ≤ poly(n), and each subset Ci has size |Ci| ≤ k, for
some constant k.
In addition, we are given two real numbers a and b (specified with poly(n)
bits of precision) such that b− a ≥ 1/ poly(n).
The problem is to distinguish between the following two cases:

– If H has an eigenvalue that is ≤ a, output “YES.”
– If all the eigenvalues of H are ≥ b, output “NO.”

Kitaev showed that Local Hamiltonian is in QMA, and the case of k = 5 is QMA-
hard [2, 3]. With greater effort, one can show that Local Hamiltonian with k = 2
is also QMA-hard [4, 5].

2.3 Convex Programming

Consider the following version of convex programming:

Let K ⊆ Rn be a convex set, specified by a membership oracle OK .
Let f : K → R be a convex function, which is efficiently computable.
Find some x ∈ K that minimizes f(x).

Note that the membership oracle OK is not as powerful as a separation oracle.
We would like to solve this problem with precision ε; that is, we want to find
some x that lies within distance ε of an optimal solution x∗.

We can solve this problem in time poly(n, log(1/ε)), using an algorithm by
Bertsimas and Vempala which is based on random sampling [9, 11]. Actually, for
our purposes we only need to solve the special case where f is a linear function;
for this case, we can use a slightly faster simulated annealing algorithm [10], or
an algorithm based on the shallow-cut Ellipsoid method [12]. But for simplicity
we will stick with the Bertsimas and Vempala algorithm.

442 Y.-K. Liu

Theorem 1. (Bertsimas and Vempala). Consider the convex program described
above. Suppose K is contained in a ball of radius R centered at the origin. Also,
suppose we are given a point y, such that the ball of radius r around y is contained
in K. Then this problem can be solved in time poly(n, L), where L = log(R/r).

3 Consistency of Local Density Matrices

We define the Consistency problem as follows [1]:

Consider a system of n qubits. We are given a collection of local den-
sity matrices ρ1, . . . , ρm, where each ρi acts on a subset of qubits Ci ⊆
{1, . . . , n}. Each matrix entry is specified with poly(n) bits of precision.
Also, m ≤ poly(n), and each subset Ci has size |Ci| ≤ k, for some con-
stant k.
In addition, we are given a real number β (specified with poly(n) bits of
precision) such that β ≥ 1/ poly(n).
The problem is to distinguish between the following two cases:
– There exists an n-qubit state σ such that, for all i, ‖tr{1,...,n}−Ci

(σ)−
ρi‖1 = 0. In this case, output “YES.”

– For all n-qubit states σ, there exists some i such that ‖tr{1,...,n}−Ci

(σ) − ρi‖1 ≥ β. In this case, output “NO.”

Theorem 2. Consistency is in QMA.

Proof sketch: The basic idea is as follows. Given a witness state σ, the verifier
will pick a subset Ci, and perform measurements to compare σ (on the subset
Ci) to ρi. There is a complication, however, because the verifier requires many
independent copies of the witness σ, and the prover might try to cheat using
entanglement among the different copies. One can deal with this problem using
a Markov argument. For details, see the discussion of QMA+ in [15]. �

4 Consistency is QMA-Hard

Theorem 3. Consistency is QMA-hard, via a poly-time randomized Turing re-
duction from Local Hamiltonian. Furthermore, the reduction uses the same value
of k for both problems, so we get that Consistency with k = 2 is QMA-hard.

We begin by discussing the basic idea of the proof, and the complications that
arise. We then describe the actual reduction from Local Hamiltonian to Consis-
tency, and finally we deal with some issues of numerical precision.

4.1 The Basic Idea

Say we are given a local Hamiltonian H = H1 + · · ·+Hm, where Hi acts on the
subset Ci. Consider the following convex program:

Consistency of Local Density Matrices Is QMA-Complete 443

Let ρ be any 2n × 2n complex matrix.
Find some ρ that minimizes tr(Hρ),
such that ρ / 0 and tr(ρ) = 1.

It is easy to see that H has an eigenvalue ≤ γ if and only if the convex pro-
gram achieves tr(Hρ) ≤ γ for some ρ. (Note that, although the convex program
allows mixed states ρ, the optimal ρ can always be chosen to be a pure state.)
Unfortunately, this convex program has 4n variables, which makes it unwieldy.

We now construct another convex program, which is equivalent to the previous
one, but has only a polynomial number of variables:

Let ρ1, . . . , ρm be complex matrices, where ρi has size 2|Ci| × 2|Ci|.
(We interpret each ρi as the reduced density matrix for the subset Ci.)
Find some ρ1, . . . , ρm that minimize tr(H1ρ1) + · · ·+ tr(Hmρm),
such that each ρi satisfies ρi / 0 and tr(ρi) = 1,
and ρ1, . . . , ρm are consistent.

Note that the set of feasible solutions is indeed convex: if ρ1, . . . , ρm are con-
sistent, and ρ′1, . . . , ρ′m are consistent, then any convex combination ρ′′i = qρi +
(1− q)ρ′i (i = 1, . . . ,m) is also consistent.

Observe that the optimal value of this convex program is equal to the optimal
value of the previous convex program; this is because, if ρ1, . . . , ρm are consistent
with some n-qubit state σ, then tr(Hσ) = tr(H1ρ1)+ · · ·+tr(Hmρm). Also, note
that the number of variables in this convex program is

∑m
i=1 4|Ci| ≤ 4km ≤

poly(n).
This convex program has a “consistency” constraint, which we do not know

how to evaluate. But if we have an oracle for the Consistency problem, then we
can solve this convex program, using the algorithm of Bertsimas and Vempala.
To make this work, we will have to find a suitable representation for the set of
feasible solutions,

K = {(ρ1, . . . , ρm) which are consistent}.

Also, we will have to address some questions about the accuracy of the Consis-
tency oracle, i.e., how well does it approximate K, and how does this affect the
Bertsimas-Vempala algorithm.

We could represent each element (ρ1, . . . , ρm) ∈ K by writing down the matrix
entries for the ρi; then we could view K as a subset of Cd, where d =

∑m
i=1 4|Ci|.

But this straightforward approach runs into some trouble. Observe that the ma-
trix entries must satisfy some algebraic constraints: each ρi must be Hermitian,
(ρi)† = ρi; and ρi and ρj must agree on their intersection Ci ∩ Cj , that is,
trCi−(Ci∩Cj)(ρi) = trCj−(Ci∩Cj)(ρj). Because of these constraints, the set K ac-
tually lies in a lower-dimensional subspace of Cd. We would need to characterize
this subspace, before we can apply the Bertsimas-Vempala algorithm. We can
avoid this problem by switching to a different representation for the set K.

444 Y.-K. Liu

4.2 The Actual Reduction

We will represent each element of K using the expectation values of the “local”
Pauli matrices on the subsets C1, . . . , Cm. These local Pauli matrices form a basis
for the space of all local Hamiltonians (acting on the subsets Ci). For an n-qubit
state σ, knowing the expectation values of these Pauli matrices is equivalent to
knowing the projection of σ onto this subspace; and this is equivalent to knowing
the local density matrices of σ.

First, some notation. Let P be an n-qubit Pauli matrix, and define the
“support” of P be the set of qubits on which P acts nontrivially; that is,
supp(P) = {i |Pi = I}. Also, for any subset of qubits C, define the “restriction”
of P to C, P |C =

⊗
i∈C Pi.

Define S to be the set of “local” Pauli matrices:

S = {P ∈ P⊗n | supp(P) ⊆ Ci for some i} − {I},

where we excluded the identity matrix I because its expectation value is always
1. Also let d = |S|, and note that d ≤ 4km− 1 ≤ poly(n).

For each P ∈ S, let αP be the corresponding expectation value; and let
(αP)P∈S denote the collection of these αP . Also, let αI = 1. We define the set
K ′ to be

K ′ = {(αP)P∈S which are consistent},

where we say the αP are “consistent” if there exists an n-qubit state σ such that
for all P ∈ S, αP = tr(Pσ). Note that K ′ is a subset of Rd. Also, clearly K ′ is
convex.

Lemma 4. There is a linear bijection between K and K ′.

Proof: Given some (ρ1, . . . , ρm) ∈ K, we can construct (αP)P∈S ∈ K ′ as follows:

For each P ∈ S: We know that supp(P) ⊆ Ci for some i. So we can write
P in the form P = (P |Ci)⊗ I. Then we set αP = tr((P |Ci)ρi).

If the ρi are consistent with some n-qubit state σ, then the αP are also consistent
with σ; to see this, write αP = tr((P |Ci)ρi) = tr(Pσ). (Note that in the case
where supp(P) ⊆ Ci ∩ Cj , it makes no difference whether we pick i or j in the
above procedure, because ρi and ρj yield the same reduced density matrix on
Ci ∩ Cj .)

Going in the opposite direction, given some (αP)P∈S ∈ K ′, we can construct
(ρ1, . . . , ρm) ∈ K as follows:

For i = 1, . . . ,m: We construct ρi by using the αP for all P with
supp(P) ⊆ Ci. Note that we can write P in the form P = (P |Ci) ⊗ I.
We set

ρi =
1

2|Ci|
∑

P : supp(P)⊆Ci

αP (P |Ci).

Consistency of Local Density Matrices Is QMA-Complete 445

If the αP are consistent with some n-qubit state σ, then the ρi are also consistent
with σ; to see this, write σ in terms of the αP , where we now include the
expectation values αP = tr(Pσ) for all P ∈ P⊗n,

σ =
1
2n

∑
P∈P⊗n

αP P ;

note that when we trace out the qubits not in Ci, we get that tr{1,...,n}−Ci
(P)

equals 2n−|Ci|(P |Ci) if supp(P) ⊆ Ci, and 0 otherwise; thus we have

tr{1,...,n}−Ci
(σ) =

1
2|Ci|

∑
P : supp(P)⊆Ci

αP (P |Ci) = ρi.

Finally, observe that these maps (between K and K ′) are linear, and they are
inverses of each other. �

So we can restate our convex program, using the set K ′ instead:

Let αP (for P ∈ S) be real numbers.
Find some αP that minimize

m∑
i=1

1
2|Ci|

∑
P : supp(P)⊆Ci

αP tr(Hi(P |Ci)),

such that (αP)P∈S ∈ K ′ (i.e., the αP are consistent).

Lemma 5. The optimal value of this convex program is equal to the smallest
eigenvalue of the local Hamiltonian H = H1 + · · ·+ Hm.

Proof: This follows from the remarks in the previous section, and Lemma 4. �

Next, we prove some bounds on the geometry of the set K ′ ⊆ Rd.

Lemma 6. K ′ is contained in a ball of radius R =
√

d centered at the origin.

Proof: Suppose (αP)P∈S ∈ K ′, and say it is consistent with some state σ. Since
αP = tr(Pσ), it follows that −1 ≤ αP ≤ 1, which implies the result. �

Lemma 7. The ball of radius r = 1/
√

d around the origin is contained in K ′.

Proof: Let (αP)P∈S be any vector in Rd of length at most 1/
√

d. By the Cauchy-
Schwartz inequality,

∑
P∈S |αP | ≤ 1; let p =

∑
P∈S |αP |. Now define σ =

(1/2n)(I +
∑

P∈S αPP). This is a legal density matrix, because it can be written
as

σ =
1
2n

(
(1− p)I +

∑
P∈S

(|αP |I + αPP)
)

= (1− p)
I

2n
+
∑
P∈S

|αP |
I + sign(αP)P

2n
,

446 Y.-K. Liu

which is (with probability 1 − p) the fully mixed state, and (with probability
|αP |, for P ∈ S) the mixture of all eigenstates of P with eigenvalue sign(αP).
Furthermore, the αP are consistent with σ; thus we conclude that (αP)P∈S ∈ K ′.

�

4.3 Numerical Precision

First, we will show that the Consistency oracle gives a good approximation to the
set K ′. We start by defining a new problem, Consistency′, using the expectation
values αP of the local Pauli matrices P ∈ S (similar to the definition of K ′):

As in the original Consistency problem, we have an n-qubit system,
and subsets C1, . . . , Cm, with |Ci| ≤ k. But instead of the local density
matrices ρ1, . . . , ρm, we are given real numbers αP for all P ∈ S. Each
αP is specified with poly(n) bits of precision.
In addition, we are given a real number β′ (specified with poly(n) bits
of precision) such that β′ ≥ 1/ poly(n).
The problem is to distinguish between the following two cases:
– There exists an n-qubit state σ such that, for all P ∈ S, tr(Pσ) = αP .

In this case, output “YES.”
– For all n-qubit states σ,

(∑
P∈S(tr(Pσ) − αP)2

)1/2 ≥ β′. In this
case, output “NO.”

Lemma 8. There is a poly-time mapping reduction from Consistency′ to Con-
sistency.

Proof sketch: The reduction is as follows: Use the αP to construct ρ1, . . . , ρm as
described in Lemma 4. Set β = β′/

√
d, where d = |S|. Details omitted. �

Next, we will show that the Bertsimas-Vempala algorithm succeeds in solving
our convex program, even when the oracle for the set K ′ is slightly inaccurate.
(The shallow-cut ellipsoid method would also work, see [12] for details.) We will
make some general remarks about the algorithm, and then show that it works
for our specific problem.

For our purposes, we only need to solve a simpler problem, deciding the fea-
sibility of a convex program:

As before, let K be a convex set, and let f be a convex function.
Given some t ∈ R, does there exist a point x ∈ K such that f(x) ≤ t?

The Bertsimas-Vempala algorithm is built around a subroutine that solves
the feasibility problem [9]. The basic idea is as follows:

Let P be the set K.
Randomly sample some points from P , and compute an approximate

centroid of P ; call this point z.
If f(z) ≤ t, stop and return true.

Consistency of Local Density Matrices Is QMA-Complete 447

Compute ∇f(z), and use this to cut out a portion of the set P .1

Repeat the procedure starting from line 2. If P gets too small, stop and
return false.

The critical step is to sample random points from the set P . (Note that P is
convex, and we have a membership oracle for P .) One way is to do a random
walk known as the “ball walk”:

Pick a point y uniformly at random in the ball of radius δ centered at
the current position x. If y ∈ P , then move to y, otherwise stay at x.
Repeat.

The points where the membership oracle makes mistakes all lie close to the
boundary of P ; call this the “boundary layer” Pb. Intuitively, if the boundary
layer is thin, it should not have much effect on the random walk. Indeed, using
an argument by Lovász and Simonovits [16], one can show the following:

Lemma 9. For any polynomial p, there exists a polynomial q such that, if we
run the ball walk for at most p(n) steps, and vol(Pb)/ vol(P) ≤ 1/q(n), then with
probability 2/3 we will never enter the region Pb.

So, if we can show that the boundary layer is small compared to the total volume
of P , then our algorithm will work fine. (As long as the random walk does not
enter the boundary layer, the algorithm will perform exactly as if it had access
to a perfect membership oracle.)

Finally, there may still be errors due to finite numerical precision—using n
bits of precision, we have errors of size 2−n. This will not be a problem for us,
since we only need accuracy of 1/ poly(n).

We are now ready to prove that the Bertsimas-Vempala algorithm works for
our specific problem:

Proof of Theorem 3: Given an instance of Local Hamiltonian, use Lemma 5 to
express it as a convex program. Let f denote the objective function, and set
t = (a + b)/2. By Lemma 8, we can assume we have an oracle for Consistency′,
which approximates the set K ′ with error β′, for any β′ ≥ 1/ poly(n). Then
use the Bertsimas-Vempala algorithm to solve the following problem: does there
exist a solution α ∈ K ′ such that f(α) ≤ t?

Recall that the objective function

f(α) =
m∑

i=1

1
2|Ci|

∑
P : supp(P)⊆Ci

αP tr(HiP)

is linear. We claim that its derivatives in all directions are at most 4km ≤
poly(n). To see this, note that there are at most 4km terms in the sum, and for
each term, we have

| tr(HiP)| ≤ tr(|HiP |) ≤ ‖Hi‖2‖P‖2 ≤ 2|Ci|,
1 Specifically, we can deduce a hyperplane that separates z from the set {x |f(x) ≤ t}.

Then we take the intersection of P with the half-space that does not contain z.

448 Y.-K. Liu

using the Cauchy-Schwartz inequality for the L2 matrix norm [17], and the fact
that the eigenvalues of Hi lie in the interval [0, 1], while the eigenvalues of P are
±1.

Now suppose we have a “YES” instance of Local Hamiltonian. Then there
exists some α∗ ∈ K ′ such that f(α∗) ≤ a. We claim that the set {α ∈ K ′ |f(α) ≤
t} contains a ball of radius δ ≥ 1/ poly(n). To see this, let σ∗ be the density
matrix which corresponds to α∗. Perturb σ∗ by mixing it with the state I/2n,
then add a small contribution of each of the Pauli matrices P ∈ S. This generates
a ball contained in K ′. Moreover, this ball can have radius δ ≥ 1/ poly(n) and
still satisfy the condition f(α) ≤ t; this is because f does not vary too quickly,
and there is a gap between a and t.

So, in the Bertsimas-Vempala algorithm, the set P always contains a ball of
radius δ. Now set the error threshold for the membership oracle to be β′ ≤ δ/nd.
We will show that the boundary layer Pb is small compared to the total volume of
P . Define P+ to be the set P expanded by an amount β′, that is, P+ = P +β′B,
where B is the unit ball. We have that

P+ ⊆ P + (β′/δ)P = (1 + β′/δ)P,

where the equality holds because P is convex. This implies that

vol(P+) ≤ (1 + β′/δ)n vol(P) ≤ (1 + 2/nd−1) vol(P).

So we can conclude that vol(Pb) ≤ vol(P+)− vol(P) ≤ (2/nd−1) vol(P). There-
fore, by Lemma 9, the Bertsimas-Vempala algorithm will work correctly in this
case.

Now suppose we have a “NO” instance of Local Hamiltonian. Then for all
α ∈ K ′, f(α) ≥ b. In addition, there is some δ ≥ 1/ poly(n) such that, for all α
within distance δ of K ′, f(α) > t; this is because f does not vary too quickly,
and there is a gap between b and t.

Set the error threshold for the membership oracle to be β′ ≤ δ. Then the set
{α ∈ K ′ |f(α) ≤ t} is empty, even when the membership oracle makes mistakes.
So the Bertsimas-Vempala algorithm will work correctly in this case.

Finally, we claim that the Bertsimas-Vempala algorithm runs in time poly-
nomial in n. This follows from Theorem 1 and Lemmas 6 and 7; note that
L = log(R/r) = log(poly(n)) = O(log n). �

5 Discussion

Consistency of local density matrices is an interesting problem that gives some
new insight into the class QMA. The reduction from Local Hamiltonian is non-
trivial, and in that sense, Consistency seems to be an easier problem to deal
with. One direction for future work is to try to find additional QMA-complete
problems by giving reductions from Consistency (rather than from Local Hamil-
tonian).

Another question is whether Consistency remains QMA-hard under mapping
reductions. We mention that we can build zero-knowledge proof systems for

Consistency of Local Density Matrices Is QMA-Complete 449

Consistency [18], using techniques developed by Watrous [19]. If we could show
that Consistency is QMA-hard under mapping reductions, then we could get
zero-knowledge proof systems for any language in QMA.

Acknowledgements. Thanks to Dorit Aharonov for suggesting this problem and
pointing out an error in a previous version of the paper; thanks also to Russell
Impagliazzo and the anonymous reviewers for their helpful comments. Supported
by an ARO/NSA Quantum Computing Graduate Research Fellowship.

References

1. D. Aharonov, private communication, 2004.
2. A.Yu. Kitaev, A.H. Shen and M.N. Vyalyi, Classical and Quantum Computation,

AMS, 2002.
3. D. Aharonov and T. Naveh, “Quantum NP - A Survey,” Arxiv: quant-ph/0210077.
4. J. Kempe and O. Regev, “3-Local Hamiltonian is QMA-complete,” Quantum Info.

and Comput., Vol.3(3), pp.258-264, 2003, Arxiv: quant-ph/0302079.
5. J. Kempe, A. Kitaev and O. Regev, “The Complexity of the Local Hamiltonian

Problem,” FSTTCS 2004, pp.372-383, Arxiv: quant-ph/0406180.
6. R. Oliveira and B.M. Terhal, “The complexity of quantum spin systems on a two-

dimensional square lattice,” Arxiv: quant-ph/0504050.
7. D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd and O. Regev, “Adia-

batic Quantum Computation is Equivalent to Standard Quantum Computation,”
FOCS 2004, pp.42-51, Arxiv: quant-ph/0405098.

8. D. Janzing, P. Wocjan and T. Beth, “Identity check is QMA-complete,” Arxiv:
quant-ph/0305050.

9. D. Bertsimas and S. Vempala, “Solving Convex Programs by Random Walks,”
Journal of the ACM 51 (4) pp.540-556 (2004).

10. A. Kalai and S. Vempala, “Convex Optimization by Simulated Annealing,”
preprint, 2004.

11. S. Vempala, “Geometric Random Walks: A Survey,” MSRI volume on Combina-
torial and Computational Geometry, 2005.

12. M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer, 1988.

13. S. Bravyi and M. Vyalyi, “Commutative version of the local Hamiltonian prob-
lem and common eigenspace problem,” Quantum Info. and Comput., Vol.5, No.3
(2005), pp.187-215, Arxiv: quant-ph/0308021.

14. S. Bravyi, “Efficient algorithm for a quantum analogue of 2-SAT,” Arxiv: quant-
ph/0602108.

15. D. Aharonov and O. Regev, “A Lattice Problem in Quantum NP,” FOCS 2003,
pp.210-219, Arxiv: quant-ph/0307220.

16. L. Lovász and M. Simonovits, “Random Walks in a Convex Body and an Improved
Volume Algorithm,” Random Structures and Algorithms, Vol.4, No.4 (1993).

17. R. Bhatia, Matrix Analysis, Springer, 1997.
18. Y.-K. Liu, in preparation.
19. J. Watrous, “Zero-knowledge against quantum attacks,” Arxiv: quant-ph/0511020.

On Bounded Distance Decoding for General
Lattices

Yi-Kai Liu�, Vadim Lyubashevsky��, and Daniele Micciancio��

University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093-0404, USA

{y9liu, vlyubash, daniele}@cs.ucsd.edu

Abstract. A central problem in the algorithmic study of lattices is the
closest vector problem: given a lattice L represented by some basis, and
a target point y, find the lattice point closest to y. Bounded Distance
Decoding is a variant of this problem in which the target is guaranteed
to be close to the lattice, relative to the minimum distance λ1(L) of the
lattice. Specifically, in the α-Bounded Distance Decoding problem (α-
BDD), we are given a lattice L and a vector y (within distance α ·λ1(L)
from the lattice), and we are asked to find a lattice point x ∈ L within
distance α · λ1(L) from the target. In coding theory, the lattice points
correspond to codewords, and the target points correspond to lattice
points being perturbed by noise vectors. Since in coding theory the lattice
is usually fixed, we may “pre-process” it before receiving any targets, to
make the subsequent decoding faster. This leads us to consider α-BDD
with pre-processing. We show how a recent technique of Aharonov and
Regev [2] can be used to solve α-BDD with pre-processing in polynomial
time for α = O

(√
(log n)/n

)
. This improves upon the previously best

known algorithm due to Klein [13] which solved the problem for α =
O (1/n). We also establish hardness results for α-BDD and α-BDD
with pre-processing, as well as generalize our results to other �p norms.

1 Introduction

A lattice is the set of intersection points of a regular (but not necessarily orthog-
onal) n-dimensional grid. One of the most central problems in the algorithmic
study of lattices is the closest vector problem: given a lattice L (typically repre-
sented by a basis, see Section 2 for details), and a target point y, find the lattice
point closest to y. Beside having numerous applications in theoretical computer
science, lattices are a central object in coding theory [1, 8]. In this setting, lattice
points represent codewords, and the target point y represents a perturbed code-
word (encoding a message being transmitted). In this scenario, the closest vector
problem corresponds exactly to the maximum likelyhood decoding problem for
white Gaussian noise channels. The closest vector problem is NP-hard to solve

� Supported by an ARO/NSA Quantum Computing Graduate Research Fellowship.
�� Supported by NSF CAREER 0093029 and NSF ITR 0313241.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 450–461, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Bounded Distance Decoding for General Lattices 451

even approximately for any constant [5] and some sub-polynomial [9] approxi-
mation factors. On the positive side, the best general approximation algorithm
to solve the closest vector problem in (random) polynomial time achieves only
approximation factors almost exponential in the dimension of the lattice [3]. We
remark that there are two fundamental differences between the closest vector
problem as typically studied in complexity theory and coding theory:

1. In complexity theory, the lattice is considered as part of the input to the
problem, while in coding theory the lattice (defining the error correcting
code) is usually fixed once and for all.

2. In complexity theory the target point can be arbitrarily far from the lattice,
while in coding theory it is usually assumed that the distance of the target
from the lattice is less than half the minimum distance between lattice points.

The first issue has been recently addressed [15, 11, 18, 4], considering a version
of the CVP with pre-processing (CVPP). In CVPP, the lattice is fixed and
can be arbitrarily preprocessed, and the complexity of the CVP algorithm is
measured without taking pre-processing time into account. In the sequence of
papers [15, 11, 18, 4] it is shown that there are lattices such that CVPP is NP-
hard to solve exactly, or even approximate within any constant factor.1

The second issue is equally important, but has so far received far less attention.
The relevance of the second issue stems from the fact that the amount of error
(i.e., the distance of the target from the lattice) depends on the properties of
the communication channel, and it is usually known to the code designer. This
allows the code designer to choose a lattice code whose minimum distance is, in
some respect, “large” compared to the maximum error.

The variant of the closest vector problem where the target is guaranteed to
be close to the lattice relative to the minimum distance, λ1(L), of the lattice
is called the Bounded Distance Decoding problem (BDD) [23]. Specifically, in
the α-Bounded Distance Decoding problem (α-BDD), we are given a lattice L
and a vector y (within distance α · λ1(L) from the lattice), and are asked to
find a lattice point x ∈ L within distance α · λ1(L) from the target. Typically
α = 1/2, but other values of α can be interesting as well, as some decoding
algorithms may not work up to the unique decoding radius λ1/2, while in other
cases even for α > 1/2 it may be possible to come up with a relatively short
(i.e., polynomially long) list of candidate lattice points. (The latter is called the
“list decoding problem”, and it has received an great deal of attention lately in
the context of codes over finite fields. We are not aware of any result of the same
kind for lattice codes, but the problem is certainly very interesting and natural.)

Our contribution. In this paper we investigate the bounded distance decoding
problem α-BDD (with pre-processing), and prove both algorithmic and com-
putational hardness results about this problem. On the algorithmic side, we

1 The factor achieved by a CVP approximation algorithm is defined as the ratio
between the distance (from the target) of lattice point output by the algorithm, over
the distance of the optimal solution.

452 Y.-K. Liu, V. Lyubashevsky, and D. Micciancio

Fig. 1. Complexity of α-BDD with pre-processing for various lp norms

show that α-BDD with pre-processing can be solved in polynomial time for
α = O(

√
logn/n). Previously, the problem was known to be polynomial time

solvable only for factors O(1/n) [6, 13]. On the computational hardness side, we
show (under standard complexity assumptions) that the α-BDD problem cannot
be solved in polynomial time (even in its pre-processing variant) for any constant
factor α > 1/

√
2. Specifically, for the α-BDD problem with pre-processing, any

polynomial time solution would imply that NP is contained in P/poly. We also
adapt some of our results to other �p norms (see figure 1).

Related work. Our work is closely related, and builds upon, previous work of
Aharonov and Regev [2] (for the algorithmic results) and Micciancio [16] (for
the hardness results), as well as previous algorithms [6, 13] and NP-hardness
results [4] for the CVP problem with pre-processing.

The well known nearest plane algorithm [6] (together with the bounds in
[14]) yields a polynomial time solution to α-BDD with pre-processing for α =
2/n. That solution had been subsequently improved to any α = O(1/n) in [13],
which was still the best general solution prior to our work. Our algorithm uses a
technique developed by Aharonov and Regev [2], and it is closely related to their
work. In [2], Aharonov and Regev show how to compute (with pre-processing) a
function f(x) which approximates the distance of a target point x from a lattice
within a factor of O(

√
n/ logn). Unfortunately, being able to approximate the

distance of a target point from the lattice does not, in general, allow us to find
lattice points which are close to the target.2 So, the Aharonov and Regev’s CVP
pre-processing algorithm does not directly yield a solution to α-BDD. In this
paper we observe that, for a certain region of Rn close to the lattice, the function
f of Aharonov and Regev allows us to distinguish which of two points in Rn is
closer to the lattice. So, by adding a noise vector to our target point, we can
2 Technically, there is no known approximation preserving reduction from the problem

of approximating CVP in its search version (i.e., finding an approximately closest
lattice point), to approximating CVP in its decision or distance estimation version
(i.e., determining if a target point is close or far away from a lattice). (See [17,
Chapter 3].) Such a reduction trivially exists for the exact versions of CVP and for
small (subpolynomial) approximation factors by NP-hardness [5, 9], but finding such
a reduction for polynomial approximation factors is an open problem.

On Bounded Distance Decoding for General Lattices 453

generate a nearby point which is closer to the lattice and verify that it actually
is closer. Our α-BDD algorithm performs a “guided” walk starting from the
target and moving closer and closer to the lattice, until we get within distance
O(λ1/n) from it, at which point some other known algorithm for α-BDD (i.e.
[6, 13]) can be used.

On the complexity front, no hardness result was known prior to our work
because, interestingly, all known NP-hardness results for CVP (with or without
pre-processing) [5, 9, 15, 11, 18, 4] employed lattices with very small minimum
distance. We prove our hardness results using a technique of Micciancio [16] to
embed a lattice L and target y into a higher dimensional space in such a way
that the minimum distance of the lattice increases, without at the same time
substantially increasing the distance of the target from the lattice. The hardness
results for �p norms for p > 2 are obtained by an application of a recent technique
of Regev and Rosen [19] to our result for the �2 norm.

Questions regarding the complexity of α-BDD (and related problems) had
been previously considered in the setting of linear codes over finite fields. For
example, Vardy [23] conjectured the problem to be NP-hard for α = 1/2, and for
the closely related relatively near codeword problem (RNC) NP-hardness results
for any α > 1/2 were proven by Dumer, Micciancio and Sudan [10], and later
adapted by Regev [18] to the pre-processing variant of the problem.

2 Preliminaries

2.1 Lattices

The set of all integer combinations of vectors B = (b1, . . . , bn) defines a lattice
L(B) in Rn. B is said to form a basis of L(B) (when the basis is clear from
context, we may write L instead of L(B)). For any basis b1, . . . , bn, the Gram-
Schmidt basis is denoted by b∗1, . . . , b

∗
n where b∗i is the component of bi which is

orthogonal to the vector space formed by b1, . . . , bi−1. We denote by λ1(L) the
length of the shortest vector of L (equivalently, the minimum distance of L).

Lemma 1. For every n-dimensional lattice L, there exists a basis b1, . . . , bn

such that mini ‖b∗i ‖ ≥ λ1(L)/n.

Lattice Problems. Given a lattice basis B, vector x and a real t, the decisional
version of the closest vector problem (CVP) asks whether dist(L(B),x) ≤ t.
The approximate version of decisional CVP can be formulated as a promise
problem GapCVPγ . Given a lattice basis B, vector x and a real t, an algo-
rithm for GapCVPγ should answer “YES” if dist(L(B),x) ≤ t and “NO” if
dist(L(B),x) > γt. For all values in between, any answer is acceptable.

An algorithm that solves GapCVPγ with pre-processing works in two steps.
First, it is given a basis B. The algorithm then outputs an advice string A.
The time that the algorithm expends in obtaining A does not count towards
its running time. Then, it is given a vector x and a real t. With the ability

454 Y.-K. Liu, V. Lyubashevsky, and D. Micciancio

to use the advice string A, it should answer “YES” if dist(L(B),x) ≤ t and
“NO” if dist(L(B),x) > γt. For all values in between, any answer is acceptable.
Alekhnovich, et. al. [4] showed that the GapCVPγ with pre-processing problem
is NP-hard for any constant γ. Aharonov and Regev [2] showed a polynomial
algorithm for this problem for γ = O

(√
n/ logn

)
.

In the alpha-Bounded Distance Decoding problem (α-BDD), we are given a
lattice basis B and a vector x and are asked to find a lattice vector y ∈ L(B)
such that dist(x,y) ≤ α · λ1(L(B)) (if such a vector exists). In Section 4 we
show that this problem is NP-hard for α > 1/

√
2.

As for GapCVPγ with pre-processing, an algorithm for α-BDD with pre-
processing works in two steps. First, it is given a basis B. The algorithm then
outputs an advice string A. The time that the algorithm expends in obtaining
A does not count towards its running time. Then, it is given a vector x. With
the ability to use the advice string A, it should find a lattice vector y ∈ L(B)
(if one exists) such that dist(x,y) ≤ α · λ1(L(B)). In Section 3, we provide a
polynomial algorithm for values of α = O

(√
logn/n

)
and in Section 4, we show

that if a polynomial algorithm exists for α > 1/
√

2, then NP ⊆ P/poly.
We define one last lattice problem. This problem will be useful in Section

4 to prove the hardness results. Given a full rank n-dimensional lattice basis
B, vector x and a real t, an algorithm for GapCVP′

γ should answer “YES” if
∃z ∈ {0, 1}n such that dist(Bz,x) ≤ t and “NO” if dist(L(B), sx) > γt for all
s ∈ Z \ {0}. In all other cases, any answer is acceptable. Arora, et. al. [5] showed
this problem to be NP-hard for all constants γ ≥ 1.

2.2 Gaussian Functions on Lattices

In [2], Aharonov and Regev considered the following function f on any x ∈ Rn,

f(x) =

∑
y∈L e−π‖x−y‖2∑

y∈L e−π‖y‖2

and showed that with polynomial advice, one can estimate its value on expo-
nentially many points in the quotient group Rn/L.

Lemma 2. ([2, Lemma 1.3]) Let L be an n-dimensional lattice. For any set S
consisting of 2poly(n) points in the group Rn/L and any constant c > 0, there
exists an advice string of size poly(n) that allows one to evaluate the function f
in polynomial time with error at most n−c on every point in S.

A property of the function f is that if x ∈ Rn has only one lattice point close
to it, then the value of f will almost be entirely determined by the distance of
x from this point.

Lemma 3. Let L be an n-dimensional lattice whose shortest vector has length
greater than

√
n
2π and x ∈ Rn. If all points in L other than y′ are at a distance

more than
√

n
2π from x, then f(x) = e−π‖x−y′‖2 ± 2−Ω(n).

On Bounded Distance Decoding for General Lattices 455

The next lemma shows that the function f is very sensitive at a distance less
than

√
logn away from the lattice when the length of the shortest vector of the

lattice is greater than
√

n
2π . Thus, if we are at a point x ∈ Rn and move closer

to the lattice, there will be a noticeable change in the value of the function.

Lemma 4. Let L be an n-dimensional lattice whose shortest vector has length
greater than

√
n
2π , and let y ∈ L. Suppose x,x′ ∈ Rn are points such that

‖x− y‖ = D, ‖x′− y‖ ≤ (D + n−4)
√

1− 1
n where 1

n ≤ D ≤
√

logn, and for all

y′ ∈ L \ {y}, ‖x− y′‖, ‖x′ − y′‖ >
√

n
2π . Then f(x′)− f(x) > n−6.5.

The below lemma is a partial converse of lemma 4.

Lemma 5. Let L be an n-dimensional lattice whose shortest vector has length
greater than

√
n
2π , and let y ∈ L. Suppose x,x′ ∈ Rn are points such that

‖x−y‖, ‖x′−y‖ ≤
√

logn, and for all y′ ∈ L\{y}, ‖x−y′‖, ‖x′−y′‖ >
√

n
2π ,

and f(x′)− f(x) > n−7.1. Then ‖x′ − y‖ ≤
√

1− 1/n8‖x− y‖.

3 Finding the Closest Lattice Vector

The following theorem was proved by Klein in [13]:

Theorem 1. There is an algorithm that, when given an n-dimensional lattice
L represented by basis vectors b1, . . . , bn, and a target x ∈ Rn that’s at distance
D away from L, will find the closest lattice vector to x, in time nD2/ mini ‖b∗

i ‖2
.

Combining Theorem 1 with Lemma 1, implies that whenever the target point is
within O(λ1(L)/n) of the lattice, there is a basis that can be used as advice to
find the nearest lattice point in polynomial time.

Without loss of generality, we may assume that our lattice is scaled such that
λ1(L) >

√
n. If the target that we’re given is within distance 1/

√
n of the lattice

(and thus within distance λ1(L)/n of the lattice), we can just find the closest
vector by applying Theorem 1. If the target point is not that close to the lattice
but is still within

√
logn of it, we will find another point closer to the lattice

that is also close to the target point. We will proceed in like manner by finding
points closer to the lattice until we get within 1/

√
n of the lattice at which time

we will apply the algorithm in Theorem 1.

Theorem 2. Let L be a lattice with shortest vector at least
√

n and let A be the
polynomial size advice string as in Lemma 2 that allows us to approximate the
function f with error at most n−8. Then there is a polynomial time algorithm
using advice A that, when given a point x ∈ Rn that is within distance

√
logn

of a lattice point y ∈ L, will find a point x′ that is within distance 1/
√

n of y.

Proof. Let fA be the function that uses advice A and approximates f to within
n−8 on exponentially many points (as in Lemma 2). To be precise, we would need
to put a grid on Rn everywhere within

√
logn of the lattice, and only be able to

approximate the function f at the intersection points of the grid. Since both f

456 Y.-K. Liu, V. Lyubashevsky, and D. Micciancio

and fA are symmetric with respect to the lattice, it will suffice to consider only
grid points within distance

√
logn of the origin. Within this region we can make

the grid very fine (i.e the diagonal of a grid square can be n−c for any constant
c), which is good enough for our purposes. For simplicity, we will assume that for
all x ∈ Rn, where x is within

√
logn of the lattice, |fA(x)− f(x)| < n−8. Con-

sider the following algorithm: (in the algorithm ui is the ith standard unit vector)

GetCloser(x, fA)
while(fA(x) < (e−π/n + n−8))

compute DA =
√

− log fA(x)
π

construct set S = {x− j(DA/
√

n)ui : i ∈ {1, . . . , n}, j ∈ {−1, 1}}
set x← argmax

x′∈S
fA(x′)

return x

First we will show that at each iteration of the while loop, DA is very close to the
correct distance D between x and the lattice point y. Then we will show that one of
the 2n elements of the set S is a vector that is within distance (D+n−4)

√
1− 1/n

of the lattice. This will imply that the element x′ ∈ S for which the value fA(x′)
is the largest is within distance D

√
1− 1/n8 of the lattice. And by continuing to

loop, we will eventually get within 1/
√

n of the lattice point.

Lemma 6. At every step of the algorithm, |DA − ‖x− y‖| ≤ n−4.

Lemma 7. Let x and y be points in Rn such that ‖x−y‖ = D and n > 6. For
any c > 0 and DA ∈ [D − c,D + c], the set

S =
{
x− j(DA/

√
n)ui : i ∈ {1, . . . , n}, j ∈ {−1, 1}

}
contains a vector x′ such that ‖x′ − y‖ < (D + c)

√
1− 1/n.

Proof. Without loss of generality, assume that y = 0. Then D2 = ‖x‖2 =∑
i x

2
i > (D− c)2. Thus, there must exist an i, such that |xi| ≥ (D− c)/

√
n. Let

j ∈ {−1, 1} have the same as the sign of xi. Then the vector x′ = x− j DA√
n
ui is

in S and

‖x′‖2 = ‖(x1, . . . , xi−1, xi − j DA√
n
, xi+1, . . . , xn)‖2 = D2 − 2|xi|DA√

n
+ D2

A

n

Since |xi| ≥ (D − c)/
√

n and (D − c) ≤ DA ≤ (D + c), we have

‖x′‖2 ≤ D2 − 2 (D−c)2

n + (D+c)2

n < (D + c)2(1 − 1/n)

where the last inequality holds for n > 6.

Lemma 6 says that the value of DA that we calculate using fA is within n−4 of the
actual distance D. Lemma 7 says that the set S contains a point that is a distance
at most (D + n−4)

√
1− 1/n away from the lattice. By Lemma 4, we know that

On Bounded Distance Decoding for General Lattices 457

if ‖x′ − y‖ ≤ (‖x − y‖ + n−4)
√

1− 1/n, then f(x′) − f(x) > n−6.5, which by
the triangular inequality implies that fA(x′) − fA(x) > n−6.5 − 2n−8 > n−7.
Thus, there is a point x′ ∈ S such that fA(x′)− fA(x) > n−7. By the triangular
inequality, this implies that f(x′) − f(x) > n−7 − 2n−8 > n−7.1, which by
Lemma 5 means that ‖x′ − y‖ ≤

√
1− 1/n8‖x − y‖. So at every step, we are

guaranteed to be getting closer to the lattice by a factor of
√

1− 1/n8. The
loop ends once fA(x) > (e−π/n + n−8), which means that f(x) > e−π/n. Since
at every step of the loop we made sure we were getting closer to the lattice,
it must be that the point x is within distance

√
logn of the lattice, and thus

by Lemma 3, f(x) = e−π‖x−y′‖ ± 2−Ω(n). Since f(x) > e−π/n, it must be that
‖x − y‖ < 1/

√
n + 2−Ω(n). To calculate the running time of the algorithm,

we note that at every step of the loop, the value of the function fA increases
by n−7 with constant probability. Since the starting value of fA is greater than
e−π log n−n−8 ≈ n−π, the running time of the algorithm will be O(n5) multiplied
by the time it takes to get a closer point x′ (which is O(n)), multiplied by the
time it takes to evaluate fA (which is poly(n)).

3.1 Other �p Norms

Our algorithm can be adapted to solve α-BDD for the �1 norm, with α =
logn/n. (The naive approach, using the �2 algorithm to solve the problem, works
for α =

√
logn/n.) We believe our algorithm should also work for �p norms,

1 < p < 2, with α = p
√

logn/n; but we are unable to give a rigorous proof in
this case. When p > 2, however, the algorithm no longer works, and new ideas
are probably necessary.

First, we recall how the technique of Aharonov and Regev [2] works. For
any lattice L, we define a periodic function F (x) =

∑
y∈L f(x − y). F (x)

can be written in terms of its Fourier coefficients F̂ (w), w ∈ L∗, as follows:
F (x) =

∑
w∈L∗ F̂ (w)e2πi〈w,x〉. Note that F̂ (w) = (1/ det(L))f̂ (w), where f̂

is the Fourier transform of f . Provided that the Fourier coefficients are non-
negative, we can view them as a probability distribution over the dual lattice;
and given some “advice” consisting of points in the dual lattice sampled accord-
ing to this distribution, we can approximately compute F (x).

For general �p norms, it is natural to use the function f(x) = e−‖x‖p
p . Note

that f is a product of one-dimensional functions, f(x) = g(x1) · · · g(xn), where
g(x) = e−|x|p . Hence its Fourier transform is f̂(k) = ĝ(k1) · · · ĝ(kn). In order to
use the technique of Aharonov and Regev, we would like to show that f̂(k) ≥ 0;
functions f with this property are called “positive definite” [22].

In addition, both our work and [2] make use of a technical lemma due to
Banaszczyk [7] (see also [21]). We need to prove a generalization of this result
for �p norms. (It is this step that determines the ratio α = p

√
logn/n.) It turns

out that this requires us to show that f̂(k) is a non-increasing function of ‖k‖.

Algorithm for the �1 norm. In this case, g(x) = e−|x|, and ĝ(k) = 2/(1+(2πk)2).
So it is easy to see that f̂(k) ≥ 0 and is a decreasing function of ‖k‖. Our
algorithm then works with minor modifications.

458 Y.-K. Liu, V. Lyubashevsky, and D. Micciancio

Algorithm for the �p norms with 1 < p < 2. It is known that ĝ(k) ≥ 0 [20].
Numerical investigation suggests that ĝ(k) is a decreasing function of |k|, but
we have not been able to prove this analytically. If this is true, then f̂(k) has
the required properties, and our algorithm works.

What goes wrong for �p norms with p > 2. In this case, it is not true that ĝ(k) ≥ 0
[20]. Hence f̂(k) can be negative for some k. We can still interpret |F̂ (w)| as
a probability distribution; however, note that F (0) <

∑
w |F̂ (w)|. Heuristic

arguments suggest that when we normalize the probability distribution, F (0)
will be exponentially small, so our algorithm breaks down. (For instance, it is
easy to see that f(0) = 2−Ω(n)

∫
Rn |f̂(k)|dk.)

4 Hardness Results

In this section we prove the hardness of the α-BDD and α-BDD with pre-
processing problems. The proofs are by reduction from a version of the closest
vector problem GapCVP′

γ , and are based on techniques developed by Miccian-
cio [16] to prove that the shortest vector problem is NP-hard to approximate
within any constant factor smaller than

√
2. In fact, the α > 1/

√
2 requirement

in our proof comes from exactly the same limiting factor that makes Micciancio’s
proof [16] work only for approximation ratios bounded by

√
2. It is an interesting

open question whether employing techniques used in the proof of stronger in-
approximability results for SVP [12] it is possible to improve our NP-hardness
result for α-BDD to α = 1/2 or maybe even α = Ω(1) or α = o(1).

Theorem 3. For any �p norm (p ≥ 1) and α > 1/ p
√

2 and γ > 1/ p
√

1− α−p/2,
there is a probabilistic polynomial time reduction from GapCVP′

γ to α-BDD.
Moreover, the reduction has the following two additional properties:

1. On input GapCVP′
γ instance (B,y, t), the reduction makes a single call to

the α-BDD oracle on a lattice that depends only on B and t (but not y).
2. Randomness is only used in the construction of the α-BDD lattice, and with

high probability the constructed lattice is good for all target points y.

In particular, there is a probabilistic polynomial time reduction from GapCVP′
γ

with pre-processing, to α-BDD with pre-processing such that randomness is only
used during the pre-processing stage (and therefore can be equivalently be replaced
by a non-uniform advice).

Proof: Throughout the proof, ‖ · ‖ always denotes the �p norm. Let (B,y, t)
be a GapCVP′

γ instance. We want to determine if y is close or far from the
lattice. The idea is to use the α-BDD oracle to find a lattice vector close to
y. If the oracle fails or returns a vector far away from the target y, we would
like to conclude that y is indeed far from the lattice. The problem is that theα-
BDD oracle is guaranteed to work only when the distance of y is small, relative
to the minimum distance of the lattice λ1(B). Following [16], we address this

On Bounded Distance Decoding for General Lattices 459

problem by embedding B and y in a higher dimensional space, with the effect of
increasing the minimum distance of the lattice, without substantially increasing
the distance of the target from the lattice. The proof in [16] is based on the
construction of a lattice basis L with some very special properties as described
in the following lemma.

Lemma 8. For any �p norm (p ≥ 1) and any constant σ ∈ [1, p
√

2) there exists
a (probabilistic) algorithm that on input k ∈ Z+ outputs, in kO(1) time, two
positive integers m, r ∈ Z+, a lattice basis L ∈ Z(m+1)×m, a vector s ∈ Zm+1,
and a linear integer transformation T ∈ Zk×m such that

1. λ(L(L)) > σ · r,
2. with probability at least 1− 1/nO(k) for all x ∈ {0, 1}k there exists a z ∈ Zm

such that Tz = x and ‖Lz − s‖ ≤ r.

Informally the lemma states that lattice L(L) contains an unusually dense cluster
of lattice points around the center s.

Our reduction first invokes Lemma 8 with σ = 1/(α p
√

1− γ−p) and k = n
to obtain L, s and r. (Notice that under the assumptions α > 1/ p

√
2 and γ >

1/ p
√

1− α−p/2, we get σ < p
√

2 as required by Lemma 8.) Then, it combines
(B,y) and (L, s) to define a α-BDD instance

B′ =

⎡⎣BT 0
βL 0
0 βσr

⎤⎦ y′ =

⎡⎣ y
βs
0

⎤⎦ ,

where β is an appropriate normalization factor to be chosen. Finally, the α-BDD
oracle is invoked on input (B′,y′). The GapCVP′

γ instance is accepted if and
only if the α-BDD oracle returns a lattice point v = [(BTz)T , (Lz)T , (βσr)·z]T

(where z ∈ Zm and z ∈ Z) such that BTz is within distance γt from target y.
We now prove that the reduction is correct. Notice that if the reduction ac-

cepts, then there is a lattice vector BTz within distance γt from the target y,
so (B,y, t) is certainly not a no instance of GapCVP′

γ , and yes is a valid an-
swer for the reduction. (Remember that when an instance does not satisfy the
promise, any answer is acceptable.) All that remains to be shown is that when
(B,y, t) is a yes instance, then the reduction is guaranteed to accept (provided
Lemma 8 was invoked successfully). So, assume the input to the reduction is a
yes instance, i.e., there exists a binary vector x ∈ {0, 1}k such that ‖Bx−y‖ ≤ t.
First of all, we bound the minimum distance of the lattice B′, so we can argue
that the target is within the decoding radius of the α-BDD oracle. Considering
only the second block of coordinates, we see that any lattice vector that is not a
multiple of the last column has norm at least βλ1(L) > βσr. It follows that the
last column in the basis matrix is the (unique, up to sign change) shortest vector
in the lattice and λ1(B) = βσr. Now, consider the distance of y′ from the lattice
B′. We know from Lemma 8 that there exists an integer vector z ∈ Zm such
that Tz = x and ‖Lz− s‖ ≤ r. Multiplying the basis matrix B′ by [zT , 0]T , we
get a lattice vector within distance

460 Y.-K. Liu, V. Lyubashevsky, and D. Micciancio

p
√
‖B(Tz)− y‖p + βp‖Lz − s‖p ≤ p

√
tp + βprp

from the target y′. So, the α-BDD promise dist(B′,y′) ≤ αλ1(B′) = αβσr is
satisfied whenever

p
√

tp + βprp ≤ αβσr. (1)

Moreover, if (1) is satisfied, then the α-BDD oracle returns a vector v =
[(BTz)T , (Lz)T , (βσr) · z]T within distance αλ1(B′) ≤ αβσr from the target.
Since the distance of v from y is at least ‖BTz − y‖, we conclude that the
reduction accepts, provided conditions (1) and

αβσr ≤ γt (2)

are satisfied. Both (1) and (2) are easily verified setting β = tγ/ασr and substi-
tuting σ/(α p

√
1− γ−p). �

Since the GapCVP′
γ problem is NP-hard for all constants γ ≥ 1, we immedi-

ately get the following corollary:

Corollary 1. For all α > 1/ p
√

2, α-BDD in the �p norm is NP-hard.

In addition, the reduction in the proof of Theorem 3 only depends on B and
t, and not on the actual vector y. Thus it should be possible to use the hard-
ness result of Alekhnovich, et. al. [4] to show the hardness of α-BDD with
pre-processing. Two minor details arise, though. First, the reduction in [4],
proves the hardness of GapCVPγ with pre-processing, not GapCVP′

γ with
pre-processing. But it can be extracted from the proof in [4] that the special ver-
sion GapCVP′

γ with pre-processing is NP-hard as well. Another point is that
in the proof of [4], the algorithm is allowed to pre-process only the basis B, while
in our reduction, the algorithm would get both B and t for pre-processing before
getting the vector y. This problem can be solved by observing that in [4] the
NP-hardness of GapCVPγ is proved by a reduction from the coding problem
NCPP. As a result, there are only polynomially many values for t, and thus the
advice string for GapCVPγ can contain advice for all possible values of t.

Corollary 2. For any constant α > 1/ p
√

2, if there exists a polynomial time
algorithm that can solve α-BDD with pre-processing in the �p norm , then NP ⊆
P/poly.

In [19], Regev and Rosen showed reductions from problems in the �2 norm to
problems in the �p norm by using the fact that for any p, there exist embedding
functions f : Rn → Rm (where m is poly(n)) such that for any x ∈ Rn ‖x‖2 ≈
‖f(x)‖p. Using the same idea, we can obtain the following corollary:

Corollary 3. For any p > 2 and constant α > 1/
√

2, if there exists a polynomial
time algorithm that can solve α-BDD with pre-processing in the �p norm, then
NP ⊆ P/poly.

On Bounded Distance Decoding for General Lattices 461

References

1. E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search in lattices.
IEEE Trans. on Inf. Theory, 48(8):2201–2214, 2002.

2. D. Aharonov and O. Regev. Lattice problems in NP ∩ coNP. Journal of the ACM,
52(5):749–765, 2005.

3. M. Ajtai, R. Kumar, and D. Sivakumar. Sampling short lattice vectors and the
closest lattice vector problem. In CCC, pages 53–57, 2002.

4. M. Alekhnovich, S. Khot, G. Kindler, and N. Vishnoi. Hardness of approximating
the closest vector problem with pre-processing. In FOCS, 2005.

5. S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima
in lattices, codes, and systems of linear equations. Journal of Computer and System
Sciences, 54(2):317–331, 1997.

6. L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1):1–13, 1986.

7. W. Banaszczyk. New bounds in some transference theorems in the geometry of
numbers. Mathematische Annalen, 296(4):625–635, 1993.

8. A. H. Banihashemi and A. K. Khandani. On the complexity of decoding lattices
using the Korkin-Zolotarev reduced basis. IEEE Trans. on Inf. Theory, 44(1):162–
171, January 1998.

9. I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating CVP to within almost-
polynomial factors is NP-hard. Combinatorica, 23(2):205–243, 2003.

10. I. Dumer, D. Micciancio, and M. Sudan. Hardness of approximating the minimum
distance of a linear code. IEEE Trans. on Inf. Theory, 49(1):22–37, January 2003.

11. U. Feige and D. Micciancio. The inapproximability of lattice and coding problems
with preprocessing. Journal of Computer and System Sciences, 69(1):45–67.

12. S. Khot. Hardness of approximating the shortest vector problem in lattices. In
FOCS, pages 126–135, 2004.

13. P. Klein. Finding the closest lattice vector when it’s unusually close. In SODA,
pages 937–941, 2000.

14. J. C. Lagarias, H. W. Lenstra Jr., and C. P. Schnorr. Korkin-zolotarev bases and
successive minima of a lattice and its reciprocal lattice. Combinatorica, 10(4):333–
348, 1990.

15. D. Micciancio. The hardness of the closest vector problem with preprocessing.
IEEE Trans. on Inf. Theory, 47(3):1212–1215, 2001.

16. D. Micciancio. The shortest vector problem is NP-hard to approximate to within
some constant. SIAM J. on Computing, 30(6):2008–2035, 2001.

17. D. Micciancio and S. Goldwasser. Complexity Of Lattice Problems: A Cryptographic
Perspective. Kluwer Academic Publishers, 2002.

18. O. Regev. Improved inapproximability of lattice and coding problems with pre-
processing. IEEE Trans. on Inf. Theory, 50(9):2031–2037, 2004.

19. O. Regev and R. Rosen. Lattice problems and norm embeddings. In STOC, 2006.
20. I.J. Schoenberg. Metric spaces and positive definite functions. Trans. Amer. Math.

Soc., 44(3):522–536, 1938.
21. D. Stefankovic. Fourier transforms in computer science. Master’s thesis, University

of Chicago, 2000.
22. J. Stewart. Positive definite functions and generalizations, an historical survey.

Rocky Mountain J. Math, 6(3), 1976.
23. A. Vardy. Algorithmic complexity in coding theory and the minimum distance

problem. In STOC, pages 92–109, 1997.

Threshold Functions for Asymmetric Ramsey
Properties Involving Cliques

Martin Marciniszyn1,�, Jozef Skokan2,��,
Reto Spöhel1,���, and Angelika Steger1

1 Institute of Theoretical Computer Science, ETH Zurich, 8092 Zurich, Switzerland
{mmarcini, rspoehel, steger}@inf.ethz.ch

2 Instituto de Matemática e Estat́ıstica, Universidade de São Paulo,
05508-090 São Paulo, SP, Brazil

jozef@member.ams.org

Abstract. Consider the following problem: For given graphs G and
F1, . . . , Fk, find a coloring of the edges of G with k colors such that
G does not contain Fi in color i. For example, if every Fi is the path
P3 on 3 vertices, then we are looking for a proper k-edge-coloring of G,
i.e., a coloring of the edges of G with no pair of edges of the same color
incident to the same vertex.

Rödl and Ruciński studied this problem for the random graph Gn,p

in the symmetric case when k is fixed and F1 = · · · = Fk = F . They
proved that such a coloring exists asymptotically almost surely (a.a.s.)
provided that p ≤ bn−β for some constants b = b(F, k) and β = β(F).
Their proof was, however, non-constructive. This result is essentially best
possible because for p ≥ Bn−β, where B = B(F, k) is a large constant,
such an edge-coloring does not exist. For this reason we refer to n−β as
a threshold function.

In this paper we address the case when F1, . . . , Fk are cliques of differ-
ent sizes and propose an algorithm that a.a.s. finds a valid k-edge-coloring
of Gn,p with p ≤ bn−β for some constants b = b(F1, . . . , Fk, k) and β =
β(F1, . . . , Fk). Kohayakawa and Kreuter conjectured that n−β(F1,...,Fk)

is a threshold function in this case. This algorithm can be also adjusted
to produce a valid k-coloring in the symmetric case.

1 Introduction

The edge-chromatic number χ′(G) is one of the classical and well studied graph
parameters. It is defined as the minimum number of colors k such that G allows
for a k-edge-coloring with no pair of adjacent edges of the same color. Viewed

� The author was supported by FAPESP (Proj. Temático–ProNEx Proc. FAPESP
2003/09925–5).

�� The author was supported by NSF grant INT-0305793, by NSA grant H98230-04-
1-0035, and by FAPESP (Proj. Temático–ProNEx Proc. FAPESP 2003/09925–5
and Proc. FAPESP 2004/15397–4).

��� The author was supported by SNF grant 200021-108158.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 462–474, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Threshold Functions for Asymmetric Ramsey Properties Involving Cliques 463

from a slightly different perspective, one can equivalently define χ′(G) as the
minimum number of colors k such that G admits a k-edge-coloring avoiding
monochromatic paths of length 2. This definition has led to a fruitful and well-
studied area in deterministic graph theory. For given graphs G and F , is there
an edge-coloring with k colors of G that avoids a monochromatic copy of F?

It follows from Ramsey’s celebrated result [1] that every k-coloring of the
edges of the complete graph on n vertices contains a monochromatic copy of F
if n is sufficiently large. While this seems to rely on the fact that Kn is a very
dense graph, Folkman [2] and, in a more general setting, Nešetřil and Rödl [3]
showed that there also exist locally sparse graphs G = G(F) with the property
that every k-coloring of the edges of G contains a monochromatic copy of F . By
transferring the problem into a random setting, Rödl and Ruciński [4] showed
that in fact such graphs G are quite frequent. More preciwsely, they proved the
following result. Let

G→ (F)e
k

denote the property that every edge-coloring of G with k colors contains a
monochromatic copy of F . Recall that in the binomial random graph Gn,p on n
vertices, every edge is present with probability 0 ≤ p = p(n) ≤ 1 independently
of all other edges. Then the theorem of Rödl and Ruciński reads as follows.

Theorem 1 ([4], [5], [6]). Let k ≥ 2 and F be a non-empty graph that is not
a forest. Then there exist constants b, B > 0 such that

lim
n→∞ P [Gn,p → (F)e

k] =

{
0 if p ≤ bn−1/m2(F)

1 if p ≥ Bn−1/m2(F) ,

where

m2(F) := max
{
|E(H)| − 1
|V (H)| − 2

: H ⊆ F ∧ |V (H)| ≥ 3
}

.

A function p0 = p0(n) like the function n−1/m2(F) in Theorem 1 is called thresh-
old or threshold function. In Theorem 1, this function can be motivated as fol-
lows. For the sake of simplicity, suppose that m2(F) = (|E(F)|−1)/(|V (F)|−2).
Then, for p = cn−1/m2(F), the expected number of copies of F containing a given
edge of Gn,p is a constant depending on c. If this constant is close to zero, the
copies of F in Gn,p are loosely scattered and a valid coloring should thus ex-
ist. On the other hand, if this constant is large, the copies of F in Gn,p highly
intersect with each other, and the existence of a valid coloring becomes unlikely.

In Theorem 1 the same graph F is forbidden in every color class. We can
generalize this setup by allowing for k different forbidden graphs, one per color.
Within classical Ramsey theory the study of these so-called asymmetric Ram-
sey properties led to many interesting questions (see e.g. [7]) and results, most
notably the celebrated paper of Kim [8] where he established an asymptotically
sharp bound on the Ramsey number R(3, t), that is, the minimum number n
such that every 2-edge-coloring of the complete graph on n vertices contains
either a red triangle or a blue clique of size t.

464 M. Marciniszyn et al.

Within the random setting only very little is known about asymmetric Ramsey
properties. Let

G→ (F1, . . . , Fk)e

denote the property that in every edge-coloring of G with k colors, there exists
a color i such that Fi is contained in the subgraph of G spanned by the edges
which are assigned to i. In [9] Kohayakawa and Kreuter proved the following
result for cycles C� of fixed length �.

Theorem 2 ([9]). Let k ≥ 2 and 3 ≤ �1 ≤ · · · ≤ �k be integers. Then there
exist constants b, B > 0 such that

lim
n→∞ P [Gn,p → (C�1 , . . . , C�k

)e] =

{
0 if p ≤ bn−1/m2(C�2 ,C�1)

1 if p ≥ Bn−1/m2(C�2 ,C�1) ,

where
m2(C�2 , C�1) :=

�1
�1 − 2 + 1/m2(C�2)

.

On the basis of their results in [9], Kohayakawa and Kreuter formulated the
following conjecture.

Conjecture 3 ([9]). Let F1, F2 be graphs with 1 < m2(F1) ≤ m2(F2). Then there
exists a constant b > 0 such that for all ε > 0, we have

lim
n→∞ P [Gn,p → (F1, F2)e] =

{
0 if p ≤ (1 − ε)bn−1/m2(F1,F2)

1 if p ≥ (1 + ε)bn−1/m2(F1,F2)
,

where

m2(F1, F2) := max
{

|E(H)|
|V (H)| − 2 + 1/m2(F1)

: H ⊆ F2 ∧ |V (H)| ≥ 2
}

.

The threshold function from Conjecture 3 is supported by the following obser-
vation. The expected number of copies of F2 in Gn,p with p = Θ

(
n−1/m2(F1,F2)

)
is

Θ
(
n|V (F2)|p|E(F2)|

)
= Ω

(
n2−1/m2(F1)

)
.

Since every edge-coloring of Gn,p must avoid monochromatic copies of F2 in
color 2, there is at least one edge of color 1 in every subgraph of Gn,p isomorphic
to F2. Select one such edge from each copy of F2 arbitrarily. It is plausible
that these edges span a graph G′ with edge density Ω

(
n−1/m2(F1)

)
that satisfies

certain pseudo-random properties. As it turns out, that seems just about the
right density in order to embed a copy of F1 into G′, no matter which edges
were selected from the original graph.

In this paper, we consider the threshold function p0 for cliques K�1, . . . ,K�k
.

A threshold phenomenon consists of two separate statements, the so-called 0-
statement and the 1-statement, which are usually proved in entirely different

Threshold Functions for Asymmetric Ramsey Properties Involving Cliques 465

ways. In our setting, the two statements are as follows. For the 1-statement
one has to show that if p ≥ Bp0, a random graph Gn,p asymptotically almost
surely (a.a.s.) satisfies Gn,p → (K�1 , . . . ,K�k

)e, i.e., every k-edge-coloring of Gn,p

contains at least one of the forbidden monochromatic cliques. For the 0-statement
we suppose that p ≤ bp0 for some sufficiently small constant b > 0 and need to
provide a k-edge-coloring of a random graph Gn,p that avoids every forbidden
clique K�i , 1 ≤ i ≤ k, in the corresponding color class i.

A standard way of attacking the 1-statement, which was also pursued in [9], is
via the sparse version of Szemerédi’s regularity lemma, which was independently
developed by Kohayakawa [10] and Rödl (unpublished). Using properties of regu-
larity, one can find a monochromatic copy of a forbidden subgraph in the colored
graph Gn,p. Unfortunately, generalizing this argument from cycles to cliques re-
quires a proof of Conjecture 23 in [11] of Kohayakawa, �Luczak, and Rödl. This
so-called K�LR-Conjecture formulates a probabilistic version of the classical em-
bedding lemma for dense graphs. It implies many interesting extremal results for
random graphs. In their monograph on random graphs [12], Janson, �Luczak, and
Ruciński consider the verification of this conjecture one of the most important
open questions in the theory of random graphs. Despite recent progress [13], the
conjecture is, in its full generality, still wide open. However, assuming that it is
true, a proof of the 1-statement is routinely obtained. We omit the proof in this
extended abstract due to space restrictions.

From an algorithmic or constructive point of view, the 0-statement is much
more interesting. The way of proving it that was pursued in [5] and [9] is by
contradiction. This approach shows the existence of a coloring, but provides no
efficient way of obtaining the coloring from the proof. Our approach is construc-
tive. We provide a (polynomial-time) algorithm that computes a valid coloring
for graphs that satisfy certain properties. We employ techniques similar to those
in [5] and [9] in order to prove that these properties a.a.s. hold in Gn,p with p
sufficiently small. Indeed, the results in [5] yield that our algorithm also com-
putes valid colorings of Gn,p in the symmetric case, unless the forbidden graph is
one of a few special cases, e.g., a triangle. In fact, the symmetric case of triangles
was solved in [6] by different methods.

We prove the threshold from Conjecture 3 for cliques. As in Theorems 1 and 2,
the threshold function is slightly weaker than conjectured, allowing for distinct
constants in the 0- and the 1-statement.

Theorem 4 (Main Result). Let k ≥ 2 and �1 ≥ · · · ≥ �k ≥ 3 be integers.
Then there exist constants b, B > 0 such that

lim
n→∞ P [Gn,p → (K�1 , . . . ,K�k

)e] =

{
0 if p ≤ bn−1/m2(K�2 ,K�1)

1 if p ≥ Bn−1/m2(K�2 ,K�1) ,

where

m2(K�2 ,K�1) :=

(
�1
2

)
�1 − 2 + 1/m2(K�2)

,

and the 1-statement holds provided Conjecture 23 in [11] is true for K�2 .

466 M. Marciniszyn et al.

In this extended abstract, we will outline the proof of the 0-statement of Theo-
rem 4 under the additional assumption that �2 > 3. For �2 = 3, we face additional
difficulties. Due to space restrictions, we focus on the main case and sketch how
to deal with triangles in Section 3.

1.1 Notation

Our notation is mostly adopted from [12]. All graphs are simple and undirected.
We abbreviate the number of vertices |V (G)| of a graph G by v(G) and similarly
the number of edges |E(G)| by e(G). We say that a property P holds in Gn,p

asymptotically almost surely (a.a.s.) if we have

lim
n→∞ P [Gn,p satisfies P] = 1 .

2 An Algorithm for Computing Valid Edge Colorings

Suppose G = Gn,p with p ≤ bn−1/m2(K�2 ,K�1) is given. In order to provide a
valid coloring of G, it suffices to compute a 2-coloring of E(G) such that there
is no copy of K�1 in color 1 and no copy of K�2 in color 2. That implies the
0-statement of Theorem 4 also for k-colorings. Hence, we focus on 2-colorings
and abbreviate �1 by r and �2 by � in the following. For the rest of this section,
r > � > 3 shall remain fixed.

We describe an algorithm that finds a valid edge-coloring of G a.a.s. The basic
idea of the algorithm is to remove edges from the graph successively. An edge e
is deleted from G if there are no two cliques of size � and r respectively that
intersect exactly on e. Assuming that all edges of G can be removed in this way,
it is easy to create a valid coloring by inserting them in the reverse order one
by one, always assigning a valid color instantly. The actual algorithm is more
complex since sometimes one has to forget about the existence of certain small
cliques in order to remove really all edges from G. As we shall see, we can easily
deal with those cliques later.

In order to simplify notation, we define, for any graph G, the families

LG := {L ⊆ G : L ∼= K�} and RG := {R ⊆ G : R ∼= Kr}

of all �-cliques and r-cliques in G respectively. Furthermore, we introduce the
family

L∗
G :=

{
L ∈ LG : ∀e ∈ E(L) ∃R ∈ RG s.t. E(L) ∩E(R) = {e}

}
⊆ LG .

The algorithm is given in Figure 1. Note that edges are removed from and
inserted into a working copy G′ = (V,E′) of G. The local variable L contains
the same elements as LG′ up to the first execution of lines 12-13. In general, we
have L ⊆ LG′ .

Lemma 5. If algorithm Asym-Edge-Col terminates without error, then it has
indeed found a valid coloring of G.

Threshold Functions for Asymmetric Ramsey Properties Involving Cliques 467

Asym-Edge-Col(G = (V, E))
1 s ← empty-stack()
2 E′ ← E
3 L ← LG

4 while E′ �= ∅
5 do if ∃ e ∈ E′ s.t. �(L, R) ∈ L × RG′=(V,E′) : E(L) ∩ E(R) = {e}
6 then for each L ∈ L : e ∈ E(L)
7 do s.push(L)
8 L.remove(L)
9 s.push(e)

10 E′.remove(e)
11 else if ∃L ∈ L \ L∗

G′=(V,E′)
12 then s.push(L)
13 L.remove(L)
14 else error “stuck”
15 while s �= ∅
16 do if s.top() is an edge
17 then e ← s.pop()
18 e.set-color(blue)
19 E′.add(e)
20 else L ← s.pop()
21 if L is entirely blue
22 then f ← any e ∈ E(L) s.t. �R ∈ RG′=(V,E′) :E(L) ∩ E(R)={e}
23 f.set-color(red)

Fig. 1. The implementation of algorithm Asym-Edge-Col

Proof. First, we argue that the algorithm never creates a blue copy of K�. Ob-
serve that every copy of K� that exists in G′ is pushed on the stack in the first
loop. Therefore, in the execution of the second loop, the algorithm must check
the coloring of every such copy. Due to the order of the elements on the stack,
each check is performed only after all edges of the corresponding clique were
inserted and colored. For every blue copy of K�, one particular edge is recolored
to red. Since red edges are never flipped back to blue, no blue copy of K� can
occur in the coloring found by the algorithm.

It remains to prove that the assignment of color red to some edge by the
algorithm can never create an entirely red copy of Kr. By the condition on f in
line 22 of the algorithm, at the very moment there exists no copy of Kr in G′

that intersects with L exactly in f . So there is either no Kr containing f at all,
or every such copy contains also another edge from L. In the latter case, those
copies cannot become entirely red since L is entirely blue.

Our last step is to show that the edge f in line 22 always exists. Since the
second loop inserts edges into G′ in the reverse order in which they were deleted
during the first loop, when we select f in line 22, G′ has the same structure as at
the moment when L was pushed on the stack. This could have happened either
in line 7, when there exists no r-clique in G′ that intersects with L on some
particular edge e ∈ E(L), or in line 12, when L satisfies the condition of the

468 M. Marciniszyn et al.

if-clause in line 11. In both cases we have L /∈ L∗
G′ , and, therefore, there exists

an edge e ∈ E(L) such that all currently existing copies of Kr do not intersect
with L exactly in e. ��

It remains to prove the following lemma.

Lemma 6. There exists a positive constant b = b(�, r) such that the algo-
rithm Asym-Edge-Col a.a.s. terminates on Gn,p with p ≤ bn−1/m2(K�,Kr)

without error.

2.1 Proof of Lemma 6

We prove Lemma 6 by providing an algorithm Grow that, if Asym-Edge-Col
fails on an arbitrary graph G, explicitly computes a subgraph F ⊆ G which
is either too large or too dense to appear in Gn,p with p as in the lemma.
More precisely, we shall show that for any graph F that Grow may return,
the probability that F appears in Gn,p is small compared to the size of F , the
class of all graphs that Grow may return. It follows that Gn,p a.a.s. does not
contain any of these graphs, which implies Lemma 6 by contradiction. Note that
we employ algorithm Grow only for proving the lemma. It does not contribute
to the running time of algorithm Asym-Edge-Col.

In order to formulate algorithm Grow, we need some definitions. Let

γ = γ(�, r) := 1/m2(K�,Kr)− 2/ (� + r − 3) .

Note that for r > � > 3, we have

γ(�, r) =
2
(
(�2 − 3�− 2)r − 2�(�− 3)

)
r(r − 1)(� + 1)(� + r − 3)

> 0 .

Remark 7. Observe that γ(3, r) is negative for r ≥ 3. This is why we have to
modify our proof for the case � = 3, see Section 3. The proof we present here
also covers the symmetric case for � = r ≥ 5 since then γ(�, �) > 0.

For any graph F , let

λ(F) := v(F)− e(F)/m2(K�,Kr) .

The definition of λ(F) is motivated by the fact that the number of copies of F
in Gn,p with p = bn−1/m2(K�,Kr) has order of magnitude

nv(F)pe(F) = be(F)nλ(F) .

For any graph F , we call an edge e ∈ E(F) eligible for extension if it satisfies

�(L,R) ∈ LF ×RF s.t. E(F) ∩ E(F) = {e} .

The implementation of algorithm Grow is shown in Figure 2. The intended
input is the graph G′ ⊆ G after Asym-Edge-Col got stuck. It proceeds as

Threshold Functions for Asymmetric Ramsey Properties Involving Cliques 469

Grow(G′ = (V, E))
1 i ← 0
2 F0 ← any R ∈ RG′

3 while i < log(n) ∧ λ(Fi) > −γ
4 do if ∃R ∈ RG′ \ RFi s.t. |V (R) ∩ V (Fi)| ≥ 2
5 then Fi+1 ← Fi ∪ R
6 else e ← Eligible-Edge(Fi)
7 Fi+1 ← Extend-L(Fi, e, G

′)
8 i ← i + 1
9 return Fi

Extend-L(F, e, G′)
1 L ← any L ∈ L∗

G′ : e ∈ E(L)
2 F ′ ← F ∪ L
3 for each e′ in E(L) \ E(F)
4 do Re′ ← any R ∈ RG′ : E(L) ∩ E(R) = {e′}
5 F ′ ← F ′ ∪ Re′

6 return F ′

Fig. 2. The implementation of algorithm Grow

follows: the seed F0 is any copy of Kr in G′. In every iteration i, it extends Fi

to Fi+1 by adding new vertices and edges to it. As long as there are copies of Kr

in G′ that intersect with Fi in at least two vertices but not in all edges, it greedily
adds those to Fi. If there are no such copies, it calls a subroutine Eligible-Edge
that takes Fi as input and returns an edge e ∈ E(Fi) eligible for extension that
is unique up to isomorphism of Fi, i.e., in such a way that for any two isomorphic
graphs F and F ′, there exists an isomorphism ϕ with ϕ(F) = F ′ such that

Eligible-Edge(F ′) = ϕ(Eligible-Edge(F)) .

Note that this implies in particular that e depends only on the graph Fi and
not on the surrounding graph G′. Clearly, one way to implement this procedure
would be keeping a large table of representatives for all isomorphism classes of
graphs with up to n vertices that maps to each entry one particular edge eligible
for extension. Since we only want to show the existence of a certain structure
in G′ and do not care about complexity issues here, the actual implementation
of that procedure is irrelevant. Procedure Extend-L then adds a graph L ∈ L∗

G′

that contains the edge e returned by Eligible-Edge to Fi. It glues to each new
edge e′ ∈ E(L) \E(Fi) a graph Re′ ∈ RG′ that intersects with L only in e′. The
algorithm stops and returns Fi ⊆ G′ ⊆ G as soon as λ(Fi) ≤ −γ or i ≥ log(n).

We argue that Grow terminates without error, i.e., that Eligible-Edge
always finds an edge eligible for extension, and that Extend-L always finds
suitable graphs L and Re′ , e′ ∈ E(L). Let us consider the properties of G′ when
Asym-Edge-Col gets stuck. As the condition in line 5 of Asym-Edge-Col
fails, G′ is in the family

C(�, r) :=
{
G = (V,E) : ∀e ∈ E(G) ∃(L,R) ∈ LG×RG s.t. E(L)∩E(R) = {e}

}
.

470 M. Marciniszyn et al.

In fact, every edge of G′ is contained in a copy L ∈ L, and as the condition in
line 11 fails as well, G′ is even in the smaller family

C∗(�, r) :=
{
G = (V,E) : ∀e ∈ E(G) ∃L ∈ L∗

G s.t. e ∈ E(L)
}
⊆ C(�, r) .

Claim 8. Algorithm Grow terminates without error on any nonempty input
graph G′ ∈ C∗(�, r). Moreover, every iteration of the while-loop adds at least one
edge to F .

Proof. Suppose there is no edge in Fi that is eligible for extension. Then we have
Fi ∈ C(�, r) by definition. This implies that every vertex v ∈ V (Fi) has degree
at least (� − 1) + (r − 1) − 1 = � + r − 3, i.e., e(Fi)/v(Fi) ≥ (� + r − 3) /2. It
follows that

λ(Fi) ≤ e(Fi)
(

2
� + r − 3

− 1
m2(K�,Kr)

)
= −e(Fi)γ ≤ −γ ,

where we used that γ = γ(�, r) is positive. Consequently, Grow terminates in
line 3 without calling Eligible-Edge. Hence, Eligible-Edge always returns
an edge eligible for extension when called from Grow.

Property C∗(�, r) of G′ guarantees the existence of suitable graphs L and Re′ ,
e′ ∈ E(L), when Extend-L is called. Moreover, by definition of L∗

G′ , there
exists, in particular, Re ∈ RG′ such that e is the intersection of Re and L. When
Extend-L(F, e,G′) is called, Re has already been added to F during a previous
iteration in lines 4 and 5 of Grow. Hence, the L returned in line 1 of Extend-L
is not contained in F , as otherwise e would not be eligible for extension. On the
other hand, it is clear that an R found in line 4 adds at least one new edge to
F . Together this proves that every iteration adds at least one edge to F . ��

Now, we will consider the evolution of F in more detail. We say that iteration i
of the while-loop in procedure Grow is non-degenerate if we have the following
assertions:

– The condition in line 4 evaluates to false and, hence, Extend-L is called.
– In line 2 of Extend-L, we have V (F) ∩ V (L) = e.
– In every execution of line 5 of Extend-L, we have V (F ′) ∩ V (Re′) = e′.

Otherwise, we call iteration i degenerate. In non-degenerate iterations, Fi+1 is
uniquely defined up to isomorphism for a given Fi, depending only on the imple-
mentation of subroutine Eligible-Edge, which determines the position where
to attach the next K�. A graph F2 that results from two non-degenerate iterations
is depicted in Figure 3 for r = 6 and � = 4. The little dashed circle identifies F0.
The greater dotted circle circumscribes F1. Observe that the structures which
are added in every step are isomorphic.

Claim 9. If iteration i of the while-loop in procedure Grow is non-degenerate,
we have

λ(Fi+1) = λ(Fi) .

Threshold Functions for Asymmetric Ramsey Properties Involving Cliques 471

Fig. 3. A graph F2 resulting from two non-degenerate iterations for r = 6 and � = 4.
The two central copies of K4 are shaded.

Proof. In a non-degenerate iteration, the L added in line 1 of Extend-L con-
tributes �− 2 new vertices and

(
�
2

)
− 1 new edges to F . Each of these new edges

then is replaced by a copy of Kr. Hence, we have

λ(Fi+1)− λ(Fi) = �− 2 +
((

�

2

)
− 1

)
(r − 2)−

((
�

2

)
− 1

)(
r

2

)
/m2(K�,Kr)

=
((

�

2

)
− 1

)(
�− 2(
�
2

)
− 1

+ r − 2−
(
r − 2 +

1
m2(K�)

))
= 0 .

��

In a degenerate iteration i, the structure of Fi+1 does not only depend on Fi,
but varies with the structure of G′. Suppose that Fi is extended with an r-
clique in line 5. This R can intersect with Fi in virtually every possible way.
Moreover, there may be several copies of Kr which satisfy the condition in line 4.
The same is true for the graphs added in lines 2 and 5 of Extend-L. Thus,
degenerate iterations cause difficulties since they enlarge the family of graphs
that algorithm Grow may potentially return. However, we will show that at
most a constant number of degenerate iterations can occur before the algorithm
terminates. This allows us to control the number of non-isomorphic graphs that
can be the output of Grow. The key to proving this is the next claim.

472 M. Marciniszyn et al.

Claim 10. There exists a constant κ = κ(�, r) > 0 such that if iteration i of the
while-loop in procedure Grow is degenerate, we have

λ(Fi+1) ≤ λ(Fi)− κ .

The proof of Claim 10 is the main technical part of our work and beyond the
scope of this extended abstract. In combination with Claim 9, it yields the next
claim, which in turn leads to a polylogarithmic bound on the number of non-
isomorphic graphs that Grow can return.

Claim 11. There exists a constant m0 = m0(�, r) such that algorithm Grow
performs at most m0 degenerate iterations before it terminates, regardless of the
input instance G′.

Proof. An easy calculation yields that λ(F0) = λ(Kr) = 2−2/(�+1). The value
of the function λ remains unchanged in every non-degenerate iteration due to
Claim 9. However, Claim 10 yields a constant κ, which depends solely on � and r,
such that

λ(Fi+1) ≤ λ(Fi)− κ

for every degenerate iteration i. Hence, after at most

m0 :=
λ(F0) + γ

κ

degenerate iterations, we have λ(Fi) ≤ −γ, and the algorithm terminates. ��

Let F(�, r, n) denote a family of representatives for the isomorphism classes of
all graphs that can be the output of Grow with parameters n and γ(�, r) on
any input instance G′.

Claim 12. There exists C = C(�, r) such that |F(�, r, n)| ≤ log(n)C .

Proof. For t ≥ d ≥ 0, let F(t, d) denote a family of representatives for the
isomorphism classes of all graphs Ft that algorithm Grow can generate after
exactly t iterations if it performs exactly d degenerate iterations along the way,
and let f(t, d) := |F(t, d)| denote its cardinality.

Observe that in every iteration, we add at most

K := �− 2 +
(
�

2

)
(r − 2)

new vertices to F , which is exactly the number of vertices added in a non-
degenerate iteration. Hence, we have v(Ft) ≤ r + Kt. It also follows that in
every iteration, the new edges E(Ft+1)\E(Ft) span a graph from GK , where GK

denotes the set of all graphs on at most K vertices. Ft+1 is uniquely defined if
one specifies G ∈ GK , the number y of vertices in which G intersects Ft, and two
ordered lists of vertices from G and Ft respectively of length y, which specify

Threshold Functions for Asymmetric Ramsey Properties Involving Cliques 473

the mapping of the intersection vertices from G into Ft. Thus, the number of
ways to extend Ft is bounded from above by

∑
G∈GK

v(G)∑
y=2

v(G)y(v(Ft))y ≤ C1(r + Kt)K ≤ tC2 ≤ log(n)C2 ,

where the constants C1 and C2 depend only on � and r.
As the selection of the edge to be extended is unique up to isomorphism of

F , the evolution of F is uniquely defined if there are no degenerate iterations
along the way, regardless of the input instance G′. This implies in particular
that f(t, 0) = 1 for all t, and more generally that for t ≥ d ≥ 0

f(t, d) ≤
(

t

d

)(
log(n)C2

)d ≤ log(n)(C2+1)d .

Here the binomial coefficient corresponds to the choice of the d degenerate iter-
ations. We conclude from Claim 11 that there exists a constant C = C(�, r) > 0
such that

|F(�, r, n)| ≤
log(n)∑
t=0

m0∑
d=0

f(t, d) ≤ (log(n) + 1)(m0 + 1) log(n)(C2+1)m0 ≤ log(n)C

for n sufficiently large. ��

Claim 13. There exists a constant b > 0 such that for p ≤ bn−1/m2(K�,Kr),
Gn,p does not contain any graph from F(�, r, n) a.a.s.

Proof. Let F1 and F2 denote the classes of graphs that algorithm Grow can
output if it terminates due to the first or the second condition in line 3, respec-
tively. Owing to Claim 12 we have a polylogarithmic bound on the cardinality
of F = F(�, r, n) = F1 ∪ F2, and Claims 9 and 10 imply that λ(Fi) is non-
increasing. It follows that for b := e−λ(F0)−γ , the expected number of copies of
graphs from F in Gn,p with p ≤ bn−1/m2(K�,Kr) is bounded by∑

F∈F
nv(F)pe(F) =

∑
F∈F

be(F)nλ(F) ≤
∑

F∈F1

e(−λ(F0)−γ) log(n)nλ(F) +
∑

F∈F2

n−γ

≤ (log(n))Cn−γ = o(1) ,

which implies the claim due to Markov’s inequality. Here we used again that γ
is positive. Note that crucially, for all F ∈ F1, we have e(F) ≥ log(n) since F
was generated in �log(n)� iterations, each of which introduces at least one new
edge. ��

Suppose now that algorithm Asym-Edge-Col applied to Gn,p with p as claimed
gets stuck, and consider G′ ⊆ G at this moment. The call to Grow(G′) returns
a copy of a graph F ∈ F(�, r, n) that is contained in G′. But we just proved that
a.a.s. we have F ⊆ Gn,p, which contradicts our assumption. This proves that
Asym-Edge-Col finds a valid coloring of Gn,p with p ≤ bn−1/m2(K�,Kr) a.a.s.

474 M. Marciniszyn et al.

3 Triangles

As stated in Remark 7, the proof presented in Section 2 does not cover the
case � = 3 since γ(3, r) = −1/(r2 − r) < 0. In particular, this implies that,
for any b > 0, Gn,p with p = bn−1/m2(K3,Kr) may contain copies of Kr+1.
Since Kr+1 is a member of the family C∗(3, r), Asym-Edge-Col will terminate
with an error. Some rather technical work is required to show that, for r ≥ 6,
Kr+1 is essentially the only graph in C∗(3, r) that is sparse enough to appear in
Gn,p and cause problems. Once this is established, it is not hard to prove that
when Asym-Edge-Col gets stuck, G′ is a.a.s. the union of edge-disjoint copies
of Kr+1 and can be colored easily. Some further complications arise in the cases
r = 4 and r = 5, but the main line of argument is the same.

References

1. Ramsey, F.P.: On a problem of formal logic. Proceedings of the London Mathe-
matical Society 30 (1930) 264–286

2. Folkman, J.: Graphs with monochromatic complete subgraphs in every edge col-
oring. SIAM J. Appl. Math. 18 (1970) 19–24

3. Nešetřil, J., Rödl, V.: The Ramsey property for graphs with forbidden complete
subgraphs. J. Combinatorial Theory Ser. B 20 (1976) 243–249

4. Rödl, V., Ruciński, A.: Threshold functions for Ramsey properties. J. Amer. Math.
Soc. 8 (1995) 917–942

5. Rödl, V., Ruciński, A.: Lower bounds on probability thresholds for Ramsey prop-
erties. In: Combinatorics, Paul Erdős is eighty, Vol. 1. Bolyai Soc. Math. Stud.
János Bolyai Math. Soc., Budapest (1993) 317–346

6. �Luczak, T., Ruciński, A., Voigt, B.: Ramsey properties of random graphs. J.
Combin. Theory Ser. B 56 (1992) 55–68

7. Chung, F., Graham, R.: Erdős on graphs. A K Peters Ltd., Wellesley, MA (1998)
His legacy of unsolved problems.

8. Kim, J.H.: The Ramsey number R(3, t) has order of magnitude t2/ log t. Random
Structures Algorithms 7 (1995) 173–207

9. Kohayakawa, Y., Kreuter, B.: Threshold functions for asymmetric Ramsey prop-
erties involving cycles. Random Structures Algorithms 11 (1997) 245–276

10. Kohayakawa, Y.: Szemerédi’s regularity lemma for sparse graphs. In: Foundations
of computational mathematics (Rio de Janeiro, 1997). Springer, Berlin (1997)
216–230

11. Kohayakawa, Y., �Luczak, T., Rödl, V.: On K4-free subgraphs of random graphs.
Combinatorica 17 (1997) 173–213

12. Janson, S., �Luczak, T., Rucinski, A.: Random graphs. Wiley-Interscience Series in
Discrete Mathematics and Optimization. Wiley-Interscience, New York (2000)

13. Gerke, S., Marciniszyn, M., Steger, A.: A probabilistic counting lemma for complete
graphs. In Felsner, S., ed.: 2005 European Conference on Combinatorics, Graph
Theory and Applications (EuroComb ’05). Volume AE of DMTCS Proceedings.,
Discrete Mathematics and Theoretical Computer Science (2005) 309–316

Distance Approximation in Bounded-Degree
and General Sparse Graphs

Sharon Marko1,� and Dana Ron2,��

1 Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel
sharon.marko@gmail.com

2 Department of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv 69978, Israel
danar@eng.tau.ac.il

Abstract. We address the problem of approximating the distance of bounded de-
gree and general sparse graphs from having some predetermined graph property
P . Namely, we are interested in sublinear algorithms for estimating the fraction
of edges that should be added to / removed from a graph so that it obtains P .
This fraction is taken with respect to a given upper bound m on the number of
edges. In particular, for graphs with degree bound d over n vertices, m = dn.
To perform such an approximation the algorithm may ask for the degree of any
vertex of its choice, and may ask for the neighbors of any vertex.

The problem of estimating the distance to having a property was first explicitly
addressed by Parnas et. al. (ECCC 2004). In the context of graphs this problem
was studied by Fischer and Newman (FOCS 2005) in the dense-graphs model. In
this model the fraction of edge modifications is taken with respect to n2, and the
algorithm may ask for the existence of an edge between any pair of vertices of its
choice. Fischer and Newman showed that every graph property that has a testing
algorithm in this model with query complexity that is independent of the size of
the graph, also has a distance-approximation algorithm with query complexity
that is independent of the size of the graph.

In this work we focus on bounded-degree and general sparse graphs, and give
algorithms for all properties that were shown to have efficient testing algorithms
by Goldreich and Ron (Algorithmica, 2002). Specifically, these properties are k-
edge connectivity, subgraph-freeness (for constant size subgraphs), being a Eu-
lerian graph, and cycle-freeness. A variant of our subgraph-freeness algorithm
approximates the size of a minimum vertex cover of a graph in sublinear time.
This approximation improves on a recent result of Parnas and Ron (ECCC 2005).

1 Introduction
Distance approximation is an extension of Property Testing. Property testing algorithms
are required to distinguish between the case that an object (e.g., graph) has a predeter-
mined property P and the case that it has a relatively large distance (i.e., greater than
ε for a given distance parameter ε ∈ [0, 1]) to having P . Distance approximation al-
gorithms are required to compute an estimate of this distance where the estimate may

� This work is part of the author’s MSc thesis at the Computer Science Department, Weizmann
Institute of Science, Rehovot, Israel.

�� Research supported by a grant from the Israel Science Foundation.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 475–486, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

476 S. Marko and D. Ron

be up-to an additive error or up-to both an additive and a multiplicative error. Distance
approximation and the closely related notion of tolerant testing (where the goal is to
distinguish between being ε1-close and ε2-far to having the property) were first studied
in [18]. Following that work, there have been several results on distance approximation,
both positive [1, 10, 6] and negative [5]. These works considered properties of functions
and strings [18, 1, 5, 10], ensembles of points [18], and (dense) graphs [6].

Distance Approximation in Dense Graphs. In particular, Fischer and Newman [6]
proved a general result on the relation between distance approximation and property
testing in the dense-graphs model (introduced in [7]). In this model, the distance of a
graph G = (V,E) to having a property is defined as the fraction of edges that should
be added/removed in order to obtain the property, where the fraction is with respect to
n2 = |V |2. This model allows vertex-pair queries. That is, the algorithm may query
whether there is an edge between any pair of vertices of its choice. Fischer and New-
man [6] proved that every property that has a testing algorithm in the dense-graphs
model whose complexity is only a function of the distance parameter ε, has a distance
approximation algorithm with an additive error δ in this model, whose complexity is
only a function of δ. The dependence on δ may be quite high (a tower of height poly-
nomial in 1/δ), but there is no dependence on the size of the graph.

Bounded Degree and General Sparse Graphs. The model in which Fischer and New-
man obtained their result is clearly appropriate for dense graphs but not for sparse
graphs. When studying property testing of sparse graphs, two models were considered
(see [8] and [16]). In both models the testing algorithm may perform degree queries
and neighbor queries.1 That is, for any vertex v the algorithm may ask for the degree
of v, and for any index i it may ask for the ith neighbor of v.2 As in the dense-graphs
model, the distance of a graph to having a propertyP is defined as the fraction of edges,
normalized with respect to a relevant upper bound, that should be added/removed from
a graph so that it obtains P .

The difference between the models is the setting of the aforementioned upper bound.
In the dense graphs model, the upper bound is n2. When dealing with bounded-degree
graphs, that is, graphs whose vertices all have degree at most d, this fraction is defined
with respect to d · n. In general, when the degree of the vertices in the graph is not
bounded, then the fraction is taken with respect to the number of edges in the graph, or
an upper bound on this number. We denote the (upper bound on the) number of edges by
m. We assume that the algorithm is provided with m as input. Otherwise, it is possible
to obtain an estimate of the number of edges [4, 9], but this comes at a cost of Θ(

√
n)

queries (in the case of sparse graphs).

Our Results. Focusing on properties that have efficient testing algorithms for bounded-
degree and general sparse graphs, we ask which of these also have efficient distance
approximation algorithms. We establish that all properties shown to have efficient prop-
erty testing algorithms in [8] also have efficient distance approximation algorithms. We
leave open the interesting question of whether there exists a general transformation

1 A third model, appropriate for testing properties of graphs that are neither dense nor
sparse [12], also allows vertex-pair queries.

2 If v has less than i neighbors then a special symbol is returned.

Distance Approximation in Bounded-Degree and General Sparse Graphs 477

from property testing algorithms to distance approximation algorithms as in the case of
dense graphs.

To state our results precisely, we introduce some notation. Recall that n denotes the
number of vertices in the graph and m denotes (an upper bound on) the number of
edges. In the case of bounded-degree graphs m = dn where d is the maximum degree
in the graph. Unless stated otherwise, the graphs we consider are not necessarily simple
(i.e., they may have parallel edges), and the multiplicity of each edge is at most β. Let

d̄
def= m

n , so that d̄ is roughly (an upper bound on) the average degree in the graph. For
a property P and a graph G, we let ΔP(G) denote the relative distance of G to having
the property P . That is, m ·ΔP(G) is the minimum number of edge modification that
should be performed on G so that it obtains P . For α ≥ 1, we say that an algorithm is
an α-distance approximation algorithm for a property P if, for any given δ ∈ (0, 1),
it outputs an estimate Δ̂ such that with probability at least 2/3, ΔP(G) − δ ≤ Δ̂ ≤
α·ΔP(G)+δ .3 We say that it is a distance approximation algorithm if it is a 1-distance
approximation algorithm. Note that an α-distance approximation algorithm can be used
to perform property testing simply by setting δ = ε/2 and accepting if and only if
Δ̂ ≤ ε/2.

• k-Edge-Connectivity. We give a distance approximation algorithm for the k-edge-
connectivity property in general sparse graphs. Its query complexity and running
time are poly(kβ/(δd̄)).

• Subgraph-Freeness. We give a 3-distance approximation algorithm for the
triangle-freeness property in bounded-degree graphs. The query and time com-
plexity of the algorithm are dO(log(d/δ)). The algorithm generalizes to subgraph-
freeness for any fixed (constant size) subgraph H .

• Eulerian. We give a distance approximation algorithm for the Eulerian property in
general sparse graphs. Its query complexity and running time are O((δd̄)−4β).

• Cycle-Freeness. We give a distance approximation algorithm for the cycle-
freeness property in simple bounded-degree graphs. Its query complexity and run-
ning time are O(δ−3).

By adapting our subgraph-freeness distance-approximation algorithm we can get a
sublinear approximation algorithm for the size of a minimum vertex cover. Specifically,
an approximation with a multiplicative error of 2 and an additive error of δn, is achieved
in time dO(log(d/δ)). This algorithm improves on a recent result presented in [17] which
achieve the same approximation in time dO(δ−3 log d).
A few notes are in place:

• With the exception of subgraph-freeness, the complexity of our algorithms is poly-
nomially related to the corresponding complexity of the testing algorithms [8]
(where our error parameter δ is replaced by the distance parameter ε, and d̄ is
replaced by d).

3 We have chosen a non-symmetric definition in terms of the multiplicative factor α. It is of
course possible to use a symmetric definition, in which case a factor C approximation accord-
ing to our definition is equivalent to a factor

√
C approximation in the symmetric definition.

However, we find that it is less natural in our context.

478 S. Marko and D. Ron

• Approximating the distance to k-connectivity for the special case k = 1 was ad-
dressed in [3] as a central part of their algorithm for estimating the weight of a
minimum spanning tree.

• Subgraph-freeness is the only result in which we have a multiplicative factor in
addition to the additive error. In view of the work on dense graphs of [6], it is
interesting to know whether or not the distance to subgraph-freeness can also be
approximated up to any additive factor δ, using a number of queries that is inde-
pendent of n.

• Testing subgraph-freeness in the general sparse model requires Ω(
√

n) queries [2],
and the same is true for cycle-freeness.

Techniques. Among the aforementioned results, the more interesting techniques are
applied in distance approximation of subgraph freeness and k-connectivity.

In particular, the testing algorithm for subgraph freeness is a simple “brute-force”
algorithm that uniformly selects vertices and checks, using a local search, whether they
belong to a forbidden subgraph. The straightforward adaptation of this testing algorithm
to the approximation task would give a multiplicative approximation factor that depends
on the maximum degree d (in addition to the additive error δ). To get a constant factor
approximation that does not depend on d, we take a different approach. Our approach
can be viewed as following the paradigm (presented in [17]) for transforming local
distributed algorithms into sublinear algorithms (e.g., for the minimum vertex cover).

Specifically, we first present an algorithm that inspects the whole graph, but it is
essentially a local algorithm in which vertices perform local computations. We later
transform this algorithm into a sublinear approximation algorithm. The (non-sublinear)
algorithm is similar in spirit to the O(log n)-rounds distributed approximation algo-
rithm for the maximal independent set [13].

In the case of k-connectivity (k > 1), a relatively direct adaptation of the algorithm
in [8] would give a multiplicative error of k (in addition to the additive error). To get a
purely additive error we need to take a different approach. Specifically, we use different
combinatorial representations of the connectivity structure of graphs (based on [15]),
rather than those used in [8]. On top of this, we adapt and extend some of the ideas
in [8]. We believe that the analysis we present for distance approximation is actually
easier to follow than the analysis of the original testing algorithm.

Organization. Our result for k-connectivity is given in Section 2, and the result for
subgraph freeness in Section 3. All missing proofs as well as the results for the Eulerian
property and cycle freeness can be found in the full version of this paper [14].

2 Distance Approximation to k -Edge-Connectivity

In this section we consider the graph property of k-edge-connectivity. Recall that a
graph is k-edge-connected or simply k-connected if there are k edge-disjoint paths
between any pair of vertices in the graph. Equivalently, a graph is k-connected if the
removal of any k − 1 edges from the graph results in a connected graph.

Distance Approximation in Bounded-Degree and General Sparse Graphs 479

Goldreich and Ron [8] gave a testing algorithm for this property that works for
bounded-degree graphs and runs in time4 Õ(k3 · ε−3+2/k). They improve the running
time to Õ(1/ε) for k = 1, 2 and to Õ(ε−2) for k = 3 . Parnas and Ron [16] showed
that these algorithms can be extended to the general sparse model.

We present a distance approximation algorithm for k-connectivity whose query com-

plexity and running time are O
((

k/(δd̄)
)6

β3/2 log
(
k/(δd̄)

))
. For the case k = 1,

this problem was addressed by Chazelle, Rubinfeld and Trevisan [3] as part of their
algorithm for approximating the weight of a minimum spanning tree of a graph. Using
our terminology, they give a distance approximation algorithm for connectivity of gen-
eral simple sparse graphs whose query complexity and running time are O(1/(δ2 · d̄) ·
log(1/δ)).

The problem of approximating the distance of a graph from being k-connected for
k > 1 is more complicated, but as we shall show, is still solvable in time that is in-
dependent of the size of the input graph. As noted earlier, the corresponding testing
problem was solved by Goldreich and Ron in [8]. By trying to extend their approach to
distance approximation, one can get a multiplicative factor of k, in addition to the addi-
tive factor. Here we partly build on their ideas, but use different graph structures. This
allows us to obtain an additive approximation, without any multiplicative factor. Specif-
ically, we build on the extreme-sets tree and the extreme-sets partition, introduced by
Naor, Gusfield and Martel in [15] as part of their algorithm for optimally increasing the
edge-connectivity of a graph. Since the algorithm in [15] works under the assumption
that the graph is connected, we shall assume as well that the graph is connnected. This
assumption can be easily removed, as we show in the full version of this paper [14].

2.1 Preliminaries

Let G = (V,E) be a connected undirected graph. A minimum cut in the graph is a set
of edges with minimal size whose removal from the graph disconnects it into two sets
of vertices A and Ā. We denote the cut by (A, Ā). The degree of the set A, denoted by
d(A), is the number of edges with exactly one endpoint in A, thus it equals to the size
of the cut (A, Ā).

Definition 1. We say that a set U is �-extreme if it has degree � and the degree of every
proper subset of U is strictly larger than �. That is, if d(U) = � and for every W ⊂ U ,
d(W) > �.

We note that extreme sets are different but related to the connectivity classes of the
graph. An �-class is a maximal set of vertices that cannot be disconnected by the re-
moval of less than � edges. By this definition and the definition of extreme sets, every
(� − 1)-extreme set is also an �-class but not vice versa since an �-class might have
degree greater than �− 1.

Extreme sets have the property that every two of them are either disjoint or one is
contained in the other. More precisely, if U is �-extreme and W is j-extreme for � ≥ j
then either U and W are disjoint or U ⊆ W (see [15]). This property is the key for

4 The Õ(·) notation hides logarithmic factors, that is, Õ(f(n)) means O(f(n)·polylog(f(n))).

480 S. Marko and D. Ron

representing the collection of all the extreme sets of a graph in a tree called extreme-
sets tree. The leaves of the tree are the vertices of the graph where each vertex of degree
d is a d-extreme set. The parent of an extreme set U is the minimal extreme set W
containing U . If U is an �-extreme set and W is a j-extreme set than necessarily � > j.
The root of the tree corresponds to V , which is a 0-extreme set. We shall use the notation
U � W to denote that U is a child of W in the tree.

We next make a simple but important observation. Given any partition P =
{V1, . . . , Vq} of the vertices of G, the minimum number of edges that should be added
to G in order to make it connected is lower bounded by �φ(P)/2� where φ(P) is the
edge demand of the partition P , defined by φ(P) =

∑q
i=1 max{0, k − d(Vi)} . This

is true since for every i, if k − d(Vi) > 0 then at least k − d(Vi) endpoints of edges
must be attached to vertices of Vi in order to increase the connectivity to k. Therefore,
the number of edges that must be added to the graph is at least maxP{�φ(P)/2�}.

Naor, Gusfield and Martel [15] defined a partition called the extreme-sets parti-
tion (ES) and presented an algorithm for increasing the connectivity of G to k that
adds exactly �φ(ES)/2� edges. Given the aforementioned lower bound, we have that
�φ(ES)/2� equals m times the distance of G from k-connectivity, which is just the
value that we would like to estimate. In what follows we describe this partition. For
an extreme set U in the extreme-sets tree the demand of U is defined by φ(U) =
max

{
0, k − d(U),

∑
W�U φ(W)

}
. Thus φ(U) is a lower bound on the number

of endpoints of edges that must be attached to vertices in U in order to increase the
edge-connectivity of the graph to k. The demand of the root V is defined by φ(V) =∑

U�V φ(U) . Using these notions, the extreme-sets partition is defined as follows.

Definition 2. The extreme-sets partition of a graph G is the partition ES =
ES(G) = {X1, . . . , Xq} that satisfies the following conditions:

1. For every i, Xi is an extreme set with the property that either φ(Xi) = 0 or
φ(Xi) >

∑
Y �Xi

φ(Y) .
2. For every i, Xi is not contained in any other extreme set satisfying Condition 1.

Given the extreme-sets tree, the partition ES of V can be constructed by recursively
finding the partition of every child of V . Whenever an extreme set that satisfies Con-
dition 1 from Definition 2 is found, it is added to the partition ES and the recursion
ends. Since the leaves of the tree, i.e., the vertices of the graph, are all extreme sets that
satisfy Condition 1, the partition ES is well defined. Observe that the demand of the
partition ES satisfies φ(ES) =

∑q
i=1 φ(Xi) . In addition, this is exactly the demand

of the root φ(V) =
∑

U�V φ(U) since for every i ∈ {1, . . . , q}, the demand of every
ancestor of Xi exactly equals the sum of the demands of its children. For an illustration
of an extreme-sets tree and an extreme-sets partition see Figure 1 in the appendix.

For a graph G′ and for any vertex v in G′, we denote by Xv(G′) the set in ES(G′)
that contains v. When G′ = G we use the shorthands Xv and ES, respectively.

2.2 The Algorithm

When approximating the distance to 1-connectivity the algorithm estimates, for every
vertex selected, the size of its connected component. In an analogous way, in order
to approximate the distance to k-connectivity, which equals to 1

m�φ(ES)/2� where

Distance Approximation in Bounded-Degree and General Sparse Graphs 481

φ(ES) =
∑

v∈V
φ(Xv)
|Xv| , we estimate for every vertex v the demand and the size of

Xv. More precisely, since Xv may be large for some vertices, we introduce a certain
refinement of ES that consists of subsets of a bounded size.

Definition 3. Given a graph G and a size bound t, the t-bounded extreme-sets parti-
tion is the partition ES(t) = ES(t)(G) = {X(t)

1 , . . . , X
(t)
q } that satisfies the following

conditions:
1. For every i, the size of X(t)

i is at most t.
2. For every i, X(t)

i is an extreme set with the property that either φ(X(t)
i) = 0 or

φ(X(t)
i) >

∑
Y �X

(t)
i

φ(Y).

3. For every i, X(t)
i is not contained in any other extreme set of size at most t satisfying

Conditions 1 and 2.

It is not hard to verify that φ(ES) ≥ φ(ES(t)).
For any graph G′ and a vertex v in G′, we denote the set in ES(t)(G′) that contains

v by X
(t)
v (G′). When G′ = G we use the shorthands ES(t) and X

(t)
v , respectively.

The following procedure searches for X
(t)
v given a size bound t and a repetition

parameter r, both of which will be set subsequently. It uses the contraction operation
of a set A of vertices in which the vertices of A are merged into a single vertex a and
for every edge (v, u) such that v ∈ A and u /∈ A, there is an edge between a and u.

Procedure 1 (Extreme-set search from a given vertex v).

1. Repeat the following process for every i = 1, . . . , r.
(a) (Random Search Process) Start with Si = {v}. As long as |Si| ≤ t

and the size of the cut (Si, Si) is less than 3t2β, assign a random
cost in the range [0, 1] to the edges of the cut (Si, Si) that were not
yet assigned costs. Traverse the edge of lowest cost and add the new
vertex reached to Si.

(b) (Extreme-Set Search) Let GSi be the graph obtained from G by con-
tracting the set Si to a single vertex si. Construct the extreme-sets
tree of GSi and let XSi

v be the set Xv(GSi).
2. Let Xmax

v be the maximal set among {XSi
v }ri=1. Declare Xmax

v as the set

in ES of G containing v i.e., as X
(t)
v (G).

Lemma 1. For every v and size bound t, Procedure 1 finds X
(t)
v (G) with probability

at least 1− e−2r/t2 . Its query complexity and running time are O(t4rβ3/2).

Proof: To analyze the correctness of Procedure 1, assume first that at least one iteration
of the random search process (Step 1.a) finds a set S that contains X

(t)
v (G). In the

following claim we establish that in this case, the procedure declares X
(t)
v (G) as the

required set.

Claim 2. If at least one iteration of the random search process of Step 1.a finds a set S
that contains X

(t)
v (G), then Procedure 1 finds X

(t)
v (G).

482 S. Marko and D. Ron

What is left to analyze is the probability that the random search process of Step 1.a
finds a set S containing X

(t)
v . To this end we lower bound the probability that all the

vertices of X
(t)
v are added to the growing set S before any other vertex is. But first we

note (and it is not hard to verify) that for every S ⊆ X
(t)
v , the size of the cut (S, S) is

less than 3t2β. Therefore, if the algorithm adds to S only vertices from X
(t)
v , it won’t

stop before all the vertices of X
(t)
v are in S.

Now, consider the graph GX obtained from G by contracting the set X
(t)
v into a

single vertex x. Assume that the random search process of Step 1.a runs on GX for
t′ = |X(t)

v | steps. The cut (X(t)
v , x) is a minimum cut of GX since X

(t)
v is an extreme

set. Goldreich and Ron proved in [8] that in this case the probability that no cut edge
is traversed before X

(t)
v is found is at least 2t−2. Their analysis is based on Karger’s

analysis of his algorithm for finding minimum cut in a graph [11].

Lemma 3. [8] For an undirected graph G, let L be a set of at most t vertices such that
the cut (L,L) is a minimum cut. Then, starting with some vertex v ∈ L, the random
search process of Step 1.a succeeds in finding the cut (L,L) with probability at least
2t−2.

Corollary 4. If we repeat the random search process r times, then, with probability at
least 1 − (1 − 2t−2)r > 1 − e−2t−2·r , at least one iteration finds a set containing

X
(t)
v .

Combining Corollary 4 with Claim 2, with probability at least 1−e−2t−2r, Procedure 1
finds X

(t)
v , thus proving Lemma 1.

We now present the distance approximation algorithm that uses Procedure 1 to estimate
the distance of a connected graph from being k-connected.

Algorithm 1 (Distance approximation to k-connectivity).

1. Uniformly and independently sample s = 32k2/(δ2d̄2) vertices from G.
Let S = {u1, . . . , us} be the multiset of the sampled vertices.

2. For every sampled vertex uj , run Procedure 1 using the size bound t =
4k/δd̄ and the repetition constant r = t2 ln(32k2

δ2d̄2). Let X be the extreme
set found and let n̂j = |X |.

3. Calculate the demand of X and denote it by φ̂j .

4. Let φ̂ = n
s

∑s
i=1

φ̂j

n̂j
, let Ĉ =

⌈
φ̂
2

⌉
and output 1

m Ĉ .

Theorem 1. For every k > 1, Algorithm 1 is a distance approximation algorithm for
k-connectivity of connected graphs. The query complexity and running time of the al-
gorithm are O

(
(k/(δd̄))6β3/2 log(k/(δd̄))

)
.

As noted previously, in the full version of this paper [14] we show how to deal with the
case of unconnected graphs. The only difference is a slight modification in Procedure 1.

Distance Approximation in Bounded-Degree and General Sparse Graphs 483

3 Distance Approximation to Subgraph-Freeness

For a fixed graph H , we say that G is H-free if it contains no subgraph isomorphic to
H . In this section we consider the problem of approximating the distance of a graph
from being H-free for some fixed subgraph H in the bounded-degree model. We note
that testing subgraph-freeness in the general sparse model requires Ω(

√
n) queries [2].

In what follows we focus on triangles and then generalize the result to arbitrary
subgraphs (in Subsection 3.2). We first present a non-sublinear algorithm for approx-
imating the minimum number of edges that should be removed in order to obtain a
triangle-free graph. Later we show how to transform it into a distance approximation
algorithm whose running time is independent of n.

3.1 Triangle-Freeness

Let G be an undirected graph with degree at most d and let m = dn. We say that two
triangles in G are neighbors if they share a common edge. For a triangle t, the set of its
neighboring triangles is denoted by Γ (t). The degree of a triangle, denoted by d(t), is
defined as the size of Γ (t). The distance between two triangles t and t′ is the minimum
number of triangles minus 1 in a sequence t1, . . . , t� of triangles for which t1 = t and
t� = t′ and for every i ∈ {1, . . . , � − 1}, the triangles ti and ti+1 are neighbors. The
k-neighborhood of a triangle t is defined as the set of triangles whose distance from t is
at most k. In an analogous way, the k-neighborhood of a vertex v is the set of vertices
whose distance from v is at most k. For a set S of edges, we say that S is a triangle
cover if its removal from the graph results in a triangle-free graph and denote by COPT

the minimum size of a triangle cover of G.
The following algorithm gets as input a graph G with degree at most d and a param-

eter δ, and approximates COPT .

Algorithm 2 (Minimum triangle cover approximation).

1. Let T be the set of all the triangles in G and let T C = ∅ be the initial
triangle cover.

2. From i = 1 to r = Θ(log(d/δ))
(a) Select each triangle t ∈ T with probability 1

c·d(t) , where c is some
constant that will be defined later. If d(t) = 0 then t is selected with
probability 1.

(b) Un-select every two neighboring triangles that were selected.
(c) Add all the edges of the selected triangles to T C.
(d) Remove from T all the selected triangles and their neighbors and

update the degrees of the remaining triangles accordingly.
3. Add to T C one edge of every remaining triangle in T .
4. Output T C.

Theorem 2. For every δ, Algorithm 2 constructs a triangle cover T C of size C such
that with probability at least 5/6, COPT ≤ C ≤ 3 · COPT + δm

2 .

484 S. Marko and D. Ron

Proof: First it is clear that T C is indeed a triangle cover and therefore C ≥ COPT .
To show that C ≤ 3 · COPT + 1

2δm consider first the triangles that the algorithm
adds to the cover during the loop of Step 2. Observe that these triangles are all edge-
disjoint since whenever the algorithm selects neighboring triangles in Step 2.a, it un-
selects them in Step 2.b. Also, any neighbor of a selected triangle is removed from T
and cannot be selected on the following iterations. Therefore, any other triangle cover
must contain at least one edge of every triangle from T C so the number of edges added
to T C during the loop is at most 3 · COPT .

In order to upper bound the number of triangles left in T at the end of the loop of
Step 2 we apply the following lemma.

Lemma 5. For every i ∈ {1, . . . , r} let Ti be the number of triangles left in T at
the end of the i’th iteration of Step 2. For i = 0 let Ti = |T | . Then for every i > 0 ,

Exp [Ti | Ti−1] ≤
(
1− 1

c1

)
Ti−1 where c1 = 3c2/(c−3) and c is the constant used

in Step 2.a of Algorithm 2.

The next corollary follows from Lemma 5.

Corollary 6. By taking c = 6, after r = 36(log(d
δ)+3) iterations, Exp[Tr] ≤ δ

12d |T |.

Using Markov’s inequality, the probability that Tr > δ
2d |T | is less than 1/6. Now, since

every edge belongs to at most d triangles, we have |T | ≤ dm and so with probability
at least 5/6 the number of edges added to the cover T C in Step 3 is at most 1

2δm. We
conclude that in this case, the size of the cover is upper bounded by 3 · COPT + 1

2δm ,
which completes the proof of Theorem 2.

Next we show how to modify Algorithm 2 in order to achieve a 3-distance approxima-
tion algorithm for triangle-freeness whose running time is independent of n. Specifi-
cally, the algorithm uniformly and independently selects Θ(1/δ2) vertices and then for
each triangle attached to a sampled vertex, determines whether or not it would have
been added to T C by Algorithm 2. This can be determined by examining only the
Θ(log(d/δ))-neighborhood of every sampled vertex.

Algorithm 3 (Distance approximation to triangle-freeness).

1. Uniformly and independently sample s = 2/δ2 vertices from G. Let S =
{u1, . . . , us} be the multiset of the sampled vertices.

2. For every j ∈ {1, . . . , s} observe the subgraph Gr(uj) induced by the
(r + 1)-neighborhood of uj , where r = Θ(log d

δ) is as in Algorithm 2.
3. Run Algorithm 2 on

⋃s
j=1 Gr(uj). For every uj ∈ S, let χj be the

number of edges incident to uj that the algorithm adds to the cover.
4. Let Ĉ = n

2s

∑s
j=1 χj and output 1

dn Ĉ.

Theorem 3. Algorithm 3 is a 3-distance approximation algorithm for triangle-
freeness. The query complexity and running time of the algorithm are dO(log(d/δ)).

Distance Approximation in Bounded-Degree and General Sparse Graphs 485

3.2 Generalizing the Result to Arbitrary Subgraphs

The result for triangle-freeness can be generalized to arbitrary subgraphs using some
subgraph specific parameters. Assume that H consists of mH edges and its diameter is
ρH . Also, let dH be the maximal number of subgraphs a single edge can belong to.

Theorem 4. For every constant size subgraph H , there exists a variant of Algorithm 3
that is an mH-distance approximation algorithm for H-freeness. The query and time
complexity of the algorithm is dO(ρH ·m2

H ·log(dH/δ)).

3.3 A Sublinear Approximation for the Size of a Minimum Vertex Cover

As discussed in the introduction, the distance approximation algorithm for triangle-
freeness can be transformed into a sublinear algorithm for approximating the size of a
minimum vertex cover, where vertices replace edges and edges replace triangles.

The following theorem states the result. Its proof is very similar to the proof of
Theorem 3. We remark that the same modifications of the algorithms in [17] can be
applied here to achieve a dependence on Θ(d̄/δ) instead of d in the running time and
query complexity.

Theorem 5. For every δ > 0 and every graph G with degree-bound d, it is possible to
obtain, with probability at least 2/3, an estimate of the size if a minimum vertex cover,
which has a multiplicative error of at most 2 and an additive error of at most δn. The
query complexity and running time are dO(log(d/δ)).

Acknowledgments. We would like to thank Ran Raz for many helpful discussions.

References

1. N. Ailon, B. Chazelle, S. Comandur, and D. Liue. Estimating the distance to a monotone
function. In Proceedings of the 8th RANDOM, pages 229–236, 2004. To appear in Random
Structures and Algorithms.

2. N. Alon, T. Kaufman, M. Krivilevich, and D. Ron. Testing triangle-freeness in general
graphs. In Proceedings of the 17th SODA, pages 279–288, 2006.

3. B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning tree
weight in sublinear time. SICOMP, 34(6):1370–1379, 2005.

4. U. Feige. On sums of independent random variables with unbounded variance and estimating
the average degree in a graph. In Proceedings of the 36th STOC, pages 594–603, 2004.

5. E. Fischer and L. Fortnow. Tolerant versus intolerant testing for boolean properties. In
Proceedings of the 20th IEEE Conference on Computational Complexity, pages 135–140,
2005.

6. E. Fischer and I. Newman. Testing versus estimation of graph properties. In Proceedings of
the 37th STOC, pages 138–146, 2005.

7. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. JACM, 45(4):653–750, 1998.

8. O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002.

486 S. Marko and D. Ron

9. O. Goldreich and D. Ron. Approximating average parameters of graphs. In these proceed-
ings., 2006.

10. V. Guruswami and A. Rudra. Tolerant locally testable codes. In Proceedings of the 9th
RANDOM, pages 306–317, 2005.

11. D. Karger. Global min-cuts in RNC and other ramifications of a simple mincut algorithm. In
Proceedings of the 4th SODA, pages 21–30, 1993.

12. T. Kaufman, M. Krivelevich, and D. Ron. Tight bounds for testing bipartiteness in general
graphs. SICOMP, 33(6):1441–1483, 2004.

13. M. Luby. A simple parallel algorithm for the maximal independent set problem. SICOMP,
15(2):1036–1055, 1986.

14. S. Marko and D. Ron. Distance approximation in bounded-degree and general sparse graphs.
Manuscript. Available from: www.eng.tau.ac.il/˜danar., 2006.

15. D. Naor, D. Gusfield, and C. Martel. A fast algorithm for optimally increasing the edge
connectivity. SICOMP, 26(4):1139–1165, 1997.

16. M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures and Algorithms,
20(2):165–183, 2002.

17. M. Parnas and D. Ron. On approximating the minimum vertex cover in sublinear time and
the connection to distributed algorithms. ECCC Report TR05-094., 2005.

18. M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance approximation.
ECCC Report TR04-010, 2004, to appear in JCSS.

A An Example of an Extreme-Sets Partition

(a) (b)

Fig. 1. (a) A graph and (b) its extreme-sets tree and extreme-sets partition. Each node represents
an extreme set. The values on the edges are the demands of the corresponding extreme sets for
k = 4. The squared nodes represent the sets of the extreme-sets partition.

Fractional Matching Via Balls-and-Bins

Rajeev Motwani1,�, Rina Panigrahy2,��, and Ying Xu2,��

Dept of Computer Science, Stanford University
{rajeev, rinap, xuying}@cs.stanford.edu

Abstract. We relate the problem of finding structures related to perfect
matchings in bipartite graphs to a stochastic process similar to throwing
balls into bins. We view each node on the left of a bipartite graph as
having balls that it can throw into nodes on the right (bins) to which it
is adjacent. We show that several simple algorithms based on throwing
balls into bins deliver a near-perfect fractional matching, where a perfect
fractional matching is a weighted subgraph on all nodes with nonnegative
weights on edges so that the total weight incident at each node is 1.

1 Introduction

We study the problem of finding perfect (fractional) matchings in unweighted
bipartite graphs using algorithms based on throwing balls into bins. While the
problem of finding matchings in graphs is well-studied, as is the balls-and-bins
formulation, this paper explore a novel connection between the two problems.

A perfect matching is a subgraph on all nodes where every node has degree
exactly 1. The problem of finding perfect matchings in bipartite graphs is one
fundamental problem in computing with applications in a wide variety of fields
ranging from operations research, scheduling to load balancing. There are a
variety of algorithms for computing maximum matchings in bipartite graphs
and the related assignment problem [10, 11, 6, 5]. Most such algorithms are based
on finding augmenting paths by reduction to maximum flow [7, 1]. The fastest
algorithm for finding a perfect matching in a bipartite graph with m edges and
n nodes runs in O(m

√
n) time [17].

A closely related notion is the well-known perfect k-matching [14], where the
subgraph has non-negative integral weights on edges and the weighted degree of
any node is exactly k. As k becomes large, in the limiting case this becomes a
perfect fractional matching [14], which is a weighted subgraph on all nodes with
nonnegative and possibly fractional weights on edges so that the total weight
incident at each node is 1. The fractional matching (and k-matching) arises in
any setting involving the matching problem where the nodes on the left side
of the bipartite graph represent types and several entities of each type need to

� Supported in part by NSF Grants EIA-0137761 and ITR-0331640, and grants from
Media-X and SNRC.

�� Supported in part by a Stanford Graduate Fellowship and NSF Grants EIA-0137761
and ITR-0331640.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 487–498, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

488 R. Motwani, R. Panigrahy, and Y. Xu

be matched to the neighboring right nodes – for instance, each left node could
represent several jobs of a type. Fractional matching is also meaningful if a
single job may be split across multiple machines. More generally in a dynamic
setting, a large number of jobs may arrive (and depart) over time, and need
to be load balanced across the machines; this is equivalent to computing an
online k-matching. This framework has been used to model many important
applications [13, 12]. Recently [16] used this model to study Ad-Words problem
where Internet queries (left nodes) on a search engine such as Google are matched
to advertisements (right nodes) based on a set of ad-words; k-matching has
been used as a crucial component in several auction design problems [20, 22];
fractional matchings were also used by Azar and Litichevskey [3] to model switch
scheduling problem where packets arrive at input ports over time and need to be
continuously matched to output ports.

The stochastic process of throwing balls into random bins is also a well-studied
problem (see, for example, [2, 4, 21, 18]). It is well known if n balls are randomly
inserted into n bins, then with high probability the bin with maximum load
contains (1 + o(1)) log n/ log logn balls; when m > n logn the maximum load is
m/n + O(

√
m logn/n) [21]. Azar et al [2] showed that instead of choosing one

bin, if d ≥ 2 bins are chosen at random and the ball is inserted into the least-
loaded bin, the maximum load reduces dramatically to log logn/ log d + O(1).
Berenbrink et al [4] extended this result to the case when the number of balls
m is greater than the number of bins n, showing that the maximum load is at
most log logn/ log d + O(1) above the average.

In this paper we relate the problem of finding structures related to perfect
matchings in bipartite graphs to a variant of the balls-and-bins process. Given a
bipartite graph with n nodes on each side, view each node on the left as having
balls that it can throw into nodes on the right (bins) to which it is adjacent.
Balls from different throwers are distinguishable; each thrower has a different
color. Each ball thrown into a bin represents an edge between the thrower on
the left and the bin on the right. The load of a bin on the right is the number
of balls it receives and the load of a thrower on the left is the number of balls
it throws. If each node on the left throws exactly one ball and each bin on the
right gets exactly one ball, then the edges represented by the balls form a perfect
matching. On the other hand, if each thrower is allowed to throw a large but
equal number of balls, and each bin on the right receives an equal number of balls,
then the set of ball placements corresponds to a perfect fractional matching. For
example, if each node on the left throws exactly k balls and each bin on the right
receives exactly k balls, then the set of ball placements corresponds to perfect k
matching, where the degree of each node in the subgraph is exactly k; then, by
assigning a weight 1/k to each instance of an edge in the subgraph, we obtain a
perfect fractional matching. In this context, for a weighted subgraph, we define
the load of a vertex to be its weighted degree.

Assuming the graph has a perfect matching, we show how to efficiently com-
pute a near perfect k-matching where each node has degree close to k, or a
near-perfect fractional matching where the load of any left vertex is 1, and load

Fractional Matching Via Balls-and-Bins 489

of any right vertex is at most 1+ ε. While the Hopcroft-Karp Algorithm [10] can
be used to find a matching of size n(1− ε), it is not clear that it can be used to
find a fractional matching where every node is matched and has degree at most
1 + ε. Many of our algorithms are also applicable in an online setting. A key
advantage of our matching algorithms is that most computation is local to each
node, unlike other algorithms based on augmenting paths.

There are also extensive references on approximation algorithms for multi-
commodity flow and generalized flow problems, see for example [8, 9, 19]. While
some of those algorithms when applied to the matching problem may result in
an algorithm similar to our first algorithm in spirit, we propose a much simpler
framework which admits simpler and faster algorithms.

We show that simple algorithms based on throwing balls into bins find a
near-perfect fractional matching. For example, consider the process where we
iteratively pick a random node on the left and throw a ball into its least-loaded
neighbor (a right vertex adjacent to the left node). We show that the distri-
bution obtained from this algorithm is no worse than randomly throwing kn
balls into n bins, implying that the maximum load on any node is at most
k+O(

√
k logn+logn). This gives a near perfect k-matching where the load of a

node differs from k by at most O(
√

k logn+ logn), and an algorithm for finding
a fractional matching in time O(m log n/ε2), where every node on the left has
degree 1 and every node on the right has degree at most 1 + ε. This can also be
viewed as an online algorithm for the problem of assigning jobs represented by
nodes on the left to machines on the right, under the assumption of random job
arrivals/departures. When the graph does not have a perfect matching, we can
obtain a near-optimal fractional matching, where an optimal fractional matching
is a subgraph containing all nodes in which all vertices on the left have load 1
and the maximum load on right vertices is minimized.

Another algorithm is based on the d-choice load-balancing of balls and bins.
By picking a constant number of nodes on the left and inserting a ball into the
least-loaded of their neighbors, we achieve a better distribution of load amongst
the bins on the right — the maximum load is at most log logn/ log d + O(1).
However, this process ignores the load of vertices on the left which is the number
of balls of each color. By appropriately choosing a lightly-loaded node on the
left from the random choices and picking its least-loaded neighbor, we show
how to find a subgraph in which the total load on both sides is exactly n and
the maximum-loaded bin has load log logn/ log d. By increasing the number of
choices from d to logn, the maximum load can be reduced to 4.

By combining the load-balancing algorithms with the traditional augmenting
path algorithms, we show how to find in time O(m log2 n) a subgraph where
every node on the left has load exactly one and every node on the right has load
at most two. This can be generalized to finding a subgraph where every node
has load either k, k + 1 or k − 1 in time O(km logn + m log2 n), implying that
a near-perfect fractional matching where each right node has load within 1 ± ε
can be computed in O(m logn/ε) time.

490 R. Motwani, R. Panigrahy, and Y. Xu

2 Summary of Results

Given a bipartite graph with n vertices on each side, we associate a color with
each vertex on the left. View the vertices on the left as throwers and those on
the right as bins. Each left vertex can throw a ball of its color into any one of
its neighboring bins. The objective is for each left vertex to throw k balls so
that each bin on the right gets close to k balls. This gives a subgraph (with
edge repetition) in which each left vertex has degree k and each right vertex has
degree close to k; or, if we assign each edge a weight of 1

k , it gives a near-perfect
fractional matching. Define the load or the height of a vertex to be the number of
balls in that bin; or for a weighted subgraph, the load of a vertex is its weighted
degree. In what follows, when we say subgraph, it could be a weighted subgraph,
or a multi-graph.

Throughout the paper, we assume that the graph has a perfect matching,
unless otherwise specified.

We propose a set of “load balancing” algorithms and study their performance
in Section 3.

– Round-Robin Algorithm: Perform iteratively for k rounds: in each round,
go through the throwers in some given order, each thrower throwing its ball
into the least-loaded neighboring bin.

– Random-Color Algorithm: Repeatedly choose a ball of a random color
(or equivalently, choose a left vertex randomly) and throw into its least-
loaded neighboring bin. Do this kn times.

– Move-to-Low Algorithm: Start with any assignment having k balls of
each color. Perform iteratively: find any ball that can be moved to a bin
adjacent to its color (adjacent to the vertex the ball comes from) whose load
is at least 2 less than the current bin load, and move it.

We show that the distribution obtained from Random-Color is no worse than
randomly throwing kn balls into n bins, implying that the maximum load of
any bin is at most k + O(

√
k log n + logn). When the graph does not have a

perfect matching, this gives us a near-optimal fractional matching, where an
optimal fractional matching corresponds to a subgraph where all vertices on
the left have load 1 and the maximum load on a right vertex is minimized. We
obtain the same upper bound for Move-to-Low. The bounds are tight for those
two algorithms. The Round-Robin Algorithm has the weakest bound, which may
not be tight, but the lower bound of k+O(

√
k logn+logn) still holds. We prove

that after k iterations of the Round-Robin Algorithm, the maximum height of
the bins is at most 8k + O(log n).

Another algorithm (see Section 4) is based on the d-choice load-balancing of
balls and bins. It gives a bound of log logn/ log d + O(1) on the maximum load
of a bin, the average load being 1 on each side. By increasing the number of
choices to Ω(logn), the maximum load can be reduced to 4.

In Section 5, we combine the load-balancing algorithms with the traditional
augmenting path algorithms. We show how to find in time O(m log n) a subgraph
containing all the vertices where every node on the left has load exactly 1 and

Fractional Matching Via Balls-and-Bins 491

every node on the right has load at most 2. This can be generalized to finding
a subgraph where every left node has load exactly k and every right node has
load either k, k + 1 or k − 1 in time O(km log n).

Using Algorithm Random-Color or Move-to-Low, choosing k to be sufficiently
large, we obtain in time m logn/ε2 a fractional matching where every node on
the left has load 1 and every node on the right has load at most 1 + ε. The
augmenting path algorithms gives a near-perfect fractional matching where each
right node has load within 1± ε, with a better running time O(m logn/ε).

3 Performance of Load Balancing Algorithms

Now we analyze the performance of the three load balancing algorithms intro-
duced in Section 2.

3.1 Algorithm Random-Color

We show that the distribution of balls into bins obtained by Random Color al-
gorithm is no worse than the distribution obtained when each ball is randomly
thrown into a bin regardless of its color (we call it the Pure-Random Al-
gorithm). It is known that if kn balls are randomly thrown into n bins, then
the maximum bin size is k + O(

√
klogn + logn) with high probability. (More

precisely, when k is constant, the maximum load is k + O(log n/ log logn) balls;
when k > logn the maximum load is k + O(

√
k logn) [21].) This bound is tight

for Random-Color, because it is tight for Pure-Random, and when the graph has
only n edges the two processes are equivalent.

The essential observation is that since there is a perfect matching, we can
associate each color i with a unique bin bi, that is, its matched neighbor in the
perfect matching. Since this is a one-to-one mapping between colors and bins,
picking a random color is the same as picking a random bin. When a ball of a
certain color i is chosen, the algorithm always have the option to place the ball
into bi. It will end up placing the ball into a bin with height at most that of bi.
This amounts to picking a random bin bi and placing the new ball into a bin
of height at most bi. In this sense, we are always doing better than the random
process of assigning balls to random bins.

To formalize the argument, we use the notion of “majorization” and coupling
(see also [4]).

Definition 1. A load vector u = (u1, . . . , un) specifies that the number of balls
in the ith bin is ui.

Majorization: A load vector u = (u1, . . . , un) is majorized by a load vector v,
written as u ≤ v, if for all i, the total number of balls in the i most heavily loaded
bins of u is at most that of v, that is, ∀i,

∑
1≤j≤i uπ(j) ≤

∑
1≤j≤i vσ(j), where π

and σ are permutations of 1, . . . , n such that uπ(1) ≥ uπ(2) ≥ . . . ≥ uπ(n), and
vσ(1) ≥ vσ(2) ≥ . . . ≥ vσ(n).

The intuition is that if u ≤ v, v can be converted into u by moving balls to lower
heights. We are going to use the coupling technique to compare Random-Color and

492 R. Motwani, R. Panigrahy, and Y. Xu

Pure-Random. Here coupling means that the two considered stochastic processes
are tied together (sharing the same random bits) such that each process for itself
looks exactly like the original process, but at any point of time the load vector of
Random-Color is majorized by that of Pure-Random.

Theorem 1. If the graph has a perfect matching, then there is a coupling be-
tween Random-Color and Pure-Random, such that the load vector obtained by
Random-Color is majorized by the load vector obtained using Pure-Random.

Proof. We prove by induction on the number of balls thrown. Let u be the load
vector obtained after throwing some fixed number of balls using Random-Color,
and v be the vector after throwing the same number of balls using Pure-Random.
Since the order of bins does not matter in majorization, we can assume u is
ordered, i.e. u1 ≥ u2 ≥ . . . ≥ un; so is v. By induction, we assume that u ≤ v.

Let u′ and v′ denote the load vectors after throwing one more ball using the
two algorithms respectively. We use the following coupling of Random-Color
and Pure-Random. We choose uniformly at random a number i from 1 to n. In
Random-Color, we choose the left vertex that is matched to bin i in the perfect
matching, and put the ball into the least loaded bin adjacent to the vertex. In
Pure-Random, we directly throw the ball into the ith bin. Note that the two
bins may not be the same because bins in u and v are ordered according to the
loads. It is easy to see that the probabilities for these assignments remains the
same as those in the original processes. Thus coupling is well defined. We are
going to prove that u′ ≤ v′.

Random-Color always put the ball in a bin with load at most ui. Consider
the load vector obtained by adding the new ball into bin i of u, denoted by u′′.
It is easy to see that u′ ≤ u′′. We only need to show u′′ ≤ v′, which follows a
known property of majorization: for any two ordered load vectors u and v, u ≤ v
implies u + ei ≤ v + ei, where ei denotes the ith unit vector (Lemma 3.4 in [2]).

3.2 Algorithm Move-to-Low

Theorem 2. If the graph has a perfect matching, and if algorithm Move-to-Low
is allowed to run to a fixed point, the fraction of bins with load at least k + j is
at most kj k!

(k+j)! ; the maximum load on any bin is O(
√

k logn+ logn) above the
average.

Proof. We will compute a recurrence relation on the number of bins with load j.
Observe that after equilibrium, if a ball of a certain color is in a bin of load j, all
adjacent bins of that color are at least at height j−1. Let pj denote the number
of bins at height j or more. The total number of balls in such bins is at least jpj .
Since there are only k balls of each color, the number of different colors in these
balls is at least jpj/k. If there is a perfect matching, these throwers (colors) have
at least as many neighbors all of which have load at least j − 1.

So jpj

k ≤ pj−1 or pj ≤ k
j pj−1, or pk+j ≤ k

k+j pk+j−1. After simplification since
pk ≤ n, we get pk+j ≤ kj k!

(k+j)!n. If j = O(
√

k logn + logn) this becomes less
than one.

Fractional Matching Via Balls-and-Bins 493

The fraction kj k!
(k+j)! is remarkably close to the fraction of bins that re-

ceive k + j balls when nk balls are randomly thrown into n bins, which is(
kn

k+j

)
(1/n)k+j(1 − 1/n)nk−k−j ≈ kk+je−k/(k + j)!kj (k/e)k

(k+j)! . A tighter bound
of the maximum bin size can be found along the lines of the bounds in [21] for
random balls and bins.

The above analysis is tight. We can construct a subgraph where � jpj

k � = pj−1
and none of the balls can be moved to lower heights, by iteratively creating x
new throwers for each bin of load x, and then creating x bins of load x − 1 for
each new throwers.

The Random-Color and Move-to-Low algorithm can be generalized to graphs
without perfect matchings, even with different numbers of vertices on left and
right. Define the minimum expansion of a bipartite graph to be minV ⊂L

|N(V)|
|V | .

Suppose the minimum expansion of a bipartite graph G is c (c ≤ 1; equality
holds only when G has a perfect matching), then the distribution of bin heights
obtained by Random-Color is no worse than that obtained by Pure-Random
on cn bins. This is because the probability that a ball falls into one of the x
heaviest loaded bins in Random Color is at most x/cn, while in Pure-Random,
this probability is exactly x/cn. By a similar coupling argument as Theorem 1,
the load vector of Random-Color is majorized by that of Pure-Random. The
analysis for Move-to-Low can be generalized similarly. The detailed proof can be
found in the complete version of our paper [15].

3.3 Algorithm Round-Robin

Theorem 3. If the graph has a perfect matching, then after one iteration of
algorithm Round-Robin, the maximum height of bins is at most log n + 1. After
k iterations, the maximum height of bins is at most 8k + O(log n).

We refer the readers to the complete version of our paper [15] for the proof.

4 Using d-Choice Load Balancing

The above algorithms produce a maximum load of at least O(log n/ log logn)
with a total of n balls. We now show how ideas based on d-choice hashing can be
used to find a better distribution. It is known that while throwing n balls into n
bins if each ball picks d ≥ 2 bins at random and is inserted into the least loaded
of the d bins, then the maximum load of any bin is at most log logn/ log d+O(1)
with high probability. We now show an algorithm that produces a subset of the
edges (allowing repetitions) of the bipartite graph so that the total degree on
each side is n and the maximum degree is log logn/ log d + O(1) in time O(md)
with high probability. In particular for d = Ω(log n) the maximum load is 4.

Intuitively - if we pick d ≥ 2 random vertices on the left side and throw a ball
into the least loaded vertex among all their neighbors then this is similar to the
d-choice load balancing. The color of the ball corresponds to one of the d vertices
whose neighbor is chosen (breaking ties arbitrarily). If this is done n times the

494 R. Motwani, R. Panigrahy, and Y. Xu

maximum load of any bin on the right side is at most log logn/ log d + O(1).
However, there is no guarantee of a low load on the vertices on the left; that
is the maximum number of balls of a certain color. To remedy this we modify
the algorithm slightly: instead of picking d vertices on the left we pick 2d − 1
and consider the d of these that have lowest loads. Then we look at the set of
their neighbors on the right and add a ball into the least loaded bin. Again the
color of the ball is the same as the vertex whose neighbor is chosen. Essentially
if the 2d − 1 chosen left vertices have loads u1, u2, .., u2d−1 and their matched
neighbors in a perfect matching have loads v1, v2, .., v2d−1, then we find an edge
with load on the left at most the median value of ui’s on load and the right at
most the median value of vi’s. This is like throwing n balls into n bins where
each ball picks 2d − 1 bins at random and is inserted into one of the d least
loaded of the 2d− 1 chosen bins.

Theorem 4. If the graph has a perfect matching, and if n balls are inserted by
the above process, we get a subset of the edges (allowing repetitions so it is a
multiset) of the bipartite graph so that the total degree on each side is n and the
maximum degree is log logn/ log d + O(1) with high probability.

Theorem 5. If the graph has a perfect matching, and if n balls are inserted by
above process except that we choose d = Ω(log n) nodes for each ball, then we
get a subset of the edges (allowing repetitions so it is a multiset) of the bipartite
graph so that the total degree on each side is n and the maximum degree is 4
with high probability.

Lemma 1. Assume the graph has a perfect matching. If n balls are thrown into
n bins where each ball picks 2d − 1 bins at random and is inserted arbitrarily
into one of the d least loaded of the 2d− 1 chosen bins, then the maximum load
of any bin is at most log logn/ log d + O(1) with high probability. This is true
even if instead of inserting a ball in one of the d least loaded of the 2d−1 chosen
bins, it is inserted into any other bin whose load does not exceed the median load
of the 2d− 1 chosen bins.

Proof. We use the layered induction technique similar to the one used to bound
the load of bins in the two choice hashing [2]. Let pi denote an upper bound
on the fraction of bins with load at least i at the end of the process. We will
derive a recurrence relation on pi. Let us compute the probability that during
an insertion the new ball lands at a height of i+ 1 or higher. For this to happen
at least d of the bins chosen must have height i or greater; otherwise each of
the d least loaded of the 2d− 1 bins has load less than i. Probability that this
happens is at most

(2d−1
d

)
pd

i ≤ 22dpd
i = (4pi)d. So the expected number of balls

that fall at height i + 1 or higher is at most (4pi)dn. This is also a bound on
the expected number of bins with load at least i + 1. So given pi, the expected
value of pi+1 is at most (4pi)d. This can be converted into a high probability
bound – probability at least 1 − 1/nc – by using Chernoff bounds as long as
(4pi)dn ≥ c logn where c is a large enough constant.

This implies, given pi, if (4pi)dn ≥ c logn then with high probability pi+1 ≤
(4pi)d, which implies 16pi+1 ≤ (16pi)d. Now, p32 ≤ 1/32 as at most 1/32 fraction

Fractional Matching Via Balls-and-Bins 495

of the bins can have load 32 or higher. Using the recurrence we get pi+32 ≤ 1/2di

as long as 1/2di ≥ c logn/n. Let k denote the highest value of i + 32 for which
this holds; k = log logn/ log d+ c′ where c′ is some constant (possibly negative).
Now we know that (4pk)d ≤ c logn/n. We will show that with high probability
there is no bin with load k + 2. Again Chernoff bounds can be used to show
that with high probability pk+1 ≤ 2c logn/n. Now we argue that the probability
that a bin has load k + 2 is at most n(8c logn/n)d using a simple union bound
on the probability that any of the ball thrown lands at height k + 2. So the
probability that there is a ball at height 32 + log logn/ log d + c′ + 2 is at most
n(8c logn/n)d +n/nc ≤ 1/nΩ(1). The conditioning arguments can be made more
precise along the lines of the proof in [2]: Essentially let Ei denote the event
that the fraction of bins with height at least i + 32 is at most the bound pi+32
computed above. Then E0 is true; probability that Ei holds and Ei+1 does not
is negligible which recursively implies that each Ei holds with high probability
except for the sum of the negligible probabilities.

Given Lemma 1 it is easy to argue that the loads of the vertices of the left
side and right side grow according to the process described. For the right side
vertices, since 2d − 1 vertices are chosen at random from the left side, this is
equivalent to choosing 2d−1 vertices at random on the right side in the optimal
matching. After discarding d − 1 of them we pick a vertex with load that is no
more than that of the least loaded of the d remaining right side bins. So again
the arguments in proof of Lemma 1 go through; the only difference is instead of
placing the ball in one of the d least loaded of the 2d−1 chosen bins, it is placed
into some bin with possibly lower load but no higher.

Theorem 5 can also be proven similarly: The fraction of nodes on any side
with load at least 3 is at most 1/3 at any time. If d = Ω(log n) nodes are chosen
at random then, with high probability (1 − 1/n2), the median load is at most
3. Since we can always find an edge whose load is at most the median load on
both the left and the right side, we can with high probability, add a ball along
an edge so that after the addition the loads are at most 4.

5 Combining Load Balancing with Augmenting Paths

Classical perfect matching algorithms for bipartite graphs leverage max flow
algorithms based on augmenting paths. Now we combine the above load bal-
ancing algorithms with augmenting paths, and get efficient algorithms to find
near-perfect fractional matchings.

Definition 2. An s-almost matching in a bipartite graph G is a multi-set of
edges in G, such that the load of any left vertex in the matching is exactly s,
while the load of any right vertex is in [s− 1, s + 1].

In this section, we show an algorithm finding a k-almost matching in time
O(m log2 n + mk logn).

We start with 1-almost matchings. Recall that the residual graph [7] with
respect to a subgraph is obtained by first directing all edges from left to right

496 R. Motwani, R. Panigrahy, and Y. Xu

and then flipping the directions of all edges in the subgraph; an augmenting path
is a simple path in the residual graph. Given a subgraph where the load of any
left vertex is 1, its residual graph has the following property.

Lemma 2. For every right vertex u of height h ≥ 3, there exists an augmenting
path of length at most 2 logn from u to some right vertex v of height at most
h− 2.

Proof. Let d be the length of the shortest such augmenting path; Np be the
number of bins reachable from u within 2p steps (2p < d). The total number
of balls in those bins is at least (h − 1)Np, otherwise we have founded a bin of
height h − 2 or less. Those balls correspond to (h − 1)Np distinct left vertices,
the size of whose neighborhood is at least (h − 1)Np because there exists a
perfect matching. This whole neighborhood is reachable from u in another 2
steps. Therefore, Np+1 ≥ (h−1)Np ≥ (h−1)p+1. For h ≥ 3, (h−1)d/2+1 ≥ 2d/2.
Because the total number of balls in the system is n, we have 2d/2 ≤ n, or
d ≤ 2 logn.

Moving one ball from u along the augmenting path to v decreases the height
of v by one. Given any subgraph, we can eliminate all highest bins by such
moves until the maximum height is 2. In the end, the load of any left vertex
in the subgraph remains 1, and the load of any right vertex is at most 2. As
in the well known Edmonds-Karp algorithm (see Ch26.2 in [7]), augmenting
paths are selected such that the lengths of augmenting paths increase with each
phase. A phase consists of augmentations along a maximal set of edge-disjoint
augmenting paths, which can be implemented by one breadth-first search. Thus
we get a 1-almost matching.

1-almost matching Algorithm:
1. Run one round of Round-Robin Algorithm: throw n balls and get a maxi-

mum bin size of logn + 1;
2. As long as the maximum bin height h is more than 2, use the Edmonds-Karp

algorithm to eliminate bins of height h.
Edmonds-Karp algorithm:
1. Let any bin of height h be a source; any bin of height h′ ≤ h− 2 be a sink;
2. while there exists a source do
2-1. by performing a breadth-first search, find the length of the shortest aug-

menting path from any source to any sink; denoted this length by d;
2-2. find a maximal set of edge-disjoint source-sink paths of length d, under

the constraint that any sink of height h′ can appear in at most h− h′− 1 paths.
For each augmenting path selected, flip the directions of the edges, i.e. perform a
sequence of ball moves that decreases the height of source bin by 1 and increases
the height of the sink by 1.

The Edmonds-Karp algorithm is based on the following property: if we always
augment along the shortest path, then the shortest distance from source to any
node in the residual graph increases monotonically. See Ch26.2 in [7] for the
proof. This is summarized in the following lemma.

Fractional Matching Via Balls-and-Bins 497

Lemma 3. In the Edmonds-Karp algorithm, the length of the shortest augment-
ing path d increases monotonically. If a maximal set of augmenting paths are
chosen in each phase, then d must strictly increase in each phase.

We analyze the time complexity of the above algorithm. Using the standard
implementation of Edmonds-Karp algorithm, each phase takes time O(m): use a
breadth-first search to decide the shortest distance d, which takes time m; then
use depth-first search to find a maximal set of edge-disjoint augmenting paths
of length d, which takes time O(m) (see Ch26 in [7] for details).

To reduce the maximum bin height by at least 1, we need to run Edmonds-
Karp algorithm for at most 2 logn phases as the length of the augmenting path
strictly increases in each phase, and by Lemma 2 we need to look at augmenting
paths of length at most 2 logn. This needs to be done at most logn + 1 times
because the maximum bin height after one round of Round-Robin is at most
logn+1. Since each phase takes time O(m), the total running time is O(m log2 n).

Theorem 6. If the graph has a perfect matching, then a 1-almost matching can
be found in time O(m log2 n).

We can use the above algorithm to find a k-almost matching in O(mk logn) time,
where the load of each left vertex in the matching is k, and the load of each right
vertex is between k ± 1. The idea is to recursively double the balls in each bin,
and move the balls by finding augmenting paths of length at most klogn. We
start with k = 1 and get a 1-almost matching using the above algorithm. Assume
we have a k

2 -almost matching. Now double each edge, and we get a subgraph
where each left vertex has load k and any right vertex has load k±2. To convert
the matching into a k-almost matching, all we need to do is to eliminate bins of
height k + 2 and k − 2 by finding augmenting paths to bins of height k. We can
bound the length of the shortest augmenting path similar to Lemma 2. Please
refer to [15] for the complete proof.

Theorem 7. If the graph has a perfect matching, then a k-almost matching can
be found in time O(m log2 n + mk log n).

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, 1993.

2. Y. Azar, A.Z. Broder, A.R. Karlin, and E. Upfal. “Balanced allocations.” SIAM
Journal on Computing, 29:180–200, 1999.

3. Y. Azar and A. Litichevskey. “Maximizing throughput in multi-queue switches.”
In Proceedings of 12th ESA Conference, 2004.

4. P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking. “Balanced allocations: The
heavily loaded case.” In Proceedings of the 32nd Annual ACM Symposium on The-
ory of Computing (STOC), pp. 745–754, 2000.

5. D.P. Bertsekas. “The Auction Algorithm: A Distributed Relaxation Method for
the Assignment Problem.” Annals of Operations Research, 14:105–123, 1988.

498 R. Motwani, R. Panigrahy, and Y. Xu

6. B.V. Cherkassky, A.V. Goldberg, P. Martin, J.C. Setubal, and J. Stolfi. “Aug-
ment or push: a computational study of bipartite matching and unit-capacity flow
algorithms.” ACM J. Exp. Algorithmics, 3, 1998.

7. T. Cormen, C. Leiserson, R. Rivest and C. Stein. Introduction to Algorithms. Sec-
ond Edition. MIT Press, 2001.

8. N. Garg and J. Könemann. “Faster and Simpler Algorithms for Multicommodity
Flow and other Fractional Packing Problems.” In Proceedings of the 39th Annual
IEEE Symposium on Foundations of Computer Science, pp.300-309, 1998.

9. A.V.Goldberg. “A natural randomization strategy for multicommodity flow and
related algorithms.” In Information Processing Letters, 42(5):249-256, 1992.

10. J. Hopcroft and R. Karp. “An n5/2 algorithm for maximum matchings in bipartite
graphs.” SIAM Journal on Computing, 2:225–231, 1973.

11. H.W. Kuhn. “The Hungarian method for the assignment problem.” Naval Res.
Logist. Quart., 2:83–97, 1955.

12. B. Kalyanasundaram and K.R. Pruhs. “An optimal deterministic algorithm for
online b-matching.” Theoretical Computer Science, 233:319–325, 2000.

13. R.M. Karp, U.V. Vazirani, and V.V. Vazirani. “An optimal algorithm for online bi-
partite matching.” In Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, 1990.

14. L. Lovasz and M.D. Plummer. Matching Theory. Annals of Discrete Mathematics.
North Holland, 1986.

15. R. Motwani, R. Panigrahy and Y. Xu. “Fraction Matching via Balls-and-Bins.”
Technical Report, 2005.

16. A. Mehta, A. Saberi, U.V. Vazirani and V.V. Vazirani. “AdWords and General-
ized On-line Matching.” In Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science, 2005.

17. S. Micali and V. Vazirani. “An O(E
√

V) algorithm for finding maximum matchings
in general graphs.” In Proceedings of the 21st IEEE Symposium on the Foundations
of Computer Science, pp. 17–27, 1980.

18. R. Panigrahy. “Efficient Hashing with Lookups in Two Memory Accesses.” In Pro-
ceedings of SODA, 2005.

19. S.A. Plotkin, D. Shmoys, and E. Tardos. “Fast approximation algorithms for frac-
tional packing and covering problems”. In Proceedings of the 32nd Annual IEEE
Symposium on the Foundations of Computer Science, 1991.

20. M. Penn and M. Tennenholtz. “Constrained multi-object auctions and b-
matching.” Information Processing Letters, 75:29–34, 2000.

21. M. Raab and A. Steger. “Balls into bins – a simple and tight analysis.” In Pro-
ceedings of the 2nd International Workshop on Randomization and Approximation
Techniques in Computer Science, LNCS volume 1518, pp. 159–170, 1998.

22. M. Tennenholtz. “Tractable combinatorial auctions and b-matching.” Artif. Intell.,
140:231-243, 2002.

A Randomized Solver for Linear Systems with
Exponential Convergence

Thomas Strohmer and Roman Vershynin�

Department of Mathematics, University of California, Davis, CA 95616-8633, USA
strohmer@math.ucdavis.edu, vershynin@math.ucdavis.edu

Abstract. The Kaczmarz method for solving linear systems of equa-
tions Ax = b is an iterative algorithm that has found many applications
ranging from computer tomography to digital signal processing. Despite
the popularity of this method, useful theoretical estimates for its rate of
convergence are still scarce. We introduce a randomized version of the
Kaczmarz method for overdetermined linear systems and we prove that
it converges with expected exponential rate. Furthermore, this is the first
solver whose rate does not depend on the number of equations in the sys-
tem. The solver does not even need to know the whole system, but only its
small random part. It thus outperforms all previously known methods on
extremely overdetermined systems. Even for moderately overdetermined
systems, numerical simulations reveal that our algorithm can converge
faster than the celebrated conjugate gradient algorithm.

1 Introduction and State of the Art

We study a consistent linear system of equations

Ax = b, (1)

where A is a full rank m × n matrix with m ≥ n, and b ∈ Cm. One of the
most popular solvers for such overdetermined systems is Kaczmarz’s method [12],
which is a form of alternating projection method. This method is also known un-
der the name Algebraic Reconstruction Technique (ART) in computer tomogra-
phy [9, 13], and in fact, it was implemented in the very first medical scanner [11].
It can also be considered as a special case of the POCS (Projection onto Convex
Sets) method, which is a prominent tool in signal and image processing [15, 1].

We denote the rows of A by a∗1, . . . , a∗m, where a1, . . . , am ∈ Cn, and let
b = (b1, . . . , bm)T . The classical scheme of Kaczmarz’s method sweeps through
the rows of A in a cyclic manner, projecting in each substep the last iterate
orthogonally onto the solution hyperplane of 〈ai, x〉 = bi and taking this as the
next iterate. Given some initial approximation x0, the algorithm takes the form

xk+1 = xk +
bi − 〈ai, xk〉
‖ai‖

ai, (2)

� T.S. was supported by the NSF DMS grant 0511461. R.V. was supported by Alfred
P. Sloan Foundation and by the NSF DMS grant 0401032.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 499–507, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

500 T. Strohmer and R. Vershynin

where i = k mod m + 1. Note that we refer to one projection as one iteration,
thus one sweep in (2) through all m rows of A consists of m iterations. We will
refer to this as one cycle.

While conditions for convergence of this method are readily established, use-
ful theoretical estimates of the rate of convergence of the Kaczmarz method (or
more generally of the alternating projection method for linear subspaces) are dif-
ficult to obtain, at least for m > 2. Known estimates for the rate of convergence
are based on quantities of the matrix A that are hard to compute and difficult to
compare with convergence estimates of other iterative methods (see e.g. [2, 3, 6]
and the references therein). What numerical analysts would like to have is esti-
mates of the convergence rate with respect to standard quantities such as ‖A‖
and ‖A−1‖. The difficulty that no such estimates are known so far stems from
the fact that the rate of convergence of (2) depends strongly on the ordering of
the equations in (1), while quantities such as ‖A‖, ‖A−1‖ are independent of the
ordering of the rows of A.

It has been observed several times in the literature that using the rows of A
in Kaczmarz’s method in random order, rather than in their given order, can
greatly improve the rate of convergence, see e.g. [13, 1, 10]. While this randomized
Kaczmarz method is thus quite appealing for applications, no guarantees of its
rate of convergence have been known.

In this paper, we propose the first randomized Kaczmarz method with expo-
nential expected rate of convergence, cf. Section 2. Furthermore, this rate does not
depend on the number of equations in the system. The solver does not even need
to know the whole system, but only its small random part. Thus our solver out-
performs all previously known methods on extremely overdetermined systems.
We analyze the optimality of the proposed algorithm as well as of the derived
estimate, cf. Section 3. Our numerical simulations demonstrate that even for
moderately overdetermined systems, this random Kaczmarz method can out-
perform the celebrated conjugate gradient algorithm, see Section 4.

Notation: For a matrix A, ‖A‖ := ‖A‖2 denotes the spectral norm of A, ‖A‖F
is the Frobenious norm, i.e. the square root of the trace of A∗A, where the
superscript ∗ stands for the conjugate transpose of a vector or matrix. The left
inverse of A (which we always assume to exist) is written as A−1. Thus ‖A−1‖
is the smallest constant M such that the inequality ‖Ax‖ ≥ 1

M ‖x‖ holds for
all vectors x. As usual, κ(A) := ‖A‖‖A−1‖ is the condition number of A. The
linear subspace spanned by a vector x is written as lin(x). Finally, E denotes
expectation.

2 Randomized Kaczmarz Algorithm and Its Rate of
Convergence

It has been observed [13, 1, 10] that the convergence rate of the Kaczmarz method
can be significantly improved when the algorithm (2) sweeps through the rows
of A in a random manner, rather than sequentially in the given order. Here we
propose a specific version of this randomized Kaczmarz method, which chooses

A Randomized Solver for Linear Systems with Exponential Convergence 501

each row of A with probability proportional to its relevance – more precisely,
proportional to the square of its Euclidean norm. This method of sampling from a
matrix was proposed in [5] in the context of computing a low-rank approximation
of A, see also [14] for subsequent work and references. Our algorithm thus takes
the following form:

Algorithm 1 (Random Kaczmarz algorithm). Let Ax = b be a linear sys-
tem of equations as in (1) and let x0 be arbitrary initial approximation to the
solution of (1). For k = 0, 1, . . . compute

xk+1 = xk +
br(i) − 〈ar(i), xk〉

‖ar(i)‖
ar(i), (3)

where r(i) is chosen from the set {1, 2, . . . ,m} at random, with probability pro-
portional to ‖ar(i)‖2.
Our main result states that xk converges exponentially fast to the solution of (1),
and the rate of convergence depends only on the norms of the matrix and its
inverse.

Theorem 2. Let x be the solution of (1). Then Algorithm 1 converges to x in
expectation, with the average error

E‖xk − x‖2 ≤
(
1− 1

R

)k

· ‖x0 − x‖2, (4)

where R = ‖A−1‖2 ‖A‖2F .

Proof. There holds
m∑

j=1

|〈z, aj〉|2 ≥
‖z‖2
‖A−1‖2 for all z ∈ Cn. (5)

Using the fact that ‖A‖2F =
∑m

j=1 ‖aj‖2 we can write (5) as

m∑
j=1

‖aj‖2
‖A‖2F

∣∣∣〈z, aj

‖aj‖

〉∣∣∣2 ≥ 1
R
‖z‖2 for all z ∈ Cn. (6)

The main point in the proof is to view the left hand side in (6) as an expectation
of some random variable. Namely, recall that the solution space of the j-th
equation of (1) is the hyperplane {y : 〈y, aj〉 = b}, whose normal is aj

‖aj‖ . Define
a random vector Z whose values are the normals to all the equations of (1), with
probabilities as in our algorithm:

Z =
aj

‖aj‖
with probability

‖aj‖2
‖A‖2F

, j = 1, . . . ,m. (7)

Then (6) says that

E|〈z, Z〉|2 ≥ 1
R
‖z‖2 for all z ∈ Cn. (8)

502 T. Strohmer and R. Vershynin

The orthogonal projection P onto the solution space of a random equation of
(1) is given by Pz = z − 〈z − x, Z〉Z.

Now we are ready to analyze our algorithm. We want to show that the error
‖xk−x‖2 reduces at each step in average (conditioned on the previous steps) by
at least the factor of (1− 1

R). The next approximation xk is computed from xk−1
as xk = Pkxk−1, where P1, P2, . . . are independent realizations of the random
projection P . The vector xk−1−xk is in the kernel of Pk. It is orthogonal to the
solution space of the equation onto which Pk projects, which contains the vector
xk − x (recall that x is the solution to all equations). The orthogonality of these
two vectors then yields

‖xk − x‖2 = ‖xk−1 − x‖2 − ‖xk−1 − xk‖2.

To complete the proof, we have to bound ‖xk−1 − xk‖2 from below. By the
definition of xk, we have

‖xk−1 − xk‖ = 〈xk−1 − x, Zk〉

where Z1, Z2, . . . are independent realizations of the random vector Z. Thus

‖xk − x‖2 ≤
(
1−

∣∣∣〈 xk−1 − x

‖xk−1 − x‖ , Zk

〉∣∣∣2) ‖xk−1 − x‖2.

Now we take the expectation of both sides conditional upon the choice of the
random vectors Z1, . . . , Zk−1 (hence we fix the choice of the random projections
P1, . . . , Pk−1 and thus the random vectors x1, . . . , xk−1). Then

E|{Z1,...,Zk−1}‖xk − x‖2 ≤
(
1−E{Z1,...,Zk−1}

∣∣∣〈 xk−1 − x

‖xk−1 − x‖ , Zk

〉∣∣∣2) ‖xk−1 − x‖2.

By (8) and the independence,

E|{Z1,...,Zk−1}‖xk − x‖2 ≤
(
1− 1

R

)
‖xk−1 − x‖2.

Taking the full expectation of both sides, by induction we complete the proof.
��

Remark (Dimension-free perspective, robustness). The rate of conver-
gence in Theorem 2 does not depend on the number of equations nor the number
of variables, and obviously also not on the order of the projections. It is only
controlled by the intrinsic and stable quantity R of the matrix A. This continues
the dimension free approach to operators on finite dimensional normed spaces,
see [14].

2.1 Quadratic Time

Let n denote the number of variables in (1). Clearly, n ≤ R ≤ κ(A)2n, where
κ(A) is the condition number of A. Then as k →∞,

E‖xk − x‖2 ≤ exp
(
[1− o(1)]

k

κ(A)2n

)
· ‖x0 − x‖2. (9)

A Randomized Solver for Linear Systems with Exponential Convergence 503

Thus the algorithm converges exponentially fast to the solution in O(n) iterations
(projections). Each projection can be computed in O(n) time; thus the algorithm
takes O(n2) operations to converge to the solution. This should be compared
to the Gaussian elimination, which takes O(mn2) time. (Strassen’s algorithm
and its improvements reduce the exponent in Gaussian elimination, but these
algorithms are, as of now, of no practical use). Of course, we have to know
the (approximate) Euclidean lengths of the rows of A before we start iterating;
computing them takes O(nm) time. But the lengths of the rows may in many
cases be known a priori. For example, all of them may be equal to one (as is
the case for Vandermonde matrices arising in trigonometric approximation) or
be tightly concentrated around a constant value (as is the case for Gaussian
random matrices).

The number m of equations is essentially irrelevant for our algorithm, as seen
from (9). The algorithm does not even need to know the whole matrix, but only
O(n) random rows. Such Monte-Carlo methods have been successfully developed
for many problems, even with precisely the same model of selecting a random
submatrix of A (proportional to the squares of the lengths of the rows), see [5]
for the original discovery and [14] for subsequent work and references.

3 Optimality

We discuss conditions under which our algorithm is optimal in a certain sense,
as well as the optimality of the estimate on the expected rate of convergence.

3.1 General Lower Estimate

For any system of linear equations, our estimate can not be improved beyond a
constant factor of R, as shown by the following theorem.

Theorem 3. Consider the linear system of equations (1) and let x be its solu-
tion. Then there exists an initial approximation x0 such that

E‖xk − x‖2 ≥
(
1− 2k

R

)
· ‖x0 − x‖2 (10)

for all k, where R = R(A) = ‖A−1‖2 ‖A‖2F .

Proof. For this proof we can assume without loss of generality that the system (1)
is homogeneous: Ax = 0. Let x0 be a vector which realizes R, that is R =
‖A−1x0‖2 ‖A‖2F and ‖x0‖ = 1. As in the proof of Theorem 2, we define the
random normal Z associated with the rows of A by (7). Similar to (8), we have
E|〈x0, Z〉|2 = 1/R. We thus see lin(x0) as an “exceptional” direction, so we shall
decompose Rn = lin(x0)⊕ (x0)⊥, writing every vector x ∈ Rn as

x = x′ · x0 + x′′, where x′ ∈ R, x′′ ∈ (x0)⊥.

In particular,
E|Z ′|2 = 1/R. (11)

504 T. Strohmer and R. Vershynin

We shall first analyze the effect of one random projection in our algorithm.
To this end, let x ∈ Rn, ‖x‖ ≤ 1, and let z ∈ Rn, ‖z‖ = 1. (Later, x will
be the running approximation xk−1, and z will be the random normal Z). The
projection of x onto the hyperplane whose normal is z equals

x1 = x− 〈x, z〉z.

Since
〈x, z〉 = x′z′ + 〈x′′, z′′〉, (12)

we have

|x′
1 − x′| = |〈x, z〉z′| ≤ |x′||z′|2 + |〈x′′, z′′〉z′| ≤ |z′|2 + |〈x′′, z′′〉z′| (13)

because |x′| ≤ ‖x‖ ≤ 1. Next,

‖x′′
1‖2 − ‖x′′‖2 = ‖x′′ − 〈x, z〉z′′‖2 − ‖x′′‖2

= −2〈x, z〉〈x′′, z′′〉+ 〈x, z〉2‖z′′‖2 ≤ −2〈x, z〉〈x′′, z′′〉+ 〈x, z〉2

because ‖z′′‖ ≤ ‖z‖ = 1. Using (12), we decompose 〈x, z〉 as a+b, where a = x′z′

and b = 〈x′′, z′′〉 and use the identity −2(a+ b)b+(a+ b)2 = a2− b2 to conclude
that

‖x′′
1‖2 − ‖x′′‖2 ≤ |x′|2|z′|2 − 〈x′′, z′′〉2 ≤ |z′|2 − 〈x′′, z′′〉2 (14)

because |x′| ≤ ‖x‖ ≤ 1.
Now we apply (13) and (14) to the running approximation x = xk−1 and

the next approximation x1 = xk obtained with a random z = Zk. Denoting
pk = 〈x′′

k , Z
′′
k 〉, we have by (13) that |x′

k − x′
k−1| ≤ |Z ′

k|2 + |pkZ
′
k| and by (14)

that ‖x′′
k‖2 − ‖x′′

k−1‖2 ≤ |Z ′
k|2 − |pk|2. Since x′

0 = 1 and x′′
0 = 0, we have

|x′
k − 1| ≤

k∑
j=1

|x′
j − x′

j−1| ≤
k∑

j=1

|Z ′
j |2 +

k∑
j=1

|pjZ
′
j | (15)

and

‖x′′
k‖2 =

k∑
j=1

(
‖x′′

j ‖2 − ‖x′′
j−1‖2

)
≤

k∑
j=1

|Z ′
j |2 −

k∑
j=1

|pj|2.

Since ‖x′′
k‖2 ≥ 0, we conclude that

∑k
j=1 |pj|2 ≤

∑k
j=1 |Z ′

j|2. Using this, we
apply Cauchy-Schwartz inequality in (15) to obtain

|x′
k − 1| ≤

k∑
j=1

|Z ′
j |2 +

(k∑
j=1

|Z ′
j |2
)1/2(k∑

j=1

|Z ′
j |2
)1/2

= 2
k∑

j=1

|Z ′
j |2.

Since all Zj are copies of the random vector Z, we conclude by (11) that E|x′
k −

1| ≤ 2kE|Z ′|2 ≤ 2k
R . Thus E‖xk‖ ≥ E|x′

k| ≥ 1 − 2k
R . This proves the theorem,

actually with the stronger conclusion

E‖xk − x‖ ≥
(
1− 2k

R

)
· ‖x0 − x‖.

(the actual conclusion follows by Jensen’s inequality). ��

A Randomized Solver for Linear Systems with Exponential Convergence 505

3.2 The Upper Estimate Is Attained

If κ(A) = 1 then the estimate in Theorem 2 becomes an equality. This follows
directly from the proof of Theorem 2.

Furthermore, there exist arbitrarily large systems and with arbitrarily large
κ(A) for which the estimate in Theorem 2 becomes an equality. More precisely,
let n and m ≥ n, R ≥ n be arbitrary positive numbers such that 1

Rm is an
integer. Then there exists a system (1) of m equations in n variables and with
R(A) = R for which the estimate in Theorem 2 becomes an equality.

To see this, we define the matrix A with the help of any orthogonal set
e1, . . . , en in Rn. Let the first 1

Rm rows of A be equal to e1, the other rows
of A be equal to one of the vectors ej , j > 1, so that every vector from this
set repeats at least 1

Rm times as a row (this is possible because R ≥ n). Then
R(A) = R (note that (5) is attained for z = e1).

Let us test our algorithm on the system Ax = 0 with the initial approxi-
mation x0 = e1 to the solution x = 0. Every step of the algorithm brings the
running approximation to 0 with probability 1

R (the probability of picking the
row of A equal to e1 in uniform sampling), and leaves the running approximation
unchanged with probability 1− 1

R . By the independence, for all k

E‖xk − x0‖2 =
(
1− 1

R

)k

· ‖x0 − x‖2.

4 Numerical Experiments and Comparisons

In recent years conjugate gradient (CG) type methods have emerged as the
leading iterative algorithms for solving large linear systems of equations, since
they often exhibit remarkably fast convergence. How does the proposed random
Kaczmarz method compare to CG algorithms?

It is not surprising, that one can easily construct examples for which CG (or
its variations, such as CGLS or LSQR [8]) will clearly outperform the proposed
method. For instance, take a matrix whose singular values, all but one, are equal
to one, while the remaining singular value is ε, a number close to zero, say 10−8.
It follows from well known properties of the CG method (cf. [16]) that CGLS
will converge in two steps, while the proposed Kaczmarz method will converge
extremely slow, since R ≈ ε−2 and thus 1− 1

R ≈ 1 in this example.
On the other hand, the proposed algorithm outperforms CGLS in cases for

which CGLS is actually quite well suited. We consider a Gaussian random matrix
with m ≥ n. While one iteration of CG requires O(mn) operations, one iteration
(i.e., one projection) of Kaczmarz takes O(n) operations. Thus a cycle of m
Kaczmarz iterations corresponds to one iteration of CG. Therefore, for a fair
comparison, in the following we will compare the number of iteration cycles (1
iteration cycle for CGLS equals one standard CGLS iteration, and 1 iteration
cycle for Kaczmarz equals m random projections). We let m = 400, n = 100
and construct 1000 random matrices. For each of them we run CGLS and the
random Kaczmarz method described in Algorithm 1 (which does not require

506 T. Strohmer and R. Vershynin

any preprocessing in this case since all rows of A have approximately the same
norm). The resulting average rate of convergence for both methods is displayed
in Figure 1.

Somewhat surprisingly, Algorithm 1 gives faster convergence than CGLS.
Classical results about Gaussian random matrices [7, 4], combined with con-
vergence estimates for the CG algorithm [8] and a little algebra yield that the
(expected) convergence rate of CG for Gaussian m× n matrices is governed by
(
√

n
m)k. Whereas for Algorithm 1 the expected convergence rate is bounded by

(1 − (
√

m−√
n)2

mn)
k
2 which is inferior to the value computed for CG. Yet, numeri-

cal experiments clearly demonstrate the better performance of Algorithm 1. We
will give a more thorough discussion of this performance gain compared to its
theoretical prediction elsewhere.

0 5 10 15 20 25 30 35 40 45
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of cycles

||
x

−
 x

k ||

CGLS
Random Kaczmarz

Fig. 1. Comparison of rate of convergence for the random Kaczmarz method described
in Algorithm 1 and the conjugate gradient least squares algorithm

References

1. C. Cenker, H. G. Feichtinger, M. Mayer, H. Steier, and T. Strohmer. New variants
of the POCS method using affine subspaces of finite codimension, with applica-
tions to irregular sampling. In Proc. SPIE: Visual Communications and Image
Processing, pages 299–310, 1992.

2. F. Deutsch. Rate of convergence of the method of alternating projections. In
Parametric optimization and approximation (Oberwolfach, 1983), volume 72 of
Internat. Schriftenreihe Numer. Math., pages 96–107. Birkhäuser, Basel, 1985.

A Randomized Solver for Linear Systems with Exponential Convergence 507

3. F. Deutsch and H. Hundal. The rate of convergence for the method of alternating
projections. II. J. Math. Anal. Appl., 205(2):381–405, 1997.

4. A. Edelman. Eigenvalues and condition numbers of random matrices. SIAM J.
Matrix Anal. Appl., 9(4):543–560, 1988.

5. A. Frieze, R. Kannan and S. Vempala, Fast Monte-Carlo Algorithms for finding
low-rank approximations, Proceedings of the Foundations of Computer Science,
1998, pp. 378–390, journal version in Journal of the ACM 51 (2004), 1025-1041

6. A. Galántai. On the rate of convergence of the alternating projection method in
finite dimensional spaces. J. Math. Anal. Appl., 310(1):30–44, 2005.

7. S. Geman. A limit theorem for the norm of random matrices. Ann. Probab.,
8(2):252–261, 1980.

8. G.H. Golub and C.F. van Loan. Matrix Computations. Johns Hopkins, Baltimore,
third edition, 1996.

9. G.T. Herman. Image reconstruction from projections. Academic Press Inc. [Har-
court Brace Jovanovich Publishers], New York, 1980. The fundamentals of com-
puterized tomography, Computer Science and Applied Mathematics.

10. G.T. Herman and L.B. Meyer. Algebraic reconstruction techniques can be made
computationally efficient. IEEE Transactions on Medical Imaging, 12(3):600–609,
1993.

11. G.N. Hounsfield. Computerized transverse axial scanning (tomography): Part I.
description of the system. British J. Radiol., 46:1016–1022, 1973.

12. S. Kaczmarz. Angenäherte Auflösung von Systemen linearer Gleichungen. Bull.
Internat. Acad. Polon.Sci. Lettres A, pages 335–357, 1937.

13. F. Natterer. The Mathematics of Computerized Tomography. Wiley, New York,
1986.

14. M. Rudelson and R. Vershynin. Sampling from large matrices: an approach through
geometric functional analysis, 2006. preprint.

15. K.M. Sezan and H. Stark. Applications of convex projection theory to image
recovery in tomography and related areas. In H. Stark, editor, Image Recovery:
Theory and application, pages 415–462. Acad. Press, 1987.

16. A. van der Sluis and H.A. van der Vorst. The rate of convergence of conjugate
gradients. Numer. Math., 48:543–560, 1986.

Maintaining External Memory
Efficient Hash Tables

(Extended Abstract)�

Philipp Woelfel

Univ. of Toronto, Dept. of Computer Science, Toronto, ON M5S3G4
philipp.woelfel@utoronto.ca

Abstract. In typical applications of hashing algorithms the amount of
data to be stored is often too large to fit into internal memory. In this case
it is desirable to find the data with as few as possible non-consecutive or
at least non-oblivious probes into external memory. Extending a static
scheme of Pagh [11] we obtain new randomized algorithms for maintain-
ing hash tables, where a hash function can be evaluated in constant time
and by probing only one external memory cell or O(1) consecutive ex-
ternal memory cells. We describe a dynamic version of Pagh’s hashing
scheme achieving 100% table utilization but requiring (2 + ε) · n log n
space for the hash function encoding as well as (3 + ε) · n log n space for
the auxiliary data structure. Update operations are possible in expected
constant amortized time. Then we show how to reduce the space for the
hash function encoding and the auxiliary data structure to O(n log log n).
We achieve 100% utilization in the static version (and thus a minimal
perfect hash function) and 1 − ε utilization in the dynamic case.

1 Introduction

In this paper, we devise randomized algorithms for efficiently maintaining hash
tables under circumstances typical for applications dealing with massive data.
Consider a set S of n keys from a finite universe U and assume that each key
x ∈ S has some data Dx associated with it. A static dictionary for S supports
a query operation which returns the data Dx for a given key x. A dynamic
dictionary also support update operations which allow to insert new data into
the dictionary or to remove data from it. For many applications it is especially
important to be able to retrieve the data Dx as quickly as possible (examples
are databases used by web-servers, where a huge amount of queries have to be
answered in short time). A typical solution is to maintain a hash function h
mapping each key x ∈ S to an entry of a hash table T . Such a hash function h
is called perfect for S if it is injective on S. If h has range [n] := {0, . . . , n− 1},
n = |S|, then h is called minimal perfect. If h is perfect on S, the data associated
with each key in S can be stored in T [h(x)]. We call such an implementation of
a dictionary a hash table implementation based on perfect hashing. An algorithm
� The research was supported by DFG grant Wo 1232/1-1.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 508–519, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Maintaining External Memory Efficient Hash Tables 509

dynamically maintaining a perfect hash function is called stable if h(x) remains
fixed for the duration that x is in S.

The following assumptions are typical for many dictionary and hashing appli-
cations: Firstly, efficiency is much more a concern for lookups than for update
operations. For example, in database backends of webservers a huge number of
queries have to be answered momentarily while updates of the database only
rarely occur or sometimes even can be delayed to times of low load.

Secondly, the data set is so massive that even the description of the hash
function does not fit into the internal memory. For example, the encoding of a
minimal perfect hash function requires at least Ω(n)+log log |U |−O(logn) bits,
assuming that |U | ≥ n2+ε [8]. In this case, just in order to evaluate the hash
function we have to access external memory. But then usually the number of
non-consecutive accesses to external memory dominate the evaluation time of
our hash function.

Finally, the data Dx associated with a key x requires much more space than
its key x. Therefore it is especially important that a hash table implementation
achieves a high utilization, since we have to reserve a fixed amount of space for
each table entry (if we want to avoid another level of indirection). Assuming that
the hash table is implemented by an extendible array T [0], T [1], . . . , its utilization
is given as |S|/(max {h(S)}+1). In particular, even a small constant utilization
seems infeasible, and a utilization as close to 100% as possible should be achieved.
A minimal perfect hash function for the set S achieves 100% utilization.

Although general dictionary implementations (not necessarily based on per-
fect hashing) can be used to maintain minimal perfect hash functions by associ-
ating each key x ∈ S with a unique value from [n], such solutions require another
level of indirection.

Previous and Related Work. Throughout this paper we assume that |U | =
nO(1). It is well-known how to reduce the size of the universe by choosing a
random hash function ζ : U → [nO(1)] such that ζ is injective on S with high
probability. Moreover, we assume that the size of the internal memory is bounded
by nε, ε < 1.

Fredman, Komlós, and Szemerédi [9] were the first to devise an algorithm
which constructs a perfect hash function (with O(n logn) bits) in expected linear
time such that the hash function can be evaluated in constant time. The utiliza-
tion is less than 0.2 in the case that only consecutive probes into external mem-
ory are allowed for hash function evaluation. Dietzfelbinger, Karlin, Mehlhorn,
Meyer auf der Heide, Rohnert, and Tarjan [5] have devised a dynamic version
of that scheme with essentially the same parameters, but which also supports
updates in expected amortized constant time. Later improvements have either
focused on reducing the space requirements or on obtaining a constant update
time even with high probability. All schemes which do in fact achieve a constant
update time with high probability are mostly of complexity theoretical interest
(as opposed to practical). Demaine, Meyer auf der Heide, Pagh, and Patrǎscu [1]
show an upper space bound of essentially O(n log log(u/n)+n logn−n log t) for
maintaining a perfect hash function with range [n+t] and O(n log log(u/n)+n·r)

510 P. Woelfel

for a dynamic dictionary where the data associated with each key comprises r
bits. Update operations are supported with high probability in constant time
and the algorithm is stable. For the static case, Hagerup and Tholey [10] hold
the space record: They show how to construct a minimal perfect hash function
in expected O(n + log log |U |) time such that its encoding requires only almost
optimal (1 + o(1))(n · log e + log log |U |) space. Multiple non-oblivious probes
into external memory are required for lookups in these space efficient dynamic
or static schemes.

Dictionary algorithms such as Cuckoo-Hashing [12] and its extensions [7, 6]
also allow the retrieval of data with few non-consecutive probes into external
memory. Especially space and external memory efficient is the Cuckoo-Hashing
variant of Dietzfelbinger and Weidling [6], where two hash functions h1 and h2
and two hash tables T1 and T2 are used. A table position consists of d consecutive
memory cells, and the data Dx is stored in one of the 2 · d memory cells from
T1[h1(x)] and T2[h2(x)]. For d ≥ 90 · ln(1/ε) a utilization of 1− ε can be achieved
and clearly the data can be retrieved with only two non-consecutive probes into
external memory. Due to the large constant for d, it may be disadvantageous
if the data associated with the keys is very large (now the time for finding Dx

depends on the size of the data). Moreover, such dictionary solutions do not
provide perfect hash functions without an additional level of indirection.

Pagh [11] showed how to construct a minimal perfect hash function in expected
linear time which can be very efficiently evaluated with very simple arithmetics
(essentially one or two multiplications) and by probing only one word from ex-
ternal memory. The hash function itself can be encoded in (2 + ε) · n · log n bits.
Dietzfelbinger and Hagerup [3] improved Pagh’s scheme so that the resulting
hash function can be encoded with (1 + ε) · n · logn bits. Both schemes yield a
static dictionary with 100% utilization.

In this paper we devise a dynamic variant of Pagh’s scheme. Maintaining
100% utilization and using exactly the same hash functions, we show how to
perform updates in expected amortized constant time. I.e., the hash functions
can be evaluated very efficiently in constant time and with only one probe into
external memory. In addition to the (2+ ε) ·n · logn bits for encoding of the hash
function we also need an auxiliary data structure comprising (3 + ε) · n · logn
bit. However, this auxiliary data structure is only needed for update operations
and not for lookups. For many applications updates occur infrequently, e.g., at
night time, so that the auxiliary data structure may be swapped out (or it can
be removed and later be rebuild from scratch in expected linear time if needed).
We believe that this scheme is quite practical if the main focus is on lookup
performance, although the algorithm for updates is not very simple.

In Section 3 we investigate how much the space for the hash function de-
scription can be reduced under the constraint that evaluation requires only con-
secutive probes into external memory. We show that it is possible to reduce the
encoding size of the hash functions and the space for the auxiliary data structure
to O(n log logn) bits. In the dynamic case we obtain a utilization of 1 − ε, for
arbitrary small ε > 0. In the static case we still achieve 100% utilization, hence

Maintaining External Memory Efficient Hash Tables 511

we even have a minimal perfect hash function. For both implicit versions the
corresponding hash functions can be evaluated in constant time and by probing
O(1) consecutive words from external memory. (Here O(1) is a very small con-
stant, e.g. 4). The hash functions itself are a little bit more complicated – their
evaluation times are dominated by the arithmetics involved for evaluating two
polynomials of small constant degree.

Our dynamic hashing algorithms are not stable. For updates we have to as-
sume that the key x can be retrieved from the hash table entry T [h(x)]. But the
hash function description itself is independent from the table contents.

2 The Displacement Scheme

As explained before, we assume throughout the paper that U = [nO(1)]. More-
over, we assume a word-RAM model where every key in U fits into a memory
word (i.e., we have a word-size of Ω(logn)).

Let Ha be a family of hash functions h : U → [a]. Ha is c-universal if for any
x, x′ ∈ U , x = x′ and for randomly chosen h ∈ Ha, it holds Prob

(
h(x) = h(x′)

)
≤

c/a. If Ha is c-universal for some arbitrary constant c, then we call it approxi-
mately universal. Ha is uniform if h(x) is uniformly distributed over [a] for all
x ∈ U .

Examples of efficient 1- and 2-universal and uniform hash families can be
found in [2, 4, 13]. For our purposes it suffices to know that most hash functions
from c-universal hash families can be evaluated in constant time with a few
arithmetic operations (usually dominated by one multiplication and a division)
and that they can be encoded in O(log |U |) or even O(logn + log log |U |) bits.

Pagh [11] showed how to construct minimal perfect hash functions hg,f,d

defined in the following. Let a and b be positive integers and suppose that
S is a set of n keys from the universe U . Let f : U → [a], g : U → [b]
and d = (d0, . . . , db−1) ∈ [a]b. Then hg,f,d : U → [a] is defined by x �→(
f(x) + dg(x)(x)

)
mod a.

One can visualize the hash function hf,g,d by a (b × a)-matrix M , where the
ith row, i ∈ [b], is associated with the displacement value di. In order to evaluate
h for an element x ∈ U , one first maps x into the matrix element in row g(x) and
column f(x). Then the row is rotated cyclically dg(x) steps to the right, where
dg(x) is the displacement associated with this row. We call two row displacements
di, dj , i = j, compatible (with respect to g, f and S), if for all x ∈ g−1(i) ∩ S
and x′ ∈ g−1(j)∩S it holds f(x)+ di = f(x′)+ dj. Clearly, hf,g,d is injective on
S if and only if all row displacements are pairwise compatible. According to the
informal description above, S ∩ g−1(i) is the set of elements which are mapped
into the ith row of the matrix M . We call

∣∣S ∩ g−1(i)
∣∣ the weight of row i. In

order to construct the minimal perfect hash functions, Pagh used the following
notion.

Definition 1. Let S ⊆ U and f : U → [a], g : U → [b], and wi =
∣∣g−1(i) ∩ S

∣∣
for i ∈ [b]. The pair (f, g) is δ-nice for S if the function x �→ (f(x), g(x)) is
injective on S, and

∑
i,wi>1 w2

i ≤ δ · a.

512 P. Woelfel

Note that what we call δ-nice was originally denoted as r-good, where r = δ ·a/n;
we chose a different notion because it is more convenient for our purposes. Pagh
has shown that a pair (f, g) being δ-nice for a set S, δ < 1, suffices to find
a displacement vector d such that hf,g,d is injective on S. On the other hand,
δ-nice hash functions can be found easily using universal hash families.

Lemma 1 (Pagh [11]). Let Ha be cf -universal and Hb be cg-universal. If
2 · cg · n2/(a · b) ≤ δ ≤ 4/cf , then for any n-element set S ⊆ U , the proba-
bility that a randomly chosen pair (f, g) ∈ Ha ×Hb is δ-nice for S is more than(
1− δ · cf/4

)
·
(
1− 2 · cg · n2/(a · δ · b)

)
.

For instance, let a = n and b = (2 + εb)n, εb > 0. If Ha is 4-universal and Hb

is 1-universal, then there exists a δ < 1 such that (f, g) is δ-nice with positive
constant probability. We refer the reader to [11] for more details on suitable
hash families, or on constructions where f(x) and g(x) can be determined with
essentially one multiplication if b is chosen only slightly larger.

Consider again the matrix M as described above. If (f, g) is δ-nice for S,
all elements in S are mapped to disjoint matrix elements (for any displacement
vector d). Pagh’s algorithm finds in expected linear time a vector d such that
all displacements are compatible. The row displacements are chosen randomly
one after the other in an order with decreasing row weights. This order and the
δ-niceness guarantee that a compatible displacement can be found for the next
row to be processed. Clearly, such an ordering of the rows cannot be used for a
dynamic algorithm. Our idea is the following: If an insertion yields incompatible
displacements, then we randomly choose one such displacement anew. This new
displacement may now be incompatible with other displacements, but after a
constant number of tries, the total number of elements in rows with weight
larger than one and with incompatible displacements decreases by a constant
factor. Rows with weight are taken care of in the end – for them new compatible
displacements can be found easily by keeping track of empty table cells.

Consider a hash table T [0], . . . , T [N − 1] for a set S ⊆ U of at most N ele-
ments. We first consider a fixed value of N and later show how to adapt if |S|
exceeds N . We store a perfect hash function h := hf,g,d : U → [N] and an auxil-
iary data structure. Every element x ∈ S is stored in T [h(x)]. If |S| = N , then h
is minimal perfect. Since f and g can be stored in O(log n) bits, one probe into
external memory (to retrieve dg(x)) suffices for computing h(x).

The functions f and g as well as the displacements can be chosen from the
same sets Ha and Hb as in the static case. Fix some δ < 1 such that (f, g) is
δ-nice with constant probability. Throughout the description of the algorithm
let wi =

∣∣S ∩ g−1(i)
∣∣, if S and g are clear from the context.

For insertions and deletions we need an auxiliary data structure consisting of
b linked lists L0, . . . , Lb−1. The list Li contains all table positions h(x) for which
there is an element x ∈ S ∩ g−1(i) (i.e., the columns j in the matrix to which
all elements of the row i are mapped to). We don’t need to store row weights wi

since we can compute them by searching through the lists Li, but we store the
sum W =

∑
i∈[b] wi

2. Finally, we use a data structure for storing all empty table

Maintaining External Memory Efficient Hash Tables 513

cells, i.e., the indices j such that T [j] = ∞. We use a function free pos which
returns in expected constant time the index of an arbitrary empty table cell (if
there is one). The implementation of such a data structure comprising ε ·n · log n
space is easy – a description can be found in the full version of the paper.

Update Operations. In order to delete an element it suffices to set T [h(x)]
to ∞ and to remove x from the list Li, where i = g(x). This requires O(wi)
time. Since g is chosen from an approximately universal hash family Hb, the
expectation of wg(x) is O

(
n/b

)
= O(1).

Assume that hf,g,d is injective on S and that we want to insert a new element
x ∈ S. Let S′ = S∪{x}. Using the list Li, it is easy to update the sum of squared
row weights to W ′ = W − w2

i + (wi + 1)2 if wi > 0 and W ′ = W if wi = 0.
Using this list we can also check whether (f, g) is still δ-nice for S′. All this can
be done in O(wi + 1) time. If (f, g) is not δ-nice for S′, we have to perform a
global rehash, i.e., we have to remove all keys and insert them again with a new
randomly chosen pair (f, g).

Now assume that (f, g) is δ-nice for S′. If T [j] is empty for j = hg,f,d(x), we
simply store x in T [j] and insert j into the lists Li. If T [j] is already occupied,
then we have to determine new displacement values for some rows. For that we
maintain a set Q of possibly bad rows such that all rows in [b]−Q are compatible.
With each row i ∈ Q we also store the set Vi := S′ ∩ g−1(i) of all keys which
are hashed to that row. Consequently we remove every element x ∈ Vi from the
hash table at the time we insert it in Vi. Initially, Q contains only row i and we
collect the set Vi with the help of the list Li. Let w(Q) =

∑
i∈Q,wi>1 wi.

We repeat the following procedure until w(Q) = 0. First we pick an arbitrary
row i in Q where wi > 1 and choose a new displacement d′i. We now define a
condition in which we accept this new displacement.

Definition 2. Fix a set S ⊆ U and a hash function hf,g,d and let d′i be a new
displacement of row i ∈ Q. The set J(d′i, i) contains the indices of all rows
j ∈ [b]−Q such that row i and row j are not compatible. The displacement d′i is
acceptable if

∑
j∈J(d′

i),wj>1 wj < wi · (1 + δ)/2.

Clearly, we can determine the set J(d′i, i) in time O(wi). By seeking (at least
partly) through the lists Lj with j ∈ J(d′i, i) we can also check in time O(wi)
whether d′i is acceptable. 1 below states that with constant probability a ran-
domly chosen displacement is acceptable. Hence, in expected time O(wi) we can
find an acceptable new displacement d′i.

Then we change Q to Q′ = J(d′i, i) ∪Q− {i}, create the sets Vj , j ∈ J(d′i, i),
and accordingly remove the elements in Vj from the hash table. Finally we store
all elements x ∈ Vi at their designted places T [hf,g,d′(x)] (since row i is now
compatible with all rows not in Q′, these table positions are not occupied).

Repeating this procedure eventually leads to a set Q∗ with w(Q∗) = 0 (see the
time analysis below). Hence, Q∗ consists only of possibly bad rows with weight
1. For these rows it is easy to find new compatible displacement values using the
function free pos. After that, the resulting hash function hf,g,d∗ is injective on
S′ and all elements in S′ are stored in their designated table positions.

514 P. Woelfel

Time Analysis. We first consider the case that the hash function pair (f, g) is
still δ-nice for S′ and that no global rehash is necessary. The following proposition
shows that we can quickly find an acceptable displacement for each row. The
(straight forward) proof has to be omitted due to space restrictions.

Proposition 1. Let (f, g) ∈ Ha×Hb be δ-nice, δ < 1, for some n-element set S.
With positive constant probability a randomly chosen displacement is acceptable.

Hence, the total expected time for finding an acceptable displacement for a row
i ∈ Q is O(wi). Then in expected time O(wi) we can decrease the value w(Q) to a
value of w(Q′) ≤ w(Q)−wi+wi·(1+δ)/2 = w(Q)−Ω(wi) (using δ < 1). It follows
from the linearity of expectation that in order to obtain a set Q∗ with w(Q∗) = 0
expected time O

(
w(Q)

)
suffices. Now recall that we started with Q = {i}, where

i = g(x) and where x was the element we inserted. Hence, the total expected
time until the resulting set Q∗ contains only rows with weight 1 is O(wi). Since
we can collect only O(t) rows with weight 1 in time t, the total number of rows in
Q∗ is also O(t). By the assumption that the operation free pos can be executed
in expected constant time, we can redisplace these rows in expected time O(t).
To conclude, the total expected time for inserting an element x is O(wg(x)). As
argued in the section about deletions, E

(
wg(x)

)
= O(1).

We have shown so far that we obtain an expected constant insertion time as
long as (f, g) remains δ-nice for the resulting set. By 1, a simple calculation
shows that a randomly chosen set pair (f, g) is with constant probability δ-nice
even for the 	αN
 sets obtained from some set S of size N during a sequence
of 	αN
 update operations, for some sufficiently small α > 0. Therefore, during
	α ·N
 update operations we expect only a constant number of global rehashes
and thus the expectation of the amortized update time is constant.

A Dynamic Hash Table with 100% Utilization. So far we can insert and
delete elements from a hash table of size N , as long as |S| ≤ N . We now sketch
an algorithm which maintains a dynamic hash table T where all n elements in
S are stored in the table positions T [0], . . . , T [n − 1] at all times. A complete
description will be given in the full version of the paper.

The problem is mainly with deletions. If an arbitrary element is deleted, a
“hole” is left behind in the middle of the hash table, say at position i. But in
order to store all remaining n−1 elements in the table positions T [0], . . . , T [n−2],
we have to move the element x from T [n − 1] to some other position. Since it
is not clear how to bound the weight of the row g(x) of that element, we don’t
know how to obtain an expected constant deletion time. The idea is now to
ensure that the last γ · n entries of the table, γ > 0, are filled with elements
from rows with weight one. Then we can easily choose a new displacement for
the corresponding rows, so that the element in T [n−1] moves into the hole T [i].

We now interpret the displacements of the hash function hf,g,d differently:
Let i = g(x). Then hf,g,d(x) = (f(x) + di) mod a if di < a, and hf,g,d(x) = di if
di ≥ a. This way, the range of hf,g,d is not limited to [a].

Consider a situation right before a rehash. Let S be the n-element set currently
stored and let Sk, k = 0, 1, 2, . . . be the set obtained after the next k operations

Maintaining External Memory Efficient Hash Tables 515

(i.e., S0 = S). We let a = (1− γ)n for some sufficiently small γ > 0, and b, Ha,
and Hb as before. Now we have to perform a global rehash also if the size of the
set S drops below a.

In order to insert a new element x in a set S of size n ≥ a, we redisplace
rows exactly as before, but using only displacement values di < a for rows with
weight wi > 1. As before we end up with a set Q∗ with w(Q∗) = 0, i.e., wi = 1
for all rows i ∈ Q∗. Now for one of the remaining rows in Q∗ we choose the
displacement value di such that the unique element x∗ in that row obtains a
hash value of n and we store x∗ in T [n]. All other displacement values for rows
with weight 1 can be determined using free pos as before.

The insertion procedure guarantees that displacement values di ≥ a are only
used for rows with weight wi = 1. Hence, as long as n = |S| > a, the element x∗

stored in T [n− 1] belongs to a row i∗ with weight wi∗ = 1. Hence, in order to
delete an element x from S, |S| > a, we simply change di∗ to a value such that
x∗ moves into the table cell T [hf,g,d(x)], formerly occupied by x.

Theorem 1. For any ε > 0 a dynamic hash table with 100% utilization can be
maintained with constant amortized update time and (2 + ε)n logn space for the
hash function encoding and (3 + ε)n logn space for the auxiliary data structure.
The hash function can be evaluated in constant time and with only one probe
into external memory.

Corrupted Hash Table Cells. For the following sections we need to consider
a variant of the above scheme, which may also be of independent interest. Con-
sider a hash table T [0], . . . , T [n + k − 1] with k corrupted cells. If a cell T [i]
is corrupted, then none of the keys in S may be stored there, but we assume
that we can check in constant time whether a cell T [i] is corrupted or not. Let
I ⊆ {0, . . . , n + k − 1}, |I| = k, be the set of indices of corrupted table cells. For
k = o(

√
n), we can modify our data structure in such a way that an n-element

set S is stored in the hash table T without using any corrupted cells. If a new
element is inserted we use the same algorithm as above, except that when we
choose a new displacement d′i for a row i we have to ensure that none of the keys
from that row are hashed to a corrupted cell. Thus, for every n-element set S
we can maintain a hash function h := hf,g,d which is injective on S and where
h(S) = {0, . . . , n + k − 1}− I, and with the same time- and space-complexity as
in 1.

3 Implicit Hash Functions

We now show how to reduce the space of our hash functions significantly. Recall
that we assume a word-size of Ω(log n). Similar as in [10] we use one additional
hash function ĥ in order to split the n-element set S into small groups.

For the following we need two functions μ(n) = (logn)/K and λ(n) = n/

(logn)K for some large enough constant K. Let ĥ : U → [â], â ∈ N, and let
S ⊆ U be an n-element set. We call a group Gi := S ∩ ĥ−1(i), i ∈ [â], c-small

516 P. Woelfel

if |Gi| ≤ logn/(c · log logn). If Gi is not c-small, then it is c-large. The hash
function ĥ is c-good for S, if all groups have a size of at most μ(n) and if the
total number of c-large groups is at most λ(n)

Let b̂ = 	nγ
 and â = �Z · n · log logn/ logn�. We use the polynomial hash
families Hk

s described in [10]. For a prime p > |U | and a ∈ [p]k+1 the hash
function ra : U → [s] is given as x �→

(∑k
i=0 ai · xi mod p

)
mod s. The hash

family Hk
s consists of all hash functions ra, a ∈ [p]k+1.

Lemma 2. For any n-element set S, any integer c > 1, any b̂ = nγ, γ > 0,
and any â = �Z · n · log logn/ logn�, Z > c, there exist ka, kb such that for a
randomly chosen pair (f, g) ∈ Hka

â ×H
kb

b̂
and a randomly chosen vector d̂ ∈ [â][b̂]

the following is true:

1. With probability 1− o(1) a random hash function ĥ = ĥf̂ ,ĝ,d̂ is c-good for S.
2. For every element x ∈ S, the probability that x is in a c-large group is

2−Ω(log n/ log log n).

The idea of that proof, which we have to omit due to space restrictions, is very
similar to a proof in [10], Lemma 3. The main difference is here that our expected
group sizes are smaller by a log logn factor and we therefore can only achieve
that most groups instead of all groups deviate little from their expectation.

The Implicit Data Structure. We now sketch the dynamic scheme which
achieves 1 − ε utilization, ε > 0, but requires only O(n · log logn) space for the
hash function encoding and the auxiliary data structure. We choose Z > c > 1,
Z ′ = (1 + α)Z for some arbitrary small α > 0, and â = �Z ′ · n · log logn/ logn�.
As just described we use a hash function ĥ : U → [â] in order to split the set S
into groups. Consider a subsequence of operations between two global rehashes,
i.e., during the time the hash function ĥ remains c-good. The hash table T is
split up in hash tables T0, . . . , Tâ−1 as well as one hash table T ′. The tables Ti,
i ∈ [â], are of size t = 	logn/(c · log logn)
, and T ′ is of size a′ = O(n/ log n)
(the constant factor can be chosen arbitrarily). In the following we call a group
Gi clean, if it has been c-small since ĥ was chosen the last time. At the moment a
group Gi becomes c-large it is dirty and remains so until the next global rehash,
even if it becomes c-small again before that. The idea is that all elements from
a clean group Gi, i ∈ [â], are stored in the corresponding hash table Ti. For all
bad groups the one larger hash table T ′ will suffice.

If after an insertion the function ĥ is not c-good anymore, it has to be cho-
sen anew (which triggers a global rehash). However, it can be shown that with
constant probability ĥ remains c-good during any sequence of 	αn
 update op-
erations. Therefore we just discuss the update operations under the assumption
that no global rehashes occur.

For each element x ∈ S its group i is determined by i = ĥ(x). With each group
Gi we keep track of the number of its elements and store a bit indicating whether
it is bad or not. If the group is clean, then it is also c-small and we can use the
dynamic scheme as described in the previous section. It is easy to see that if we

Maintaining External Memory Efficient Hash Tables 517

choose c as a large enough constant, then we can store all displacements and the
auxiliary data structure in one word of size Ω(log n). Thus, all the information
for one group Gi can be stored in O(1) words.

If the group Gi is bad, then we use instead one hash function hi from an
approximately universal and uniform hash family Ha′ , where a′ = �n/ logn�. An
element x ∈ Gi is now stored in the table position in T ′[hi(x)]. As O(log n) bits
suffice for storing hi, we can store the hash function information for each group
in a constant number of words. We also maintain a list L′

i containing pointers
to the table positions in T ′ for all elements in group Gi. This is the auxiliary
data structure for a bad group Gi. Since all lists for bad groups contain only
O(n/ logn) elements altogether, linear space suffices for all of them.

It is not hard to see that the total space for storing all hash functions and
the auxiliary data structures is O(n · log logn) and that in order to evaluate the
hash function it suffices to read a constant number of consecutive memory cells
from a data structure with more than nε space.

Insertions and Deletions. Between two global rehashes we know that in each
clean group Gi there are at most t elements, and thus we can insert and delete
just as described in Section 2. We now discuss updates for elements hashed into
bad groups by ĥ.

Let S′ be the set of elements in bad groups and assume that a newly inserted
element x is mapped by ĥ to a bad group Gi. Since ĥ is c-good we know that
n′ := |S′| ≤ λ(n) = n/(logn)K . The designated table entry for x is T ′[hi(x)].
Since hi is chosen from an approximately universal and uniform hash family
Ha′ , the probability that this table position is already occupied by an element
in S′ is at most n′/a′ = O

(
(log n)1−K

)
. If that table position is already occupied

we randomly choose hi from the universal hash family Ha′ anew. We use the
list L′

i to collect all elements from Gi and rehash them again using the new
hash function. The probability that one of the O(log n) elements in group Gi

is mapped by hi to one of the already occupied table cells in T ′ or that two of
the elements in the group collide is at most n′/a′ + |Gi|2/a′ = O

(
(log n)1−K

)
.

Such a rehash requires |Gi| = O(log n) time if it is successfull, and thus x can
be inserted in expected O(log n) time, given that a rehash is necessary. On the
other hand, as we have seen, with probability 1− O

(
(logn)1−K

)
the element x

can be inserted without any rehash. Thus, for large enough K, x can be inserted
in constant expected time given that it is hashed by ĥ to a bad group.

We still have to discuss the transition from clean to dirty groups, though: If
we insert a new element x into a clean group Gi, then this group may become
dirty. In this case we have to move all elements from Ti to T ′ using a newly
sampled hash function hi (i.e., we rehash group Gi in expected O(log n) time).
By the bound from part two of 2 on the probability that element x is in a bad
group, the total expected time for inserting x is still constant in this case.

In order to delete an element x from a bad group we may simply set T ′[h′(x)]
to ∞. Hence, we can delete elements in bad groups in worst-case constant time.

518 P. Woelfel

Theorem 2. For any ε, ε′ > 0 a dynamic hash table with 1 − ε utilization can
be maintained with constant amortized update time and O(n log logn) space for
the hash function encoding and the auxiliary data structure. The hash function
can be evaluated in constant time and by probing O(1) consecutive words from
external memory (if the internal memory has size nε′

).

Minimal Perfect Hashing with Implicit Hash Functions. We finally
sketch an algorithm which constructs a minimal perfect hash function h in ex-
pected linear time such that the encoding of h requires only O(n log logn) space
and that h can be evaluated with only a few consecutive probes into external
memory. The idea is again to use a hash function ĥ to split the set S into â
groups, but now we can use the fact that the group sizes do not change.

Let S ⊆ U be a fixed n-element set. We will store all elements from S in a
table T = T [0], . . . , T [n− 1]. As in the previous section we choose an integer c,
a value Z > c, and let â = �Z · n · log logn�. By 2 it is obvious how to find in
O(n) expected time a c-good hash function ĥ. Let Gi = S ∩ ĥ−1(i), i ∈ [â].

We first process all c-large groups, one after the other. When we process a
c-large group i, we create a hash function hi : U → [n] mapping all elements
in Gi to non-occupied table positions. The hash function hi is a mapping x �→
	logn
 · h∗

i (x), where h∗
i : U → [n/ logn
] is chosen from an approximately

universal and uniform hash family H�n/ log n�. We randomly sample such a h∗
i

and then try to store each element x ∈ Gi in the table position T [hi(x)]. If that
table cell is already occupied, we have to sample hi anew. By arguments similar
to those used in the dynamic case, the expected number of tries for each hash
function hi is only constant. Therefore, we can find in O(n) expected time all
hash functions hi for c-large groups such that they map the elements from these
groups to disjoint table positions.

Once we have found all hash functions hi for the c-large groups, some of the
table positions in T are occupied, which causes some interference with the c-
small groups. That is where the notion of corrupted table cells (see Section 2)
comes in handy. From now on we assume that every table cell T [i] is corrupted,
if one of the elements from a c-large group is stored there. Since we obtained
each hash value hi(x) for an element x in a c-large group by multiplying a hash
value h∗

i (x) with 	logn
, we know that any 	logn
-sized interval of table cells,
T [i], . . . , T [i + 	logn
], contains at most one corrupted cell.

We now process all c-small groups in increasing order. As in the dynamic
case we find a hash function hi = hfi,gi,di for each c-small group, mapping
the elements of that group to a subtable Ti. We keep track of an offset oi for
each group i, indicating at which position in T the subtable Ti starts. Let ai

be the number of table cells we need for the ith group (this may be one more
than the number of elements stored there, in the case that one table cell is
corrupted). Then we can construct a hash function hi = oi + hfi,gi,di with the
obvious random choices for fi, gi and di, which maps Gi injectively to the table
positions T [oi], . . . , T [oi +ai−1] and spares out the corrupted table cell (if there
is any). As we have seen in Section 2, hi can be constructed even dynamically in
expected constant time for each insertion and for o(

√
ai) corrupted table cells.

Maintaining External Memory Efficient Hash Tables 519

Thus, we can compute all hash functions hi, 1 ≤ i ≤ â, in expected time O(n).
The resulting mapping h : S → [n], x �→ hĥ(x)(x), is a bijection. Each hash
function hi can be stored with O(log n) bits and thus the total space for storing
h is O(â · logn) = O(n · log logn).

Theorem 3. For any n-element set S ⊆ U a bijection h : S → [n] with encoding
size O(n · log logn) can be constructed in expected time O(n). The hash function
can be evaluated in constant time and by probing O(1) consecutive words from
external memory (if the internal memory has size nε, ε > 0).

Acknowledgment

The author is grateful to Martin Dietzfelbinger and Rasmus Pagh for enlight-
ening discussions on the subject of the paper. The anonymous referees provided
very helpful comments.

References

1. E. D. Demaine, F. Meyer auf der Heide, R. Pagh, and M. Pǎtrascu. De dictionariis
dynamicis pauco spatio utentibus (lat. on dynamic dictionaries using little space).
In Proc. of the 7th LATIN, volume 3887 of LNCS, pp. 349–361. 2006.

2. M. Dietzfelbinger. Universal hashing and k-wise independent random variables via
integer arithmetic without primes. In Proc. of 13th STACS, volume 1046 of LNCS,
pp. 569–580. 1996.

3. M. Dietzfelbinger and T. Hagerup. Simple minimal perfect hashing in less space.
In Proc. of 9th ESA, number 2161 in LNCS, pp. 109–120. 2001.

4. M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable ran-
domized algorithm for the closest-pair problem. J. of Alg., 25:19–51, 1997.

5. M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,
and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM J.
on Comp., 23:738–761, 1994.

6. M. Dietzfelbinger and C. Weidling. Balanced allocation and dictionaries with
tightly packed constant size bins. In Proc. of 32nd ICALP, volume 3580 of LNCS,
pp. 166–178. 2005.

7. D. Fotakis, R. Pagh, P. Sanders, and P. G. Spirakis. Space efficient hash tables
with worst case constant access time. Theory of Comp. Syst., 38:229–248, 2005.

8. M. L. Fredman and J. Komlós. On the size of separating systems and families of
perfect hash functions. SIAM Journal on Algebraic and Discrete Methods, 5:61–68,
1984.

9. M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1)
worst case access time. J. of the ACM, 31:538–544, 1984.

10. T. Hagerup and T. Tholey. Efficient minimal perfect hashing in nearly minimal
space. In Proc. of 18th STACS, volume 2010 of LNCS, pp. 317–326. 2001.

11. R. Pagh. Hash and displace: Efficient evaluation of minimal perfect hash functions.
In Proc. of 6th WADS, volume 1663 of LNCS, pp. 49–54. Berlin, 1999.

12. R. Pagh and F. F. Rodler. Cuckoo hashing. J. of Alg., 51:122–144, 2004.
13. P. Woelfel. Efficient strongly universal and optimally universal hashing. In Proc.

of 24th MFCS, volume 1672 of LNCS, pp. 262–272. 1999.

Author Index

Ambühl, Christoph 3, 15
Applebaum, Benny 260
Arora, Sanjeev 272

Bansal, Nikhil 27
Bartal, Yair 39
Bhatnagar, Nayantara 280
Birnbaum, Benjamin E. 49

Cardinal, Jean 61
Chan, T.-H. Hubert 70
Chawla, Shuchi 82
Chekuri, Chandra 95
Coppersmith, Don 27

Davis, Sashka 104
Deshpande, Amit 292
Dinur, Irit 304
Drineas, Petros 316
Dyer, Martin 327

Edmonds, Jeff 104
Epstein, Leah 116
Erlebach, Thomas 3

Feige, Uriel 339
Fiorini, Samuel 61

Ganapathy, Murali K. 351
Gandhi, Rajiv 128
Goldberg, Leslie Ann 327
Goldman, Kenneth J. 49
Goldreich, Oded 363
Gørtz, Inge Li 200
Greenberg, Sam 280
Grigorescu, Elena 375
Grigoriev, Alexander 140
Gutfreund, Dan 386

Hajiaghayi, Mohammad Taghi 152
Halldórsson, Magnús M. 116
H̊astad, Johan 1
Hazan, Elad 272
Healy, Alexander 398
Hoory, Shlomo 410

Impagliazzo, Russell 104
Ishai, Yuval 260

Jerrum, Mark 327
Joret, Gwenaël 61

Kale, Satyen 272
Khuller, Samir 164
Kim, Yoo-Ah 164
Konjevod, Goran 70
Kopparty, Swastik 375
Kortsarz, Guy 152
Kushilevitz, Eyal 260

Lachish, Oded 426
Langberg, Michael 176
Leonardi, Stefano 39
Levi, Retsef 188
Levin, Asaf 116
Liu, Yi-Kai 438, 450
Lyubashevsky, Vadim 450

Magen, Avner 410
Mahoney, Michael W. 316
Malekian, Azarakhsh 164
Marciniszyn, Martin 462
Marko, Sharon 475
Mastrolilli, Monaldo 15
Mestre, Julián 128
Micciancio, Daniele 450
Mihal’ák, Matúš 3
Mossel, Elchanan 339
Motwani, Rajeev 487
Muthukrishnan, S. 316

Nagarajan, Viswanath 212
Newman, Ilan 426
Nunkesser, Marc 3
Nutov, Zeev 236

Pál, Martin 95
Panigrahy, Rina 487
Pitassi, Toniann 410

Rabani, Yuval 176
Randall, Dana 280
Ravi, R. 212

522 Author Index

Richa, Andrea 70
Ron, Dana 363, 475
Roughgarden, Tim 82

Salavatipour, Mohammad R. 152
Schieber, Baruch 27
Shachnai, Hadas 116
Shallom, Gil 39
Shapira, Asaf 426
Sitters, Rene 39
Skokan, Jozef 462
So, Anthony Man–Cho 224
Spöhel, Reto 462
Steger, Angelika 462
Strohmer, Thomas 499
Sudan, Madhu 304, 375
Svensson, Ola 15
Sviridenko, Maxim 140, 188
Swamy, Chaitanya 176

Uetz, Marc 140

Vempala, Santosh 292
Vershynin, Roman 499
Vilenchik, Dan 339

Wigderson, Avi 304
Woelfel, Philipp 508
Woodruff, David P. 248
Wormald, Nick 2

Xia, Donglin 70
Xu, Ying 487

Ye, Yinyu 224

Zhang, Jiawei 224

	Frontmatter
	Invited Talks
	On Nontrivial Approximation of CSPs
	Analysis of Algorithms on the Cores of Random Graphs

	Contributed Talks of APPROX
	Constant-Factor Approximation for Minimum-Weight (Connected) Dominating Sets in Unit Disk Graphs
	Approximating Precedence-Constrained Single Machine Scheduling by Coloring
	Minimizing Setup and Beam-On Times in Radiation Therapy
	On the Value of Preemption in Scheduling
	An Improved Analysis for a Greedy Remote-Clique Algorithm Using Factor-Revealing LPs
	Tight Results on Minimum Entropy Set Cover
	A Tight Lower Bound for the Steiner Point Removal Problem on Trees
	Single-Source Stochastic Routing
	An {\itshape O}(log{\itshape n}) Approximation Ratio for the Asymmetric Traveling Salesman {\itshape Path} Problem
	Online Algorithms to Minimize Resource Reallocations and Network Communication
	Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs
	Combinatorial Algorithms for Data Migration to Minimize Average Completion Time
	LP Rounding and an Almost Harmonic Algorithm for Scheduling with Resource Dependent Processing Times
	Approximating Buy-at-Bulk and Shallow-Light {\itshape k}-Steiner Trees
	Improved Algorithms for Data Migration
	Approximation Algorithms for Graph Homomorphism Problems
	Improved Approximation Algorithm for the One-Warehouse Multi-Retailer Problem
	Hardness of Preemptive Finite Capacity Dial-a-Ride
	Minimum Vehicle Routing with a Common Deadline
	Stochastic Combinatorial Optimization with Controllable Risk Aversion Level
	Approximating Minimum Power Covers of Intersecting Families and Directed Connectivity Problems
	Better Approximations for the Minimum Common Integer Partition Problem

	Contributed Talks of RANDOM
	On Pseudorandom Generators with Linear Stretch in NC<Superscript>0</Superscript>~
	A Fast Random Sampling Algorithm for Sparsifying Matrices
	The Effect of Boundary Conditions on Mixing Rates of Markov Chains
	Adaptive Sampling and Fast Low-Rank Matrix Approximation
	Robust Local Testability of Tensor Products of LDPC Codes
	Subspace Sampling and Relative-Error Matrix Approximation: Column-Based Methods
	Dobrushin Conditions and Systematic Scan
	Complete Convergence of Message Passing Algorithms for Some Satisfiability Problems
	Robust Mixing
	Approximating Average Parameters of Graphs
	Local Decoding and Testing for Homomorphisms
	Worst-Case Vs. Algorithmic Average-Case Complexity in the Polynomial-Time Hierarchy
	Randomness-Efficient Sampling Within {\itshape NC}<Superscript>1</Superscript>
	Monotone Circuits for the Majority Function
	Space Complexity vs. Query Complexity
	Consistency of Local Density Matrices Is QMA-Complete
	On Bounded Distance Decoding for General Lattices
	Threshold Functions for Asymmetric Ramsey Properties Involving Cliques
	Distance Approximation in Bounded-Degree and General Sparse Graphs
	Fractional Matching Via Balls-and-Bins
	A Randomized Solver for Linear Systems with Exponential Convergence
	Maintaining External Memory Efficient Hash Tables

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

